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Abstract—The objective of this paper is to show that cus-
tomers can benefit from a smart grid if they become more
active participants in electricity markets by 1) relying more
on deferrable demand (e.g. electric vehicles and augmenting
space conditioning with thermal storage) to shift demand away
from peak periods and buy more electricity when prices are
low at night, and 2) selling ancillary services such as ramping
capacity to mitigate the inherent uncertainty of wind generation.
These two factors, coupled with the lower operating cost of wind
generation compared to conventional generation from fossil fuels,
have the potential for reducing the cost of electricity to customers.
However, these benefits will not be realized unless the rates
charged to customers reflect the true costs of supply. This paper
compares how the bills charged to different types of customer
are affected by different rate structures with and without the
correct economic incentives. The main savings in operating
cost come from the displacement of conventional generation by
wind generation, and the main savings in capital cost come
from reducing the amount of installed conventional generating
capacity needed to maintain System Adequacy by 1) reducing
the peak system load, and 2) by using deferrable demand to
provide ramping services and reduce the amount of conventional
generating capacity needed for operating reserves.

A new stochastic form of multi-period Security Constrained
Optimal Power Flow is applied in a simulation using a reduction
of the North Eastern Power Coordinating Council (NPCC)
network for a representative summer day. This model treats po-
tential wind generation as a stochastic input and determines the
amount of conventional generating capacity needed to maintain
reliability endogenously. The analysis assumes implicitly that all
deferrable demand at a node is managed by an aggregator. If
the rates are structured with the correct economic incentives (i.e.
real-time nodal prices for energy, a demand charge determined
by the demand during system peak periods, and compensation for
providing ramping services), the results show that 1) the economic
benefits for customers with thermal storage are substantial, and
2) the main benefits for customers with electric vehicles (without
V2G capabilities in this application) come from buying less
gasoline. In contrast, if customers pay conventional rates with
a fixed price for energy and no demand charge, the economic
incentives are perverse and customers with deferrable demand
pay more and customers with no deferrable demand pay less.

I. INTRODUCTION

With high penetrations of variable generation from wind

turbines, the system benefits of this relatively inexpensive

source may be lower than expected because other system

costs increase. Even though wind generation will typically

displace more expensive generation from fossil fuel sources

and reduce operating costs, the costs of the conventional

generating units needed as reserve capacity to mitigate the

uncertainty of wind generation and maintain reliability are

likely to be higher. These costs include the direct operating

costs of being available as reserves and the capital cost of

building these units. Furthermore, there is growing evidence,

particularly from Europe, that there are additional “ramping”

costs caused by the higher maintenance costs associated with

repeated changes in the dispatch points of the reserve units.

The additional system costs associated with wind generation

are reflected by the relatively low nodal prices paid to wind

farms. When the system load is high, congestion on a network

may effectively prevent wind generators from getting paid the

high nodal prices in load pockets. In contrast, when the system

load is low and there is little congestion, wind generation may

be sufficient to meet most of the load throughout the network,

and the low offer prices for this source will set the nodal

prices.

The primary objective of this paper is to evaluate the role

of installing storage capacity as a way to integrate more wind

generation into a network and reduce system costs. Three

different types of storage are considered. One uses utility-scale

batteries collocated at the wind sites to deal with the variability

of the potential wind generation. When wind speeds are high,

some of the potential wind generation is stored on-site and the

batteries are discharged when the wind speeds are lower. In

this way, the variability of the generation dispatched at a wind

site (direct generation plus discharging the batteries) is much

lower than it is with no storage capacity.

The other two types of storage are examples of deferrable

demand at load centers that decouple the purchase of electric

energy from the delivery of the some energy services that

customers want. Charging the battery in an electric vehicle

is one example of deferrable demand, but the other example,

thermal storage, is likely to have a larger impact on the grid.

With the latter type of deferrable demand, ice is made at night,

for example, when the price of electricity is low and melted

to provide cooling services when cooling services are needed

during the day. The overall effect of deferrable demand is

to flatten the daily profile of purchases at the load centers

from the grid. In this way, the amount of congestion on

the grid and the amount of conventional generating capacity
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needed to maintain Operating Reliability are both reduced. If

suitable incentive mechanisms are established, it would also

be possible to use deferrable demand to mitigate the variability

of wind generation in a similar way to using batteries at the

wind sites. In fact, this type of mitigation occurs to some extent

without explicit incentives for mitigating ramping because the

nodal prices at load centers are affected by ramping costs as

well as by the standard operating costs.

Traditionally, the system operators who manage operations

on the grid have focused on optimizing different sources

of supply and have treated the demand by customers as

exogenous. The daily pattern of the aggregate demand from

customers on a distribution network is predictable, and the

operating criterion in a typical Security Constrained Optimal

Power Flow (SCOPF) [1] is to minimize the cost of meeting

a predicted pattern of demand subject to ensuring that a

specified set of equipment failures (contingencies) can be

covered. Treating demand as an exogenous input for planning

expansion of the grid has resulted in a situation in which

the peak system load grew faster than the annual demand

for electric energy. Consequently, the average capacity factors

of generators have decreased over time and some units are

only used for a few hours each year. Supply systems in most

regions in the US are designed to meet the summer peak load

caused by the demand for air conditioning. There are, however,

already signs that conditions are changing. In the 2010 Long-

Term Reliability Assessment published by the North American

Electric Reliability Corporation (NERC) [2], electric energy is

forecasted to grow slightly faster than the peak demand over

the next ten years due to the electrification of the transportation

sector and increased demand-side management.

