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Abstract
We present the systematic analysis of all dangerous N − 2
contingencies observed in medium size model of Polish power
grid with about 2600 power lines. Each of the dangerous
contingencies is composed of two initially tripped lines and
one or more lines that overloaded as the result. There are
443 distinct contingencies that do not lead to immediate
islanding of the grid. In the scope of the work we analyze the
statistics of individual line participation in those contingencies
and show that some lines have anomalously high rate of
participation in the contingencies. Next, we show that about
third of all the contingencies can be associated with the
subgrids that are connected to the rest of the grid via small
set of power line chains. The contingencies arise when cutting
some of those chains results in overload of the others. Simple
reduction of power grid corresponding to aggregation of chain
components significantly reduces the total number of distinct
contingencies. The rest of the contingencies are closely related
to a set of almost dangerous N − 1 contingencies that result
in heavy loading of particular lines. Tripping many different
additional lines on top of these N − 1 contingencies results
in an overload of one or more lines. We conclude our work
by characterization of the joint distributions of power flows
through the initiating and overloaded lines and statistical
analysis of topological distance between the initially tripped
and overloaded lines.

1. INTRODUCTION

Major power system blackouts are one of the most

disastrous catastrophes that can impact the normal life of

the country in a most dramatic way. Despite the efforts put

in design and control of the power system that ensure its

reliable operation the global frequency of major blackouts is

increasing with time [1]. Recent blackout in India has left

almost 10% of world population without power supply for

several days [2]. Other famous examples include the 2003
easter grid blackout [3] and Arizona-California outage in 2011
[4]

One of the major mechanisms of the blackout formation

is the cascading failure where initial failures of individual

components result in overloads or other violations of safe

operation constraints and lead to either physical failures

or protective relay tripping of other system components.

This way relatively small initial disturbances can propagate

throughout the system in an explosive fashion somewhat

similar to spreading of forest fires or infectious diseases [5,

6]. The major difficulty in prevention and even modeling of

cascading failures lies in very non-local nature of interactions

in power systems. Physical coupling of power grid elements

via nearly instant electromagnetic interaction is both a

blessing and a curse of power grids. It allows a system to

respond easily to minor disturbances and compensate for

power flow imbalances by readjusting the power flows on

spatially separated components. On the other hand, when the

disturbance is large the response of the system may lead to

an overloads or even loss of stability of the power grid.

Identification of the events and grid configurations that

may lead to a cascading outage is crucially important for

prevention and/or mitigation of the damage due to cascading

failures. Typically, cascades are triggered by an initial failure

of few elements of the power grid. Independent system

operators are required to keep the grid protected against

the loss of any single power element[7], i.e. they should

operate safely in any of the N so-called N − 1 contingency

configurations1. Provided that the grid is protected against all

N−1 contingencies, the actual risks of major cascades depend

on the probality of higher order N − k contingencies and the

outcomes of the system dynamics after their occurence. One

of the major challenges that prevents the proper assessment

of cascading failure grids is the computational complexity

of N − k contingency selection problem. The total number

of contingencies grows exponentially fast as Nk and full

identification becomes unfeasible even at k = 2 − 4 even

for moderately sized grids. Recently a number of efficient

techniques have been proposed to tackle this problem and

identify the most dangerous contingencies using various

heuristic algorithms [8–14].

This work builds upon the algorithm described in [13] and

is focused on the analysis of the nature of the dangerous N−2
contingencies that determine the major risks in the system.

We use the largest publicly available model that mimics

the structure of Polish power grid. As the number of such

contingencies is relatively large (443) we use several statistical

1Here and below N denotes the number of lines of the power grid
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approaches to characterize them. Specifically we look for the

frequencies of line participation in the contingencies both as

part of initiating pair and overloaded lines. Then, we move

on to characterization of the relative influence graph topology

and provide a classification of the observed contingencies

structures. Finally, we analyse the observed correlations in

power flows over the overloaded and initially tripped lines.

