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Abstract 

Online social networks have become a key 
communication medium for millions of Internet users. 
Building on this success a new class of social 
applications have emerged that use online social 
networks as a platform to access an established 
community of users. While some social applications act 
as a forum for users to interact, an emerging class of 
participatory social applications creates value by 
using data received from users to deliver a service. The 
success of participatory social applications is 
dependent on user responsiveness to application 
queries. In this paper we propose ‘User-Rank’, an 
application-independent approach to optimizing the 
querying of social network users. The design of User-
Rank is based upon a 30-day experiment, which 
involved sending 3,055 messages to 70 users to 
determine the factors influencing response time and 
message loss. User-Rank achieves significant 
performance improvements relative to random 
querying and is lightweight with minimal memory and 
computational requirements. 
 

1. Introduction  
Online Social Networks (OSNs) have emerged as a key 

Internet communication medium. At the time of 

writing, Facebook has more than 1 billion monthly 

active users [1], while Twitter has more than 200 

million [2]. As the scale of these networks continues to 

increase, so too does their potential for supporting 

novel applications. 

 

Social applications create value by providing a forum 

for users to interact with one another, or by using data 

provided by users to deliver a service. Social 

applications that act as a forum to connect users are the 

most common, for instance ‘Farmville’, which runs on 

the Facebook OSN reports more than 50 million 

monthly active users [4]. Social applications that 

exploit data provided by users are also becoming 

increasingly popular. Such applications use crowd-

sourced resources to provide a service such as smart 

parking [5], or weather monitoring [6]. User input may 
include smart phone sensor readings, photos or text 

content. This application model is particularly 

attractive as it provides a means to create large-scale 

applications with minimal infrastructure costs. 

 

The success or failure of social applications that rely 
on user input is dependent on user responsiveness to 
requests. A high rate of message loss and long 
response times may preclude the development of time 
sensitive social applications. For instance, the weather 

radar application developed by Demirbas et al. [6] 

achieved a response rate of only 15%, when using 

Twitter to gather weather reports, while Nazir et al. [7] 

report an average response time of 16.52hrs for OSN 

users engaged in a social application running on 

Facebook. Lindsay et al. [3] reflect these concerns, 

cautioning that social networks “should be further 
examined and researched before being adopted and 
used for emergencies and disasters”. This clearly 

motivates the need for a better understanding of user 

responsiveness on OSNs and also mechanisms to 

optimize the querying of users. 
 

In this paper, we consider the important problem of 

understanding and managing user response times and 

message loss in communications between social 

applications and their users. Our approach is based on 

an original 30-day study of 70 OSN users located in 11 

countries. The purpose of the experiment was to 

identify statistically significant factors impacting 

message loss and message response times. Based on 

the results of this study we devised the “User-Rank” 

algorithm, which optimizes the querying of OSN users. 

We evaluate User-Rank on trace data from our 

experiment and find that it reduces the number of users 

that are required to answer a query by an average of 

39.44% in comparison to random querying. 

 

The contributions of this paper are threefold. Firstly, 

we identify the significant determinants of user 

responsiveness on OSNs. Secondly, we propose the 

generic User-Rank algorithm, which optimizes the 

querying of OSN users. Thirdly we demonstrate 

through our evaluation of User-Rank that consideration 

of user behavior can significantly improve user 

performance in social applications. 
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The remainder of this paper is structured as follows: 

We begin in Section 2 by reviewing related work. 

Section 3 describes our experiment. Section 4 

introduces the User Rank algorithm. Section 5 

evaluates the algorithm. Section 6 concludes. Finally, 

section 7 discusses the limitations of this work and 

directions for future research. 

 
2. RELATED WORK 
Boyd et al. [9] define Online Social Networks (OSNs) 

as “web-based services that allow individuals to (1) 
construct a public or semi-public profile within a 
bounded system, (2) articulate a list of other users with 
whom they share a connection, and (3) view and 
traverse their list of connections and those made by 
others within the system”.  

 

A key feature that has contributed to the popularity of 

online social networks is the ability of such networks 

to act as application hosting platforms for third party 

social applications. Social applications create value for 

their users by providing a forum for users to interact. 

The first social applications to emerge were games. 