The empirical examples in this paper use a new stochastic

form of multi-period SCOPF developed at Cornell (the second

generation SuperOPF) and a reduced representation of the bulk

power network in the Northeast Power Coordinating Council

(NPCC) to evaluate the system effects of uncertain wind gener-

ation, ramping costs and storage. The most important features

of the SuperOPF for this analysis are that 1) the stochastic

characteristics of potential wind generation at multiple sites

are incorporated, 2) the amount of conventional generating

capacity, including reserves, needed to maintain Operating

Reliability is determined endogenously, and it depends on how

the stochastic characteristics of potential wind generation are

represented, and 3) the additional ramping costs caused by the

inherent variability of wind generation is incorporated into

the objective function. As an example, if the use of on-site

storage reduces the variability of wind generation, ramping

costs are reduced and less conventional generating capacity is

needed for reserves to maintain reliability. Since the capacity

of the electric delivery system is designed to meet the peak

system load, reducing this peak and the associated capital cost

of equipment (e.g. peaking units with low capacity factors) is

an important way to reduce the total system costs as well as

reduce the amount of congestion on the grid.

This paper has the following structure. Section II briefly

summarizes antecedents to this work. Section III presents

a general description of the stochastic multi-period SCOPF

followed in Section IV by a description of its specific features

in the SuperOPF, such as the representation of dedicated utility

storage, thermal storage, electric vehicles and the uncertainty

of potential wind generation. The empirical results presented

in Section V show that storage is an effective way to lower

system costs by 1) flattening the daily pattern of dispatch by

conventional generating units, 2) spilling less of the potential

wind generation, 3) mitigating the ramping costs associated

with wind uncertainty, and 4) reducing the amount of reserve

capacity needed to maintain reliability. In addition, deferrable

demand reduces the peak system load on the network, the

corresponding total capacity of supply (conventional gener-

ation plus wind generation and discharging utility storage),

and congestion on the network. The paper ends with the

conclusions in Section VI that include our recommendations

for the regulatory changes required to provide the necessary

economic incentives for customers to make investments in

deferrable demand.

II. LITERATURE REVIEW

The operation of the electricity system is based on a cen-

trally planned solution to a SCOPF [1], often with heuristics-

based hard constraints imposed to maintain the security of

the system [3]. For longer time horizons in most of the

deregulated markets in the US, this approach is coupled to a

Unit Commitment (UC) problem that incorporates the startup

and shutdown decisions for large thermal generators. There

is an extensive body of literature analyzing the theoretical

framework for this combined problem [4], [5], [6], [7], with

recent developments analyzing the effect of integrating renew-

able sources of generation [8], [9]. These approaches contrast

with market designs that leave the commitment decision to

the individual generators [10]. Regardless of the final market

design, there is some consensus about the effect of increasing

the share of renewable generation on the system operations

[11], [12], [13], especially regarding the secure operation of

the system. The approach considered in this paper is germane

to the approach in [1], with a robust determination of the

reserves needed for contingencies, load following and ramping

to mitigate the variability of wind generation.

III. FORMULATION OF THE ANALYTICAL MODEL

A new second-generation SCOPF, the SuperOPF1, is used

for the analysis. This model is an extension of the model

proposed in [15] and [14] and was implemented using MAT-

POWER’s extensible architecture [16].

The objective criterion of the new SuperOPF is to maximize

the expected sum of producer and consumer surplus over a

twenty-four hour horizon for a set of contingencies, including

uncertainty about the forecasts of potential wind generation.

It also allows for storage and deferrable demand. Rather

than using the standard criterion of minimizing cost subject

1A stochastic multi-period security constrained AC OPF with co-optimizing
endogenous reserves to provide ramping to mitigate wind variability and cover
a set of credible contingencies. [14].
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to covering physical contingencies, shedding load at a high

Value of Lost Load (VOLL) is allowed if it is economically

efficient to do so. This formulation determines the optimal

dispatch of a set of previously committed generating units

subject to their physical characteristics (e.g., rated capacity,

cost and ramping capabilities) and the network’s topology (e.g.

transmission line constraints). The model solves the expected

cost for a number of high probability cases for stochastic

wind generation (“intact” scenarios), as well as for a set

of credible contingencies that occur relatively infrequently.

The expected cost is determined for the intact scenarios and

the contingencies using probabilities that reflect the relative

likelihood of the different states of the system occurring. This

formulation has the advantage of determining endogenously

the amounts of different ancillary services (e.g., contingency

reserve and ramping reserve to mitigate wind variability)

needed to meet the load profiles and maintain the reliability

of the delivery system. The optimum dispatch is determined

in the spirit of a day-ahead contract, incorporating the best

available information that the System Operator (SO) has at

that time.

A simplified formulation of the objective function for the

problem is shown in (1) and the notation is defined in Table

I.

min
Gitsk,Ritsk,LNSjtsk

∑
t∈T

∑
s∈S t

∑
k∈K

πtsk

{ ∑
i∈I

[
CGi(Gitsk)+

Inc
+
its(Gitsk −Gitc)

+ + Dec
−
its(Gitc −Gitsk)

+

]

∑
j∈J

VOLLjLNS(Gtsk, Rtsk)jtsk

}
+

∑
t∈T

ρt
∑
i∈I

[C+
Rit

(R+
it) + C−Rit

(R−it) + C+
Lit

(L+
it)

+ C−Lit
(L−it)] +

∑
t∈T

ρt
∑

s2∈S t

∑
s1∈S t−1

∑
i∈I ts20[

Rp
+
it(Gits2 −Gits1)

+ + Rp
−
it(Gits2 −Gits1)

+

+ fs(psc, psd)
]

(1)

Subject to meeting Demand and all of the nonlinear AC

constraints of the network.

The nodal levels of demand are fixed blocks for each time

period and are modeled as negative injections with associated

negative costs (VOLL). Since this specification allows for load

shedding in some states of the delivery system, valued at

VOLL, minimizing the expected cost, including load shedding

as a cost, corresponds to maximizing the expected sum of

consumer and producer surplus.