Although our results do not attempt to improve any specific

power grid operation technologies we believe that better

understanding of the configurations that may trigger the

cascading failures is essential for an improvement of power

system reliability. Statistical analysis points out the most

important elements of the power grid from the contingency

perspective and suggest the optimal ways of improving its

reliability. This information can be also used for design of

remedial actions for selective set of N − 2 contingencies

where the full analysis is not feasible. Finally, the double

contingency influence graph can be used for training of power

grid operators and a real-time monitoring of the system health.

In this work we consider only the contingencies associated

with tripped power lines, i.e. we don‘t consider the events

where generator or load buses are tripped, although such an

extension would be rather straightforward. The double contin-

gency is characterized by a pair of different lines (x, y) each

taken from the full set of lines C in the power grid. We assume

that the tripping of these lines happens nearly simultaneously

and there is no redispatch of generators between these events.

In this case the generation and consumption levels remain the

same, and the power flows are determined by the Kirchhoff

laws. In this work we use the DC approximation to model the

power flows, although the analysis methodology is applicable

to more realistic nonlinear models as well.

In order to assess the damage produced by an individual

contingency we compare the resulting power flows in the

tripped network to the thermal limits of the lines. Whenever

at least one of the constraints z becomes violated, we call

the contingency dangerous, otherwise it is assumed to be

safe. We restrict ourselves to the line thermal constraints as

others would require going beyond the DC approximation. To

summarize, each dangerous contingency is characterized by

a pair of initially tripped lines (x, y) and a set of (z1, . . . zn)
of lines that become overloaded after the two initiating lines

are tripped.

We have used the pruning algorithm proposed in [13] to

identify all the dangerous N − 2 contingencies in an adjusted

Polish grid model2 from MATPOWER package [15] (see

figure 1 for visualization). This model consists of 2631 lines

and 2105 buses and the state that we are considering in this

study is protected against all N − 1 contingencies. In other

tripping of any line does not lead to islanding or a thermal

constraint violation.

In our analysis of N−2 contingencies we restrict ourselves

only to those configuration that remain connected after the

tripping of two lines. Double contingencies that immediately

2We have aggregated the radial branches of the grid into single nodes

lead to islanding like the one shown on Fig. 2 are excluded

from the set right away. Although these contingencies may

lead to power outage if the island does not have enough

power generation, we don‘t consider them in our study as

they do not lead to any constraint violation and consequent

cascading failure propagation. The total number of N − 2
contingencies that does not result into an island but leads to

at least one constraint violation is 443. In the forthcoming

sections we analyze their structure and statistical properties

in details.

Fig. 1. Physical layout of Polish Grid (positions of the nodes don’t
correspond to the real grid since geographical data is not presented in
the case that has been used

Fig. 2. Example of double contingencies that immediately lead to islanding.
Dotted lines represent initiating contingency lines.

2. GENERAL PROPERTIES OF DANGEROUS CONTINGENCIES

Our first goal will be to characterize the basic statistical

features of the contingency set and its relation to the physical

lines in the power grid. There are only 224 power lines

that appear as one of the initiating lines. On average 2.75
constraints are violated in a single contingency. However,

the set of all constraints that can be violated by at least one

double contingency is relatively small: it consists of only 115
unique lines. Different lines appear in contingency set with

different frequency, which can be easily seen from the figures

3 and 4 where we plot the distribution of line participation

frequency in the sets of initiating lines and violated constraints

correspondingly.
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Fig. 3. Contingencies distribution (224 unique participants)

Distribution in the figure 3 shows that although typical

lines enter only few contingencies, there are 5 lines that

participate in at least 20 different double contingencies. These

lines are likely responsible for the major risks in the power

grid. If the initiating trippings are separated in time, the

initial trips makes the grid vulnerable to more than 20
additional line trips. The quantitative assessment of these

lines contributions to the overall risk can not be done without

a specification of the tripping probabilities. However, under

reasonable assumptions of comparable probabilities of each

line trips one may conclude that the reliability of the power

grid is highly sensitive to the tripping probability of those

lines. From a more positive perspective, decrease of these lines

tripping probability is probably one of the most cost-efficient

ways of improving the system reliability.