Fighters Club [8] launched in 2007 is a gaming social 

application that allows users to pick virtual fights with 

Facebook friends, lasting from 15 to 48 hours. 

Farmville [20] launched in 2009 and grew to support 

over 50 million monthly active users. A number of 

non-game applications have also been successful. For 

example, Hugged is a simple application, launched in 

2008, that allows users to send virtual ‘hugs’ to friends 

[8]. Now, a new class of social applications is 

emerging that creates value by using data provided by 

users. We refer to this class of applications as 

participatory social applications.  

 
2.1 Participatory Social Applications 
Participatory social applications are distinct from other 

social applications in terms of how they create value, 

which is often through the sensing of physical or social 

phenomena. Participatory sensing refers to user data 

that is a combination of both passive sensed data and 

more active content uploading. Participatory sensing as 

we use the term is distinct from user-generated content 

as defined by the OECD which stipulates that user-

generated content “must be published on a publicly 
available website or on a social network accessible to 
a selected group of people; it needs to show a certain 
amount of creative effort and needs to be created 
outside of professional routines or practices” [11]. In 

contrast, the data generated by participatory sensing is 

often not publicly available, is not necessarily creative 

(e.g. sensor readings) and often has a commercial 

purpose.  

 
An early example of a participatory social application 

is the Twitter Weather Radar provided by Demirbas et 

al. [6]. Their application examines the feasibility of 

crowd-sourcing the problem of monitoring and 

predicting weather conditions. An application was 

developed that uses a dedicated twitter account to send 

‘tweets’ (i.e. Twitter messages) to its ‘followers’ (i.e. 

users who subscribe to messages from the account). 

The tweets requested either current or next-day 

weather conditions in various locations. Followers of 

the application responded by manually sending a tweet 

with the requested weather conditions. The weather 

monitoring application achieved an average accuracy 

of 85% for current weather conditions and 46% for 

next-day weather predictions. In terms of user 

participation, Demirbas et al. [6] reported only a 15% 

response rate and slow response times, with 50% of 

responses taking longer than 30 minutes. 

 
Miluzzo et al. [11] proposed the CenceMe application, 

which uses standard mobile phone sensors to infer the 

current activity of the user. To achieve this, a range of 

software classifiers were applied to data from the 

phone’s microphone, camera, accelerometer, Bluetooth 

radio and GPS receiver to identify activities including: 

sitting, standing, running and walking. The users of 

CenceMe were invited to share their activity context 

using online social networks such as MySpace and 

Facebook. In terms of user participation, Miluzzo et al. 

[11] find that CenceMe users were willing to share 

their status via online social networks. Rosi et al. [12] 

highlight the potential of online social networks to 

detect social phenomena such as crowds and to support 

location aware recommendation systems. Noulas et al. 

[13] follow this approach, using GPS location data 

from mobile phones together with recommendations 

from the FourSquare and Gowalla (closed in 2012) 

social networks to suggest new venues. Participatory 

social applications, such as those discussed in this 

section are time sensitive and therefore have more 

stringent requirements in terms of user responsiveness 

relative to more traditional social applications, which 

create value by acting as a forum for interaction [7].  

 

2.2 Studies of OSN User Behavior 
The success or failure of participatory social 
applications that rely on user data input is dependent 
on user responsiveness to requests. In terms of user 
behavior in social applications, research has tended to 

focus on social and emotional issues [14]. For instance, 

the Forrester survey found that entertainment driven 

users generate more content relative to career driven 
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users [16]. While increasing the entertainment element 

of applications may increase user responsiveness, other 

more fundamental issues relating to how message 

requests are communicated to users have received 

relatively little attention. 

 

While social applications may provide significant new 

value for their users, they also introduce new concerns 

over privacy and acceptability. Efstratiou et al. [17] 

investigate user perceptions of privacy and 

acceptability for participatory sensing applications 

using surveys and interviews. This study was 

conducted in the context of a participatory sensing 

application deployed at a UK research institute, which 

monitored: user location, identified co-location of users 

and detected conversations. This information was then 

shared using online social networks. Efstratiou et al. 