IV. MODEL SPECIFICATION

The calibration of input data was done using publicly

available sources, and it encompasses the modification of

the test network and the modeling of wind generation, de-

ferrable demand and utility-scale Energy Storage Systems

(ESS) collocated at the wind sites.

TABLE I
DEFINITION OF VARIABLES, SIMPLIFIED FORMULATION

T Set of time periods considered, nt elements indexed by t.
S t Set of scenarios in the system in period t, ns elements indexed

by s.
K Set of contingencies in the system, nc elements indexed by k.
I Set of generators in the system, ng elements indexed by i.
J Set of loads in the system, nl elements indexed by j.
πtsk Probability of contingency k occurring, in scenario s, period t.
ρt Probability of reaching period t.
Gitsk Quantity of apparent power generated (MVA).
Gitc Optimal contracted apparent power generated (MVA).
CG(·) Cost of generating (·) MVA of apparent power.

Inc+its(·)+ Cost of increasing generation from contracted amount.

Dec−it(·)+ Cost of decreasing generation from contracted amount.
VOLLj Value of Lost Load, ($).
LNS(·)jtsk Load Not Served (MWh).

R+
it < Rampi (max(Gitsk)−Gitc)

+, up reserves quantity (MW) in period
t.

C+
R (·) Cost of providing (·) MW of upward reserves.

R−it < Rampi (Gitc −min(Gitsk))
+, down reserves quantity (MW).

C−R (·) Cost of providing (·) MW of downward reserves.

L+
it < Rampi (max(Gi,t+1,s)−min(Gits))

+, load follow up (MW) t to
t + 1.

C+
L (·) Cost of providing (·) MW of load follow up.

L−it < Rampi (max(Gits)−min(Gi,t+1,s))
+, load follow down (MW).

C−L (·) Cost of providing (·) MW of load follow down.

Rp+it(·)+ Cost of increasing generation from previous time period.

Rp−it(·)+ Cost of decreasing generation from previous time period.
fs(psc, psd) Value of the leftover stored energy in terminal states.

A. The Test Network

Figure 1 is a one-line diagram of the network used in the

case study. This is a New York and New England centric re-

duction of the Northeast Power Coordinating Council (NPCC)

network [17], that has been modified to include very detailed

information of the generating units at each bus obtained from

the PowerWorld Corporation.

Fig. 1. A One-Line-Diagram of the 36-Bus Test Network.

The total load of the system is around 138 GW, and

the generation capacity available is 143 GW [17]. For the

simulation, one day in a high demand period was calibrated

(following historical load information from August 2008),

distinguishing the profiles between urban and rural nodes.

The coincident peak system load occurs at 3PM, caused

mainly by the high demand at urban nodes. Table II has
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a summary of the generation capacities and loads for each

Regional Transmission Organization (RTO) considered. The

average fuel costs vary by location, with the highest coal and

oil costs in New England, and the highest natural gas costs in

New York, PJM and Ontario.

TABLE II
SUMMARY OF GENERATION CAPACITY AND LOAD

Capacity per Fuel Type (MW) Total Cap. Load

Location (RTO) coal ng oil hydro nuclear

isone 1,840 9,219 4,327 1,878 5,698 22,962 23,847

marit. 2,424 1,072 22 641 641 4,800 3,546

nyiso 4,557 18,185 5,265 7,345 4,714 40,066 38,274

ont. 5,287 3,594 0 779 12,249 21,910 21,158

pjm 14,453 14,611 8,915 2,604 12,500 53,083 51,588

quebec 0 0 0 800 0 800 0

Total 28,562 46,681 18,530 14,048 35,802 143,707 138,412

Rp.C.b 30 10 10 60 60

a Values shown are taken as peak values.
b Ramping costs ($t/MW).

The cost of ramping services is consistent with our previous

work (see [18]), assigned by fuel type using quadratic cost

functions. The values set were comparatively high for baseload

units and lower for peaking units, signaling the different

generators’ willingness to be moved from their current op-

erating point. This modeling approach implicitly presumes

homogenous conditions for all generators of a given fuel type.

The loads available in the system were classified as either

rural or urban, each one with a different profile over the day,

with more pronounced peaks for the urban loads compared

to the rural loads. The changes observed over one day were

derived from 2008 historical data, to be consistent with avail-

able wind data, allowing for different changes in hour to hour

demand according to the location of the load. In addition, the

Value of Lost Load (VOLL) also depends on location, with a

value of $10,000/MWh for urban areas and $5,000/MWh for

rural areas.

B. Specifications for Stochastic Wind Generation

This study analyzes a case with a wind penetration close

to 20% of the total system load. The setup of the wind

specification is divided in two main tasks: specifying the

locations and sizes of the wind resources on the network, and

characterizing the variability of these wind resources.

The locations of the wind farms are derived from the

National Renewable Energy Laboratory (NREL) Eastern Wind

and Transmission Study (EWITS) data [12]). To match the

data from NREL to the available buses in the NPCC network,

a principal component analysis (PCA) was performed, leading

to nine sites in New York and seven sites in New England that

correspond to specific nodes on the network.2

To characterize the variability of the wind resources in

spatial terms, a clustering analysis was implemented using

a k-means++ methodology for scenario reduction [19]. The

2The location of the wind farms is in the following buses: Orrington,
Sandy Pond, Millbury, Northfield, Southington, Millstone, Norwalk harbor,
Millwod, Newbridge, 9Mile Point, Leeds, Massena, Gilboa, Marcy, Niagara
and Rochester.

determination of the clusters was done using the hourly wind

speeds for different locations from the EWITS data. The wind

speeds are then converted to the potential wind generation

using a multi-turbine modeling approach [20]. The input data

used for clustering represent the hourly values at 16 locations

for a set of selected days that have similar characteristics in

terms of wind speed. These daily profiles are then reduced to

four scenarios (hourly profiles) and each day in the sample is

assigned to the nearest cluster for each hour. This makes it

possible to estimate the hourly probabilities of each scenario

occurring and the corresponding transition probabilities of

moving from one scenario to another scenario in the next

hour. The overall objective is to model the variability of wind

realistically in a way that captures geographic averaging and

is consistent with the EWITS data from NREL. In this setup,

there is a ‘high wind’ scenario, a ‘low wind’ scenario and two

intermediate scenarios, with different profiles for each wind

site.