In figure 4 we show the corresponding distribution of the

number of times a given line has been overloaded by one of

the contingencies. This distribution has even more pronounced

tails, with about 20 lines becoming overloaded in more than

20 contingencies and 5 of them being overloaded in more than

50. Most of these lines get close to their limit after one or

several N−1 contingency, and can easily get above the limits

whenever an additional second line is tripped. As in the case

with initiating lines, some reinforcement or simple deloading

of a few of the most frequently overloaded lines can lead

to dramatic improvements in reliability of the system, or at

least decrease the number of dangerous N − 2 contingencies.

For instance, by increasing the thermal limits of the line

that participated 68 times one can decrease the number of

dangerous contingencies by 56, which is 13% of all 443
contingencies (the number of contingencies is not decreased

by 68, because there is also other violations in some cases

when the line was overloaded).

Next, in order to understand better the structure of the

double contingencies we have analyzed more closely the
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Fig. 4. Overloaded lines distribution (115 unique participants)

relative influence of different lines on each other. The first

natural question is what lines do appear together as initiating

pairs. In order to answer this quesiton we visualize the set

of pair contingencies as a graph where the nodes represent

the initiating lines, and edges represent the individual double

contingencies. In other words, every contingency initiated

by a pair (x, y) is represented by two vertices x and y
and and edge connecting these vertices. The resulting graph

is represented in the figure 5. As one can see the graph

has multiple disconnected components with very different

structure. In the following sections we attempt to understand

the nature of these components and interpret the results in

terms of structures on actual power grid.

Fig. 5. Contingecies graph. Each contingency is represented by two vertices
connected by line. Red nodes represent initiating lines that participate in
only ”islands” contingency scenario, yellow nodes are for initiating lines
that never participate in such contingencies (and hence are never connected
to red ones), blue nodes represent initiating lines that can be observed in
both scenarios. Different scenarios are disscussed in section 3

One of the most striking features of the graph is a highly

variable sparsity structure. Although most islands appear to be
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rather sparse with only few edges per node, the cluster in the

upper right part of the graph is characterized by the very high

node degree. Inspection of this cluster reveals that in this and

several other situations the high degree of interconnection is

related to the topology of actual power lines that form these

clusters. High level of interconnections typically occur when

the power lines are organized in “chains”: one-dimensional

segments of serially connected lines as shown in figure 6.

Tripping of any line on such a segment leads to nearly the

same effect: prevents the power to flow between its ends.

Whenever two of such chains of length n1 and n2 participate

in a contingency, there are n1n2 possible ways of cutting

both chains and causing the same or similar effect. So, the

two chains produce a total of n1n2 contingencies. Although

this statement is not rigorous and should not necessarily

hold for any chains, it was true for all chains participating

in contingencies in the grid considered in this paper. This

observation also suggests that a number of a contingencies is

not really an appropriate metric of a grid reliability as this

number will depend on how the level of granularity of the

grid model.

In order to account for this effect and reduce the double-

counting of similar contingencies we have performed an

additional virtual reduction of the grid where the one-

dimensional chains of lines were “collapsed” into the single

elements as shown in the figure 6. Algorithmically this

procedure corresponds to relabeling of the lines, in a way

that physically different lines belonging to the same chain

are labeled with the same chain identifier. Thus the power

flow calculations are not affected by reduction - only data

representation is. Such virtual reduction helps to capture the

essence of the phenomena without counting the same effect

multiple times.

Fig. 6. Illustration of reduction procedure. Figure shows how chain of lines
is substituted by one line

After the reduction we observed a significant decrease

in the total number of contingencies and as well as in the

number of initiating and overloaded lines participating in these

contingencies. To check whether the reduction has affected

significantly the participation frequency distribution we have

plotted the updated distribution in figures 7 and 8. Although

the total number of lines participating in contingencies

has decreased significantly, and both typical and extreme

participation frequencies are lower after the reduction, we

see that the qualitative shape of the distribution is still the

same. Most of the lines participate in only few contingencies,

however there are a few that participate in many of them.
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Fig. 7. Contingencies distribution after grid reduction (114 unique chains)
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Fig. 8. Overloaded lines distribution after grid reduction (72 unique chains)