[17] find that, while many users had privacy concerns, 

they were willing to accept participatory sensing 

applications, where they are seen to provide sufficient 

value. In addition, Efstratiou et al [17] observe that 

control over how sensed data is released to the online 

social network is critical to minimizing user privacy 

concerns. As such direct user input in the generation of 

social application data is both necessary and desirable.  

 

While issues of privacy and trust govern users decision 

to participate in social applications other factors may 

influence user responsiveness (i.e. the likelihood that a 

message will be lost or have a long response time).  

The timeliness of users responses is especially critical 

in terms of the feasibility of participatory social 

applications that rely on time sensitive data. Nazir et al. 

[7] developed and launched three social gaming 

applications on Facebook and used data collected from 

these applications to examine user response times (i.e. 

the time period that a user must wait for a response 

from another user). Message requests were sent in an 

unpredictable fashion from one user to another with 

users often being located in different countries. The 

authors report an average response time of 16.52hrs 

with the longest response taking as much as 567hrs. If 

such high response times were inherent to OSNs, this 

would preclude their use in many time-sensitive 

applications. 

 

2.3 Social Network Theory 
In examining the factors that affect the flow of 

information from users to participatory social 

applications we draw on and contribute to existing 

social network theory. A social network is broadly 

defined as a set of actors connected by a set of ties. The 

actors are nodes in a graph and the ties between them 

are edges. The actors may be, but are not limited to, 

persons, terms, organizations or concepts [21]. Ties 

between actors may represent the flow of resources, 

interactions, similarities (location) or social relations 

[22]. Ties may be directed, such as ‘gives advice to’ or 

undirected, such as ‘similar location’ [22]. 

  

In this paper we consider a 2-mode network wherein 

both ‘users’ and ‘social applications’ are modeled as 

actors within the network. Messages sent between the 

application and users and between the users and the 

application, are the ties of interest within the network. 

A significant body of research has examined attributes 

of actors as affecting the flow of information within the 

network [23,24,25]. However relatively little work has 

examined attributes of the ties as affecting information 

flow, a notable exception being research differentiating 

between strong and weak ties. The strength of weak 

ties theory argues that weak ties offer more novel 

information relative to strong ties. Granovetter (1978) 

distinguishes between strong and weak ties based on 

the amount of time, intensity and exchange of 

reciprocal services. This distinction between strong and 

weak ties has also been applied to online environments 

[27].  

 

In this paper we focus on how the attributes of ties 

(messages) between social applications and their users 

influence the flow of information within the network. 

In so doing we examine whether it is possible to 

optimize the querying of users by selecting the users 

with based on their observed level of message 

responsiveness which is here used as a proxy for tie 

strength. In Section 3 we describe an experiment that 

measures user responsiveness in social applications 

and based upon this, in Section 4 we then introduce the 

User-Rank algorithm that optimizes the targeting of 

queries to OSN users based upon the results of this 

study. 

 
3. EXPERIMENT 
In order to examine factors affecting message loss and 

message responsiveness we designed an original 

experiment that ran for 30 days from December 15
th

 

2012 to January 14
th

 2013. In total, 70 users were 

recruited for the study and a total of 3,055 request 
messages were sent to users during the experiment. 

 
3.1 Data Collection 
We created a short message to recruit participants, 

which fit within the 140-character constraint of 

Twitter. This message contained a link to a web-based 

participant registration system. By clicking the link 

users were able to enter their social network 

usernames, their name and email address. This 

recruitment message was shared by four of the authors 
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on this paper on their chosen OSN (i.e. Facebook 

and/or Twitter). Registered participants were also 

encouraged to share this message with their contacts by 

sharing a link to the registration page using their 

chosen OSN(s) thus allowing the recruitment message 

to spread over the social network graph. The 

recruitment process continued throughout the 

experiment. Our participants responded from Belgium 

(57%), the UK (18%), Australia (9%), the US (5%), 

Spain (3%), Poland (2%), India (2%), Ireland (1%), Sri 

Lanka (1%), Portugal (1%) and Andorra (1%). Of 

these participants 1% used only Twitter, 23% used 

only Facebook and 76% used both social networks. 