C. Specifications for Deferrable Demand

The concept of using deferrable demand for improved

system management dates back to work done in the late 80’s

[21], [22] that laid the foundation for the work proposed in

this paper. The specification of deferrable demand assumes

that the timing of the purchase of electricity for specified

percentages of the total hourly demand can effectively be

decoupled from the timing of the energy services delivered.

Examples include charging the batteries in electric vehicles

and thermal storage for space conditioning (e.g. traditional

central Air Conditioning (AC) systems can be augmented with

ice batteries). In effect, there are now two hourly demand

profiles. Conventional demand must be supplied in real time

from the grid. Although deferrable demand must also be

supplied in real time, the sources of supply can come from

storage and/or the grid.

The specifications of the battery technology for Electric

Vehicles (EVs) follow that of a GM Volt 2013. This type

of battery is lithium-ion and the usable energy capacity is

10.8kWh. The total number of EV’s is set at 3,138,525, which

is 20% penetration of total number of regular vehicles in NY

and NE. This amounts to an aggregated energy capacity of

33.9GWh. The EVs are distributed in five major load centers,

proportional to their load size. The average charging efficiency

of lithium-ion batteries is 90% ([23], [24]). Two types of

charging levels are considered using current technology. Level

1 chargers deliver up to 1.44 kW and level 2 chargers deliver

up to 7.68 kW [25]. It is assumed that 70% of level 1 chargers

and 30% of level 2 chargers are available in this network,

which implies an average of 3.31 kW. The specified average

driving distances for “rural,” “suburban,” and “center city” are

36.9 miles, 28.8 miles, and 27.2 miles, respectively [26]. This

analysis specifies 27.2 miles, because EVs are located only in

major demand centers. The driving pattern of commuters in

this case is based on ‘Commuter Driving Profile’ [27]; the

percentage of commuters at home, determining how many

vehicles are connected to grid and available for charging, is
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based on ‘Commuter-at-Home Profile’ [28]. This case assumes

that EVs are connected to smart chargers as soon as they arrive

at home, and stay connected until they leave for work. We

assume that there is no charging station at work, so charging

only takes place when EVs are at home. Vehicle to Grid(V2G)

is not allowed in this case study, and the driving energy

efficiency set at 0.25 kWh/mile.

The specification of thermo storage uses the same ag-

gregated storage size of the EV case, 33.9GWh. This is

approximately a 16.0% penetration level of the total potential

cooling load based on the estimated temperature-sensitive-

load(TSL) on the chosen day. The technical characteristics are

based on the products described in the reports by Evapco [29]

and Calmac [30]. The hourly ice building power rate is 12%

and the hourly ice melting power rate is 16.7% of the total

storage capacity. These ice building and melting rates can vary

by the number of chillers installed with thermal storage. The

storage efficiency is 86% which is based on an average energy

efficiency ration(EER) of 8.8 of thermal storage, compared to

an EER of 10.2 for average conventional AC. Thermal storages

are also distributed in five demand centers. The total amount of

deferrable demand (as a percentage of the total demand) set

at a node are location specific. Deferrable demand accounts

for 17% of the total demand for the New York City buses

and for 18% at the Buffalo bus. For the Millbury bus and

the Sandy Pond bus in New England, the values were set to

17% and almost 14% of the total demand, respectively. These

values correspond to the estimated average values estimated

econometrically from historical patterns of demand in the

different regions for the years 2007 to 2010 [31].

D. Specifications for Utility-Scale Storage

To model Energy Storage Systems (ESS) collocated at the

wind sites, special generators were specified with different

charging and discharging efficiencies to represent the physical

properties of the ESS. The energy available in any ESS can

be used to provide energy in the different wind scenarios and

to help support the grid in contingencies. The optimal use of

storage is dependent in part on the value assigned to the stored

energy. If it is valued at zero, then stored energy is always

used in contingencies and in the last hour of the planning

horizon. There is, however, an opportunity cost for discharging

the ESS that provides a high threshold for discharging. If the

nodal price in the terminal state is very low, for example, it

would in reality be optimum to not discharge the ESS and

wait until a later period when the price is higher than the

high threshold. A similar argument can be made for charging

the battery, and a low threshold provides the opportunity cost

for charging. It is optimum to charge the ESS if the price

is below the low threshold. If the price is between the two

thresholds, the optimum is to do nothing and save the stored

energy for use later. The formulation for ESS can also provide

a robust estimate of the amount of reserves necessary to cover

the extreme changes on demand and the stochastic inputs. For

this paper, we adopted an implementation that uses an estimate

on the expected value of the amount of storage at the beginning

of the horizon considered.

This decision stems from the need to provide flexibility

in the use of the ESS: by enforcing the limits necessary

to respond to the worse likely changes, the ESS needs to

be tightly dispatched at the beginning of the horizon, to

provide time arbitrage opportunities. Once the bounds that

limit the dispatch diverge, the ESS can be used for uncer-

tainty mitigation. But this tightly controlled dispatch limits

the possibility of controlling the uncertainty in early periods,

leading to unexpected optimal dispatches, like spilling wind in

high availability states while discharging the ESS. Thus, the

use of the expected wind available leverages the information

on the wind distribution and increases the flexibility in usage

for uncertainty mitigation.