 

Custom client applications were created for each online 

social network, with a dedicated account used for 

Facebook and Twitter communication. In the case of 

Twitter, the client sent a directed tweet (Twitter 

message) to participants, while in the case of 

Facebook; the client sent a private chat message to 

participants. The distribution of messages to users via 

the online social network clients was scheduled using 

standard Linux CRON jobs. The time of day when 

messages were sent was selected randomly by the 

experimental scripts but with controlled daily 

frequency for each participant. Each message 

contained the following text: “OSN Connectivity - click 
this link to help by checking-in: [link]”. Wherein [link] 

is a HTTP link to the check-in web page that logs the 

response time, device description and the IP address of 

the replying node to the experimental database. The 

check-in web page also presents users with feedback 

on how many times they have checked in and a link 

allowing them to drop out of the experiment or share 

the recruitment message with their neighbors on the 

social graph.  

 
3.2 Results of Data Analysis 
In assessing user responsiveness we consider two key 

factors: (a) message loss and (b) response time. During 

our study we sent a total of 3,055 messages. Of these, 

1,538 (50.34%) were responded to, while 1,517 

(49.66%) were lost.  Based upon the time taken for a 

user to click a web link embedded in the message, we 

are able to measure response time. Messages not 

responded to after 12 hours are treated as lost 

messages.  

 
3.2.1 Message Loss 
In order to examine factors affecting message loss we 

performed a logistic regression analysis of our data. 

The Time of day at which message is sent (morning, 

afternoon, evening and night), the OSN used to deliver 

the message (Facebook or Twitter) and the Rate of 

messaging are included as explanatory variables. To 

examine the effect of Rate of messaging on Message 

Loss, we split users into two groups. Starting on day 

19, half of the group (even user ID numbers) was kept 

on a constant rate of 1 message per day. The other 

users were put on an increasing rate of 2, 3, 4 and 

finally 5 messages per day by the end of experiment.  
 

Variables with a significance level of p<0.05 were 

judged to have a statistically significant impact on the 

explanatory variable. The results of our logistic 

regression analysis are reported in Table 1. In logistic 

regression with multiple categorical variables, one 

category is used as a reference and compared to the 

other categories. We find significant relationships 

between Time and Rate on Message Loss, however we 

do not find a statistically significant relationship 

between OSN and Message Loss.  

 
Table 1: Message Loss 

 B S.E.  Wald Df Sig Exp(B) 

Time *   11.931 3 .008  

Time(1)* -.360 .105 11.873 1 .001 .698 

Time(2) -.176 .106 2.727 1 .099 .839 

Time(3) .198 .107 3.420 1 .064 .820 

Rate*   68.282 4 .000  

Rate(1)* -.788 .119 43.724 1 .000 .455 

Rate(2)* -.606 .150 16.412 1 .000 .545 

Rate(3) -.181 .140 1.669 1 .196 .835 

Rate(4) -.172 .141 1.501 1 .221 .842 

OSN -.071 .083 .732 1 .392 .931 

Constant .676 .115 34.599 1 .000 1.967 

Overall Percentage Correct: 58.2 (50.3)1 

Nagalkerke R Squared: .0442 

No. of observations: 3,055 

 

The local time of the user (Time) is found to be 

statistically significant overall (p=0.008). Time(4)-
night is used as the reference category and compared to 

the other time periods. Time(1)–morning is statistically 

significant as such we can say that message loss is 

significantly different during the morning than at night. 

Thus, in order to minimize message loss send messages 
during the morning period (06.00-11.59). 
 

We find that the number of messages sent to the user 

per day (Rate) has statistically significant impact 

overall (p<0.001). The reference category is Rate(5) 
which indicates 5 messages sent per 24hrs and is 

compared to the other Rate categories. Rate(1) and 

                                                
1
 Overall Percentage Correct refers to the overall percentage of 

messages correctly classified as lost or not-lost when our predictors 

(Time, Rate, OSN) are included in the model. This increases from 

50.3 (no predictors) to 58.2. 
2
 Nagelkerke R Squared is 0.044, which indicates that our model 

predicts 4% of the variance in message loss. We acknowledge that 

this value is low, however, we believe that this is acceptable for an 

exploratory study. 
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Rate(2) are statistically significant as such we can say 

that message loss is significantly different when the 

rate of messaging is 1 or 2 per day compared to when 

the rate of messaging is 5 messages per day. Thus, in 
order to minimize message loss keep the rate of 
messaging at or below 2 messages per 24hrs. 
 
3.2.2 Message Response Time 
We examine the relationship between Response Time, 

measured in seconds and the explanatory variables 

Time of day, Online Social Network and Device  

(cellular or non-cellular) used to respond to messages 

using linear regression analysis. The results of the 

regression analysis are reported in Table 2. We again 

use p<0.05 as our cut-off significance value.  

 

We find a statistically significant relationship between 

the Time of day at which the message is sent and 

message response time. If we examine the Beta 

coefficient (B) we see that a one unit increase in Time 

of day (e.g. moving from morning to afternoon, or 

afternoon to evening) leads, on average to a 2,971 

second increase in response time. Comparing the 

standardized Beta coefficients (Std. B), it can be seen 

that Time of Day has the greatest impact on response 

time. Thus, in order to minimize message response 
time, send messages earlier in the day.  

 
Table 2: Message Response Time 

 B S.E. Std. B t sig 

(Constant) 3720.93 717.20  5.188 .000 

Time of day* 2971.67 236.65 .304 12.557 .000 

OSN* -1327.75 531.39 -.061 -2.499 .013 

Device* -1629.33 551.85 -.072 -2.952 .003 

R-Squared: .1013 

No. of Observations: 1,538 

 

The relationships between online social network 

(OSN) used and message response time was also found 

to be significant. The negative Beta coefficient 

indicates that messages delivered via Twitter are, on 

average, responded to 1,3227 seconds faster than 

messages delivered via Facebook. Thus, in order to 
minimize message response time, send messages via 
Twitter rather than via Facebook.  
 
We also find a significant relationship between the 

Device used and message Response Time. The 

negative Beta coefficient implies that messages 

responded to via a cellular devices exhibit a response 

time, on average, 1,629 seconds faster than messages 

                                                
3
 The R-square of the model is .101, which indicates that the model 

explains 10% of the variance in message loss. We acknowledge that 

this value is low, however, we believe that it is acceptable for 

exploratory research.  

responded to on non-cellular device. Thus, in order to 
minimize message response time, send messages to 
users who access online social networks using a 
cellular device.  
 
3.2.3 Summary of Experiment Findings 
 

In summary, the findings of our study have a number 

of implications for the designers of participatory social 

applications: 

(a) The time at which users are messaged has a 
significant impact on response times and the 
number of messages that are lost. Our results 

indicate that social application developers can 

minimize loss and response times by sending 

queries in the morning where possible. It should 

also be noted that online social networks are 

geographically distributed and thus it is the local 

time of the user that should be considered, rather 

than the current time at the sender. 

(b) The rate at which users are messaged has a 
significant impact on message loss. As the rate of 

messaging increased above 2 messages per day we 

observe a significant increase in message loss. 

(c) The online social network via which users are 
messaged has a significant impact on response 
time. We find that messages sent via Twitter have 

significantly lower response times relative to 

Facebook users. As such, Twitter is a more 

effective platform for the delivery of time 

sensitive messages than Facebook. 

(d) The device used to respond to messages has a 
significant impact on response time. Individuals 

who responded to messages via cellular devices 

demonstrated significantly lower response times. 

The efficiency and effectiveness of social 

applications is likely to increase as smart-phones 

become ubiquitous.  
 
In the following Section, we describe how we have 

used the findings of this study to create User-Rank a 

generic approach to optimizing the querying of social 

network users. 

 

4. OPTIMIZED QUERYING OF USERS 
User-Rank aims to maximize the efficiency of user 

querying for participatory social applications. This is 

achieved by selecting users based on their last 

observed message response characteristics (i.e. device 

used, OSN used and current local time) and the number 

of messages sent from the application to the user 

during a 24hr period (i.e. rate). Based on these 

characteristics, each user is then assigned a ranking 

that estimates their potential for answering a query. A 
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high ranking indicates that the user is likely to be very 

responsive to data requests (strong tie). Application 

developers may use this ranking to optimize querying 

by messaging the highest ranked users first and then 

continuing down the list until the required number of 

responses has been achieved. User-Rank thus allows 

time-sensitive queries to be successfully executed 

using fewer users. 