In the empirical analysis, the ESS are located at the same

buses as the wind farms and the total capacity of the ESS is the

same as the total energy of deferrable demand, 33.9GWh. This

specification makes it easier to make comparisons between

cases with ESS and deferrable demand. The maximum hourly

power available per ESS is set to be 22% of the energy

capacity. This is based on the assumption that 85% of level1

and 15% of level2 charging rates are available. Compared to

70/30 (level1/level2) for the EV case, this lower charging rate

of 85/15 is assumed because many wind farms are located in

rural areas, far from major demand centers and are connected

via relatively low capacity transmission lines.

To determine the threshold price of the stored energy for

discharging, the initial pattern of dispatch for generators and

the initial amounts of stored energy, an iterative process is

implemented in which the daily dispatch is simulated several

times, using the same input specifications, until the differ-

ences in the threshold price and initial conditions are stable

and below a tolerance level. These initial conditions can be

considered, therefore, as a steady state solution for a series of

identical days.

V. RESULTS OF THE CASE STUDY

The results in this section summarize the cost of serving a

given demand profile for a 24-hour period for four different

cases. The injections and exports from outside of the New

York and New England region (NYNE) are fixed, to focus on

this territory. For this reason, the results include information

only for NYNE, and the locations of wind farms and storage

are all in this region. The analysis assumes that the wholesale

market is deregulated and run by an Independent System

Operator (ISO). Many studies of the effects of renewable

generation on system costs focus on the payments made by

customers in wholesale markets and the associated decrease in

the energy prices when renewable energy sources are available.

We have argued in earlier research that this emphasis ignores

the financial adequacy issue for conventional generators [32].

Since the offers submitted by renewable sources are effectively

zero, average nodal prices are generally lower. Therefore,

these new renewable sources displace fossil fuels and the

conventional generators receive less net revenue to cover their

capital expenses. To rectify this situation and still maintain
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system reliability, generators are further compensated in ca-

pacity markets that help to provide the “missing money”. To

avoid the distortions from evaluating a policy based solely on

the wholesale payments from customers, the different cases

are evaluated using measures that reflect the total system costs.

The measures used for this analysis are 1) the actual operating

costs incurred by conventional generators, 2) the amount of

wind generation dispatched, and 3) the maximum conventional

generation capacity needed to cover the peak demand and

maintain system reliability.

The simulation starts at midnight and finishes at the end of

the day. The main interest of the analysis is the management of

stochastic wind generation and the provision of load following

reserves. For this reason the time steps are hours, therefore

abstracting from the provision of frequency regulation in real

time that require rapid changes in the dispatch patterns to

balance demand and supply in response to the variability of

both the intermittent renewable sources and demand.

A. The Effects of Storage Capacity on Total System Costs

The results in this section summarize the cost of serving

a given demand profile for a 24-hour period for six different

cases on a hot summer day using the network in Figure 1. The

main purpose of the analysis is to determine how different

types of storage interact with stochastic wind generation

and how they affect system costs. System level results are

presented for the following six cases:

1) Case 1: No Wind, Initial System

2) Case 2: 32GW of Wind Capacity at 16 locations.

3) Case 3a: Case 2 + 33.9GWh of Thermal Storage (TS)

at 5 load centers.

4) Case 3b: Case 2 + 33.9GWh of batteries in Electric

Vehicles (EV) at 5 load centers.

5) Case 3c: Case 2 + 33.9/2GWh of both TS and EV at 5

load centers.

6) Case 4: Case 2 + 33.9GWh of Energy Storage Systems

(ESS) collocated at the 16 wind farms.

The wind capacity represents roughly 20% of the sys-

tem load and the uncertainty of this resource requires the

purchase of additional reserve capacity for “load follow-

ing” (LF ramping reserves) as well as reserve capacity to

cover contingencies. The specifications of Cases 3a and 3c

distinguish Conventional Demand (CD) from the Deferrable

Demand (DD) associated with TS, and two hourly demand

profiles are used as inputs. CD must be covered each hour by

purchasing electricity, and DD, representing the demand for

cooling services, can be met by purchasing electricity or by

melting stored ice made with previously purchased electricity.

In Cases 3b and 3c, charging the batteries in EVs represents

an increase of demand above the needs of CD and DD and

the discharging corresponds to driving the EVs and does not

affect operations on the grid.

In general, changing the dispatch points of thermal power

plants to provide ramping services reduces their efficiency and

causes damage that is accrued over time [33]. These costs

are referred to as Ramping Costs (RC), and include lower

performance (e.g. heat rate degradation for thermal generating

units), equipment damage (e.g. creep damage, increases in

Equipment Forced Outage Rates (EFOR)) and higher operat-

ing and maintenance costs (O&M). These costs are represented

by Rp+it(·)+ and Rp−it(·)+ in the objective function in (1).

In order to schedule enough capacity for unforeseen inter-

period changes in power requirements, a SO contracts with

the conventional generators for Ramping Reserves (RR). These

RR are similar to Contingency Reserves (CR) in their procure-

ment i.e. they are paid in advance during the first settlement of

the market (e.g. in a day-ahead market). The main difference

in reserves is that the RR deals with relatively high probability

events (e.g. intact states of the system associated with changes

in load and wind generation) and CR deals with rare events

associated with equipment failures (contingencies). In practice,

reserve capacity can be used for both RR and CR and the

CR is measured by the additional reserves needed to maintain

reliability after determining the amount of RR. For RR, both

up and down ramping reserves are needed, and the amount

of down ramping reserves purchased determines how much

of the potential wind generation has to be spilled when wind

speeds are unexpectedly high. In contrast, CR is generally

for up ramping to replace, for example, the failure of a large

generating unit.