 

4.1 User Model and Data Gathering 
Scalability is critical for participatory applications 

that are required to support and gather data from 

millions of users. It is therefore critical to minimize the 

memory requirements of modeling each user. 

Specifically, User-Rank stores a user ID variable, and 

one variable for each of the four determinants of user 

responsiveness (OSN type, local time, rate, and device) 

as identified by the study described in Section 3. In the 

case of local time, the ‘time-difference’ is stored based 

upon the time zone from which the user was last 

observed to respond. The time-difference is then used 

to calculate the users current local time whenever a 

query is ready to be sent. A description of each 

variable follows: 

� ID: the unique text username of this social 

network user (i.e Twitter handle or Facebook 

login). 
� OSN: a numeric identifier that represents the 

social network that the user is using.  

� rate: a numeric value that represents the number of 

messages that have been sent to the user during the 

current day according to the sender’s clock. 

� time-difference: a numeric value that represents 

the offset in units of 30 minutes between the local 

time at the sender and the local time at the user. 

� device: is a Boolean value that represents whether 

the user is on a cellular device. 

 

Our approach to gathering user data requires only a 

standard web server and an OSN client that is capable 

of messaging the users. Each request that is sent to an 

OSN user embeds a unique web link that associates 

each response to its corresponding query. The user 

must click the link in order to respond. When the user 

follows the embedded link, the web server resolves the 

IP address of the user to a location, which is used to set 

the time-difference variable. The browser agent string, 

a standard feature of the HTTP protocol [19], is then 

used to set the device variable. The OSN and ID fields 

are identified based upon the embedded hyperlink, 

which associates a response to a specific user query. 

The rate variable, which is measured in messages-per-

day is simply incremented every time a user is 

messaged, until it is reset to zero at midnight.  

 

Two features of the data gathering process are 

noteworthy: (a.) our approach gathers no more data 

than a standard web-site tracker and (b.) all of the data 

required to model a user can be encoded in just 54 

bytes of memory: 50 bytes for OSN username and 1 

byte each to store OSN, rate, time offset and device 

type. Naturally, the inclusion of more meta-data on 

users would allow for more specific filtering; however 

this comes at the cost of more invasive monitoring and 

greater memory requirements. 

 

4.2 Weighting of the Rank Variables 
The weight of the ranking variables are set based upon 

the observed effect of these variables on user response 

times and message loss in a set of ‘training data’ (i.e. 

data that is used to set the weightings of the algorithm). 

In Section 5 we create four instances of the algorithm 

each using one weeks worth of training data and then 

evaluate the performance of each instance on the three 

other weeks of data on which it was not trained. 

 

For every categorical variable: “time”, “OSN” and 

“device”, the weight for each category-value is set to 

the average observed decrease in response time 

(measured in seconds) observed for users exhibiting 

that category, compared to the average response time 

observed across all training data. For example: if user 

response times are on average 100 seconds quicker 

than average where the users local time is ‘morning’, 

the weight for “time = morning” is set to 100. For the 

continuous variable “rate”, weights are set as the 

average decrease in response time for every 1 unit 

increase in the rate of messages. For example, if 

response times increase on average by 100 seconds for 

every additional message per day, the weight for “rate 

= 5” would be set to 5 * -100 = -500. The total Rank 

for each user is thus the sum of weights for all 

observed values. The ranking is then converted to 

Normalized-Rank on a 0 to 100 scale using the 

following formula: 
 

Normalized-Rank = 100/Maximum-Rank * Rank 
 

Where Maximum-Rank is the maximum ranking 

assigned to a user in the training data. The use of a 

normalized scale allows for the use of fixed-size 

variables within the User-Rank algorithm. 

 
4.3 The User-Rank Algorithm 
The User-Rank algorithm takes an unordered, set of 

OSN users as input (population) and returns these 

OSN users ranked according to their potential for 

answering queries (ranked_population). The 

User-Rank algorithm is simple and operates as follows: 
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1. For each user in the filtered set, a rank is 

calculated based upon the weightings described in 

Section 4.1. 

2. The filtered and ranked set of users is sorted by 

rank using the well-known Quick-Sort algorithm 

[18] and returned. 

 

This algorithm is shown in pseudo-code in Listing 1. 

Numbered comments indicate which block of code 

corresponds to each stage of the algorithm as described 

above. Weighting variable names are summarized in 

Table 3.  

 
Listing 1: The User Rank Algorithm 

 

User-Rank(population){ 
 
rankedPopulation = new set;  
 
for all users in population { 
 
  u = next user from population;  
 
  // 1. Set user ranking and add to set 
  rank = 0; 
  time = local_time + u.time-difference; 
  if (time = Morning) rank = rank+WTm; 
  if (time = Afternoon) rank = rank+WTa; 
  if (time = Evening) rank = rank+WTe; 
  if (time = Night) rank = rank+WTn; 
  if (u.device = Cell) rank = rank+WDc; 
  if (u.device = Non-Cell) rank = rank+WDn; 
  if (u.osn = Twitter) rank = rank+WOt; 
  if (u.osn = Facebook) rank = rank+WOf; 
  rank = rank+(Wr*rate); 
  u.rank = rank; 
  add u to rankedPopulation; 
  } 
} 
 
// 2. Sort set by rank and return 
Quick-Sort(ranked_population by rank); 
return ranked_population; 

} 

Table 3: Weighting Variable Descriptions 
Variable Description 

WTm, WTa, WTe, WTn 
Weight for Time = morning, 

afternoon, evening or night. 

WDc, WDn 
Weight for Device = cellular or 

non-cellular. 

WOt, WOf Weight for OSN = twitter or 

facebook. 

Wr Weighting for rate = r. 

5. EVALUATION 
In this section, we evaluate the performance of User-

Rank using the trace data we gathered during the 

empirical study described in Section 3.  

 

5.1 Evaluation Environment 
User-Rank was implemented in Java 1.6 and all tests 

were executed on Mac OS X Version 10.8.4 running 

on a 1.3GHz Intel Core i5 with 4GB of RAM. To 

evaluate User-Rank, we used our trace data from the 

30-day experiment described in Section 3. We split this 

data set into four samples of 1 week each. These data 

sets contained on average 750 queries, allowing us to 

simulate a user population of the same size. The data 

from each week was then used to train a unique 

instance of the User-Rank algorithm (UR-WK1 to UR-

WK4) by setting the variable weightings as described 

in Section 4.2. The four algorithm instances were then 

tested on the other three weeks of data on which they 

had not been trained. It is important to note that all 

instances of the algorithm were tested on different data 

sets than those they were trained on, thus ensuring that 

the performance results are representative. For each 

test case we recorded the number of users that must be 

messaged in order to receive a certain number of 

responses (from 10 to 50) within 60 minutes. The 

performance of each instance of the User-Rank 

algorithm is then compared against random querying. 

We also measured the time that the algorithm takes to 

generate the ranked data set in each case. 

 

5.2 Evaluation Results 
Figures 1 to 4 show the number of users that must be 

queried in order to receive 10 to 50 responses within 

60 minutes using the week 1 to 4 data sets respectively. 

The performance of random querying (RANDOM) is 

compared to User-Rank instances trained on data from 

each of the other three weeks (labeled UR-WK1 to 

UR-WK4). 

 

 
Figure 1 – Performance of User Rank in Week 1 
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Figure 2 – Performance of User Rank in Week 2 

 

 
Figure 3 – Performance of User Rank in Week 3 

 

 
Figure 4 – Performance of User Rank in Week 4 

 
Querying Efficiency: As can be seen from Figures 1 

to 4, User-Rank outperforms random querying for all 

instances on all data sets. In the worst case, running 

UR-WK2 on the Week 1 data set, User-Rank reduced 

the number of users that must be messaged by 19%. In 

the best case, running UR-WK2 on the Week 4 data 

set, User-Rank reduced the number of users that must 

be messaged by 72%. The average saving across all 

test cases was 39.44%. 

 
Algorithm Performance: Table 4 summarizes the 

execution time of the algorithm for all test cases. For 

each test the algorithm was executed 10 times and the 

results were averaged. As can be seen from Table 4, 

User-Rank is fast, taking a maximum of 2ms to rank 

the target data set.  