B. System Cost Analysis

The results for the daily composition of operating costs and

the amounts of wind generation, conventional generation and

reserve capacity needed to maintain reliability focus on the

difference between Case 2 and Case 1, to assess the effects of

adding wind generation, and the differences between Cases 3a

- 4 and Case 2, to assess the effects of adding different types

of storage. For each hour of the day, the model determines

the optimum pattern of dispatch for 12 different states of the

system, four corresponding to different levels of potential wind

generation and eight to contingencies.

Adding wind capacity in Case 2 reduces the operating

costs significantly, mainly by displacing fossil fuels and

E[Generation Cost] is roughly 20% lower than it is in Case 1.

However, the reduction in E[Total Operating Cost] is smaller

than the reduction in E[Generation Cost] because of the total

cost of ramping reserves is over three times as large as it is

in Case 1. Comparing the four storage cases with Case 2,

all four reduce the E[Generation Cost] by dispatching more

wind generation, and all four reduce E[Ramping Costs] by

providing some ramping services. In general, storage capacity

makes it optimum to spill less wind, by charging the storage in

the high wind states, and to commit less ramping reserves by

mitigating the uncertainty of wind generation. Instead of using

natural gas generating units to provide up and down ramping,

storage plays this role instead at no cost.

The reductions in E[Total Operating Cost] are larger for

ESS in Case 4 than either Case 3a or Case 3c with TS,

and the reductions for Case 3b with EV only are very small.

The reductions for the combination of TS and EV in Case

3c are between Case 3a and Case 3b. The basic reason for
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the superior performance of ESS compared to TS is that

the batteries are more efficient and can charge and discharge

faster than TS. Even though an EV has a high quality battery,

the poor performance of Case 3b is caused by 1) charging

the batteries represents an addition to total demand, and 2)

this example does not include vehicles with vehicle-to-grid

capabilities.

The overall results for the E[Total Operating Cost] show

that adding wind generation causes the biggest cost reduction

(17%), and the four storage cases cause additional modest

reductions of 8%, 2%, 6% and 11% for Cases 3a - 4,

respectively. These results are summarized in Figure 2 below

and have been discussed in more detail for a similar analysis

in an earlier paper [34].

The next set of results presented in Table III show that a

major economic benefit of storage is to reduce the amount of

conventional generating capacity needed to maintain System

Adequacy and the associated capital costs. Since the day

chosen for the simulation is the hottest summer day, the sum

of the maximum dispatch in any of the system states for each

conventional generating unit is used to measure the installed

generating capacity for System Adequacy.

TABLE III
PEAK HOUR SUMMARY OF SYSTEM RESULTS

Maximum Outcomes (MWh) c1 (c2 - c1) (c3a-c2) (c3b-c2) (c3c-c2) (c4-c2)

Conventional Generation 59,570 -1,604 -3,657 0 -2,825 -5,382

ESS Dischargea - - - - - 6,076

Deferrable Demand, TS - - 3,657 - 3,636 -

Deferrable Demand, EV - - - 0 0 -

Capital Cost ($1000)
Conventional Generating Unitsb 104,844 -2,821 -6,437 0 -4,971 -9,472

ESS c - - - - - 9,321

Deferrable Demand TSd - - 4,643 - 2,322 -

Deferrable Demand EVc - - - 9,321 4,661 -

Total Capital Cost 104,844 -2,821 -1,794 9,321 2,012 -151

a Energy Storage System (ESS)
b Annual capital cost for a peaker $88,000/MW/year allocated to 100 peak hours with 2 peak hours for this day
c Based on an installation cost of $900/kWh, an operating cost of $50/kWh-year and a 15 year life cycle
d Based on an installation cost of $150/kWh, an operating cost of $5/kWh-year and a 20 year life cycle

The results in Table III show the maximum amounts of

conventional generation and storage charge/discharge and the

differences of these maxima for the 12 different states of

the system at the peak system load (3PM). The maximum

Conventional Generation is lower when wind generation is

available in Case 2 because the wind provides some capacity

value, and it is even lower in the four other cases with storage.

It is important to remember that the amount of electricity

delivered to customers with TS in Cases 3a and 3c may be

higher or lower than the fixed amount of conventional demand

in Cases 1, 2 and 4. In Case 3b with EV, the optimum strategy

is to avoid charging the vehicles during peak load periods.

Although the biggest reduction of Conventional Generation

occurs with ESS in Case 4, the most important implication

is that the electric energy delivered to customers is lower

with TS in Cases 3a and 3c than Case 4 because the TS

provides customers with some cooling services. This reduces

the level of congestion on the grid. In contrast, discharging

ESS provides another source of energy for customers and the

peak system load is unaffected.

The lower half of Table III shows the capital costs of

Conventional Generating Units and the different types of

storage. An explanation of how these costs are determined

is provided in the footnotes of Table III. In simple terms, the

batteries in ESS and EV are relatively expensive compared to

Conventional Generating Units. In contrast, TS is relatively

inexpensive because the cost represents an augmentation of

an existing energy service, space cooling. In the same way

with an EV, the cost of the battery is extra but the cost of the

vehicle itself is already covered for transportation. The Total

Capital Cost is lower for Case 2 and even lower for Case 3a

with TS. Compared to Case 2, the Total Capital Cost is higher

with EV in Cases 3b and 3c and about the same with ESS in

Case 4.
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Fig. 2. A Comparison of Cost Savings for Different Types of Storage.

Figure 2 combines the results for the operating costs and

capital costs to provide an overall view of the additional sav-

ings in total cost for the four cases with storage compared to

Case 2 with wind generation but no storage. The components

of savings are the costs of Generation, Reserves, Capital of

conventional generating units, and Gasoline and the capital

cost of Storage is an extra expense. In all four cases, the

savings are larger than the capital cost of storage, and the net

savings for Cases 3a, 3b, 3c and 4 are $6.0, $8.8, $9.4 and

$5.6 million, respectively. The savings in Gasoline are very

important even though gasoline is relatively inexpensive by

European standards. For Case 4 with ESS, the net savings

will lower customers bills. For Cases 3a, 3b and 3c with

deferrable demand, the savings in system cost will lower bills

for customers and they will pay for the storage themselves

and pay less for gasoline. Nevertheless, these savings will not

be realized unless the bills paid by customers reflect the true

system costs. This issue is addressed in the following sub-

section by comparing the typical electric bills for customers

with different types of deferrable demand using Case 3c with

both TS and EV.