 

Table 4: Test-case Execution Time  
Test # Execution Time (ms) 

Week 1 1.4 

Week 2 1.8 

Week 3 1.9

Week 4 2.0 

 

Efficient Use of Population: an interesting feature of 

User-Rank is that it makes good use of the full user 

population. On average, the ranking of a user varies by 

55 points on the 100-point normalized ranking scale 

during the course of the experiment. Furthermore, as 

the rate at which a user is messaged increases, their 

rank decreases, ensuring that no user is flooded with 

messages. Over 78% of our experimental participants 

were ranked in both the top and bottom quartile at 

some point in our 30-day experiment. 

 

6. DISCUSSION AND CONCLUSIONS 
This paper has considered the problem of user 

responsiveness in participatory social applications. To 

better understand this problem we performed a 30-day 

study of 70 users on the Twitter and Facebook social 

networks, wherein we sent 3,055 request messages to 

participants and logged the response time and loss rates 

of users. This study allowed us to identify the 

statistically significant determinants of message loss 

(i.e. local time, rate of querying) and response time 

(i.e. local time, OSN and device). Based upon the 

findings of our study, we propose User-Rank, which 

optimizes the querying of OSN users by considering 

the effects of these determinants on user 

responsiveness. 

 

At a theoretical level our results demonstrate that the 

notion of strong and weak ties can be usefully applied 

to online social networks. In Granovetter’s [26] 

formulation tie strength is a property of the emotional 

relationship between two actors. However in online 

social networks such a relationship may be difficult to 

measure. In this paper we have demonstrated a more 

general approach, wherein tie strength is distinguished 

based on their contribution to the outcome of interest, 

in this case user responsiveness to messages sent. The 

User Rank algorithm operates by analyzing the last tie 
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observed between a certain user and the application 

and applying weight to the attributes of the tie 

proportional to their observed impact on message 

responsiveness. We then use the estimated current tie 

strength to optimize which users are selected for 

interaction with the application. We expect these 

findings to be generally applicable across social 

networks, particularly those networks that have a 

central coordinating actor(s).  

 

At a practical level our preliminary evaluation of User-

Rank shows that it is capable of reducing the number 

of users that must be messaged in order to successfully 

fulfill a query, where success is defined as receiving a 

certain number of response messages by a specified 

deadline. This tackles the critical problems of high 

message loss and slow user response times as 

identified in prior work by Demirbas et al. [6] and 

Nazier et al. [7]. User-Rank significantly outperforms 

random querying of users in all cases, reducing the 

number of users that must be messaged by an average 

of 39.44%. Furthermore, the user rank algorithm has 

minimal computational and memory requirements. The 

full 3055 response data set can be stored in under 

165KB of memory and the worst-case execution time 

of User-Rank is 2ms. This implies that User-Rank may 

be applied directly to Internet-scale data sets.  

 

7. Limitations and Future Work 
 

Limitations of our data set: The work presented in 

this paper is based on a relatively small-scale data set 

of ,3055 queries sent to 70 users over 30 days. While 

our experimental participants were diverse, responding 

from 11 countries, it is likely that the population 

exhibits different demographics to a ‘typical’ 

population of OSN users. Extending our experiments 

to greater scale in terms of number of users and time-

scale is a priority for our future work. This will also 

provide the opportunity to test User-Rank on new data 

‘in the wild’. 

 

Software architecture: It should be noted that while 

User-Rank provides an important building block that is 

required to implement a complete querying system for 

OSN users, important elements are still missing. Here, 

our priorities are two-fold: (a) to develop a supporting 

middleware platform that is capable of scaling to 

support many simultaneous queries and (b) to create a 

suite of user-facing tools that allow for the formulation 

of accurate and efficient queries. 

 

Modeling the user: Our findings imply that significant 

optimizations can be made to user querying without the 

need for detailed user information or complex 

algorithms. However, User-Rank is a first step and it 

likely that further research in this area will contribute 

more complex algorithms that are capable of more 

accurately predicting the performance of users in 

answering queries. Specifically, in our future work we 

will strive to build more complete models of user 

responsiveness, in particular incorporating attributes of 

users into the model. In particular, future work will 

focus on users motivation for participating in social 

applications.  
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