C. Total Payments for Different Types of Customers

Given the optimization results from Case 3c with both

EV and TS, it is possible to compute the typical bills paid
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by different types of customer. Customers were classified

into the following four types: 1) customers who have no

DD, 2) customers who own thermal storage, 3) customers

who own an EV, and 4) customers who own both thermal

storage and an EV. Customers who do not own thermal

storage are assumed to have a conventional air conditioner,

and customers who do not own an EV are assumed to have

a conventional gasoline vehicle. To make comparisons easier,

all customers are assumed to have identical hourly demand

profiles for electric services (e.g. lighting), space cooling and

transportation. Since the total number of vehicle owners in the

region is 15,692,624, this is specified as the total number of

customers. The specification of the number of EVs in Case 3c

corresponds to 10% of this total; half of these customers are

assumed to own an EV but no TS, and half own both TS and a

EV. To make aggregate storage capacity consistent with Case

3c, another 5% of all customers own TS but not an EV. The

remaining 85% of customers have no DD, have a conventional

air conditioner and own a gasoline vehicle.

Fig. 3. The Expected Hourly Profiles of Electricity Purchases by Different
Types of Customer.

Figure 3 shows the expected hourly demand profiles for

purchasing electric energy from the grid by four different types

of customer. Customers with no DD have a standard demand

profile for a hot summer day that is low during the night and

high during the day. The profiles for customers with DD are

strikingly different because they purchase significantly more

energy at night from 11PM to 6AM to charge the EV battery

and/or to make ice for TS. This strategy takes advantage of the

low electricity prices at night and for TS avoids buying energy

when prices are high in the afternoon. At night, the purchases

for TS and EV complement each other and the peak demand

for a customer with both TS and EV occurs at 2AM and is

about 70% higher than the peak demand of customers with no

DD that causes the peak system load at 3PM.

Another feature of Figure 3 is that the demand profiles

for customers with DD, particularly TS, are not smooth

because they are providing ramping services to mitigate wind

uncertainty. For example, the increase of demand by customers

with TS from 9 to 10 AM is in response to an increase

in potential wind generation. After that, reducing the peak

system load in the afternoon becomes a higher priority. For

peak hours when prices are high, customers with TS melt

stored ice to meet their demand for space cooling and reduce

their use of conventional air conditioners and their purchase of

expensive energy. By doing this, customers with TS also help

to reduce the peak system load and the amount of conventional

generating capacity needed to maintain System Adequacy. It is

important for customers with TS to get rewarded for lowering

the system costs, and every customer should pay a demand

charge proportional to their own demand at the system peak.

Consequently, a customer with TS will pay a lower demand

charge than other customers.

Customers should also be paid if they use DD to provide

ancillary services such as ramping. In practice, however, cus-

tomers with DD (instructed demand) also have Conventional

Demand (CD) (uninstructed demand) that causes ramping. All

customers should pay for the ramping needed for their CD,

get paid for providing ramping services with DD and their net

payment to the grid for ramping may be negative. Treating CD

and DD differently assumes implicitly that they are metered

separately.

TABLE IV
PAYMENTS AND COSTS FOR DIFFERENT TYPES OF CUSTOMERS

$/day No DD TS only EV only TS and EV

Energy Payment 3.60 3.36 4.11 3.87
Ramping Payment 0.0073 -0.3844 -0.2527 -0.6444

Payment by CD 0.0073 0.0056 0.0073 0.0056
Payment by DD - -0.3900 -0.2600 0.6500

Capacity Payment 3.59 1.78 3.67 1.87

Total Payment 7.20 4.76 7.53 5.10

Storage Cost - 1.48 2.97 4.45
Gasoline Cost 5.44 5.44 - -

Total Cost 12.64 11.68 10.50 9.55

Flat Payment 5.51 5.74 6.55 6.76

Table IV shows the composition of the economically ef-

ficient payments by each type of customer to their utility. In

addition to purchasing energy, customers pay a demand charge

proportional to their total demand at the system peak load (3

PM), CD pays for the ramping needed to change demand from

hour to hour, and DD gets paid for providing ramping reserves

(using the offer price of $5/MW for conventional reserve

capacity from a peaking unit). For a customer with no DD,

the energy and capacity payments are similar in magnitude and

the ramping payment is very small to give a total payment of

$7.20/day. The total payment for a customer with TS is two

thirds of this total because more energy is purchased at night,

demand at the peak is cut by one half and there is a small net

payment to the customer for ramping. Customers with an EV

pay more than customers with no DD because they buy a lot

more energy, have slightly higher demand at the system peak

and receive relatively low payments for providing ramping

services. The differences in payment for customers with both
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TS and EV compared to customers with TS only are similar

to the differences between customers with EV and those with

no DD.

Fig. 4. The Composition of Efficient Utility Bills for Different Types of
Customer.

The efficient utility bills for different types of customer,

taken from Table IV are illustrated in Figure 4. For customers

with TS, the importance of the capacity payment compared

to a customer with no DD is obvious. The saving in energy

payment is modest, and even though there is a net payment for

providing ramping, it is still very small. However, it should be

remembered that the ramping provided by TS and EV reduces

the ramping reserves acquired from conventional generating

units substantially. Adding an EV increases the amount of

energy purchased and the total size of the utility bill.
Table IV and Figure 4 also show the payments if customers

paid a flat rate for purchasing energy and nothing else. This is

the basic structure of the retail rates paid by most customers in

the US. The flat price (¢13.5/kWh) is chosen to raise exactly

the same total revenue as the efficient payments. The economic

effects of the flat price are perverse for TS because adding TS

results in a larger utility bill, and furthermore, customers with

no DD or with an EV do not pay enough for their demand at

the system peak.
Overall, the results for payments imply that the most impor-

tant incentive for TS is to get the demand charge for capacity

correct, followed by paying real-time prices for energy and

getting paid for providing ramping. Table IV also shows the

additional costs that customers have to pay for gasoline, if

they do not have an EV, and the capital cost of storage if they

acquire a TS or an EV. The customers with DD have lower

total costs than customers with no DD. The reduction is only

8% for a customer with TS, but the large savings in gasoline

purchases saves customers with an EV 17%, and customers

with both TS and an EV save 25%. These are meaningful

reductions.

VI. CONCLUSIONS

This paper presents a multi-period, stochastic form of Se-

curity Constrained Optimal Power Flow (SCOPF) and shows

how this framework can be used to evaluate the system effects

of adding stochastic sources of wind generation to a network.

In general, stochastic sources require more reserve ramping

capacity to maintain Operating Reliability. The economic

effects of adding stochastic wind resources are illustrated in a

simulation of operations for a hot summer day using a reduc-

tion of the NPCC network. The results presented in Section V

demonstrate the beneficial effects of adding two different types

of storage capacity: distributed storage (Deferrable Demand

(DD) from Thermal Storage (TS) and Electric Vehicles (EV))

and Energy Storage Systems (ESS) collocated at wind farms.

Both forms of storage can lower system costs by 1) flattening

the daily pattern of dispatch by conventional generating units,

2) spilling less of the potential wind generation, 3) mitigating

the ramping costs associated with wind uncertainty, and 4)

reducing the amount of conventional reserve capacity needed

for reliability. TS can further reduce system costs by reducing

the peak system load (covered by conventional generation,

wind generation, and discharging ESS) and the amount of

congestion on the network.

Developing an electric delivery system that can accom-

modate high penetrations of renewable sources of generation

effectively will require developing a smarter grid. Unfortu-

nately, the publics reaction to the first small steps in building

a smart grid for demand response, such as the Advanced

Meter Initiative, has been largely negative. Smart meters are,

however, essential for providing real-time price information

for customers and the economic incentives needed to get the

type of demand response exhibited in cases with DD. We

have argued before that a successful smart grid must yield

direct economic benefits for customers, i.e. paying lower bills

while still meeting their energy needs. Our results show that

the total system costs are reduced substantially by adding

wind generation even though the cost of providing ramping

services increases. An additional requirement with uncertain

wind generation is to provide down-ramping reserves to avoid

spilling potential wind generation for the rare system states

with unexpectedly higher wind speeds. Total system costs are

reduced further in the cases with storage by 1) spilling less of

the potential wind generation, 2) providing ramping services,

and 3) reducing the amount of installed generating capacity

needed to maintain System Reliability. An important additional

feature of TS is that it lowers the peak purchase of power from

the grid, and thereby, reduces congestion on the network and

the total amount of utility-owned capacity needed to maintain

reliability.

When the costs of storage, and the savings in gasoline

purchases for owners of an EV, are taken into account, the

savings in operating costs and gasoline purchases are big

enough to cover the capital cost of storage in all cases. The

biggest savings are for the cases with EV caused mainly by

the lower gasoline purchases. The main savings with TS is

from reducing the amount of installed conventional generating

capacity needed to maintain System Adequacy. ESS and TS

affect the hourly dispatch of conventional generating units

more than EV because they both lower the peak conventional
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generation during the afternoon. Although the overall savings

in operating costs are higher with ESS than with TS, the capital

cost of ESS is also higher and the net saving is higher with

TS.

To assess the relative benefits for different types of cus-

tomer, economically efficient utility bills were computed for

customers with 1) no DD, 2) TS only, 3) EV only, and 4)

both TS and EV. Every customer is assumed to have exactly

the same pattern of daily energy needs. Customers with an

EV substitute electricity for gasoline, and customers with TS

decouple their purchases of electricity from the delivery of

space cooling services but they all receive the same energy

services. The daily patterns of electricity purchases are strik-

ingly different. Unlike customers with no DD, the purchases by

customers with DD are higher at night than they are during the

day. The lowest efficient payments are made by customers with

TS by paying, primarily, lower demand charges for capacity.

When the cost of storage and the relatively large savings in

gasoline purchases are considered, the lowest total costs are

for customers with an EV.

The final analysis demonstrates that the current widely used

structure of flat retail rates for energy, with no demand charge

and no consideration of ramping, provides perverse economic

incentives for adopting DD capabilities. These flat rates are

a very important barrier to adopting DD that do not reflect

the correct economic incentives. For example, if customers

only pay flat rates for energy, the non-adopters would be free

loaders and pay lower bills than the adopters, because the latter

have to cover storage inefficiencies to get the same amount

of energy services delivered. Real-time pricing is essential to

provide the correct economic incentives and reward adopters

and penalize non- adopters. In addition, if customers are to

get the correct economic benefit of reducing their demand at

the peak system load, they should pay for their actual demand

during peak periods. Most customers do not pay a demand

charge at all, and when the level of demand is measured

with a traditional meter, this level is the maximum demand

over a billing period even if it occurs at night when the

system load is low. Paying a lower demand charge is the main

economic incentive for customers to invest in TS. Getting

paid for providing ramping is also important for reducing

operating costs. It is fair to say that unless the economic

incentives for demand-side participation change to reflect the

true system costs and benefits, it seems unlikely that customers

will appreciate the potential economic benefits of the smart

grid, and the utility industry will continue to depend on supply-

side solutions for problems and assume that regulators will

ensure that customers pay the cost in their bills.
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