The effect of the reduction procedure in the contingency

graph and the resulting new graph are presented in Fig. 9 and

Fig. 10 respectively. As expected, the most interconnected

regions in the updated graph are gone and the upper-right

component in Fig. 5 with multiple connections is collapsed in

only three-node island in the reduced contingency graph. The

lines from the right tail of the distribution in 7 are seen as

the “hubs” in Fig. 10. These graphs also reveal an additional

information and suggest how removal of some of the most

dangerous lines will reduce the total number of the lines

participating in the double contingencies thus reducing the

overall risks in the system. Indeed, there are a lot of star-
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Fig. 9. Transformation of contingency graph after grid reduction. Corre-
sponding parts are verticaly alignied

Fig. 10. Contingency graph after reduction

shaped subgraphs in 10 that would completely disappear if

their center nodes were protected and their tripping probability

was reduced.

The contingency graph presented in figures 5 and 10

visualizes the information about participation of individual

lines as initiators of the contingency. However, it does not

provide any information about what lines are overloaded as

the result of contingencies. In order to address this question

we have processed the contingency set and presented its

structure in a new type of the graph that we call influence

graph presented in Fig. 11. In this graph we put together

both the lines that have initiated the contingency and the

lines that became overloaded as a part of it. Some of the

lines may participate both as initiating and overloaded lines in

different contingencies. To assist visualization we separate the

participating lines in three columns. Left column corresponds

to the lines that enter in the contingency set only as initiating

lines. The most right column corresponds to the lines that may

get overloaded but never initiate a contingency. Finally, in the

middle column we have those lines that can be overloaded in

some contingencies and may initiate some others. As one can

see every node in the middle and right columns has at least

two edges connected to it, indicating that they are overloaded

Fig. 11. Influence graph after reduction of the grid. Green vertices represent
lines that can only be initiators of dangerous contingencies; Red nodes
represent lines that never initiate contingencies but can become overloaded
by some of them; Blue nodes represent lines that can be overloaded by
dangerous contingencies as well as initiate them

by double contingencies. For the sake of visual appeal we use

an undirected graph for visualization, so some information

about the composition of contingencies is not presented.

Remarkably, the middle column is more populated than

the right one, which suggests that for many contingencies the

tripping of the overloaded line may trigger other overloads

and initiate the full-scale cascade of failures. Note, that this

statement is only an educated guess as the accurate account of

effect of third line tripping requires full-scale recalculation of

the power flows in an updated N−3 network. Although there

is not enough information in the double contingency set to

predict what will happen if one or few of the overloaded lines

will trip, one may assume that the overall stress on the system

will only increase and more overloaded lines will appear.

If this conjecture is accepted, one can use the information

provided in the influence graph for rough estimates of the

danger of the contingencies and use it for contingency ranking

or remedial action development procedures.

In order to better understand the structure of the double

contingencies in the following section we analyze several

of the components of the contingency and influence graphs

and discuss what are the typical configurations that result in
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dangerous double contingencies.

3. STRUCTURE OF DANGEROUS CONTINGENCIES

In our system we have observed two major classes of double

contingencies. The first class corresponds to configurations

where a subgrid is connected to the rest of the grid via a

small number of power lines that form a so called graph

cut. One or more of these lines can get overloaded if other

lines in the same graph cut are tripped. Second important

class of contingencies corresponds to nearly-dangerous N −1
contingencies that require only a small variation due to second

line tripping to become really dangerous. In the following

paragraphs we analyze these scenarios in more details.

The “island”-class contingencies constitute about 31% of

all the dangerous contingencies before the reduction. They

appear whenever a some subgrid of the system is connected

to the rest of the grid via a set of lines (that constitute a graph

cut) with relatively small overall power flow limit. Whenever

one or two lines from the cut are tripped, the total power

that was flowing through the cut is redistributed among the

remaining lines. This can lead to an overload of the remaining

lines in the cut. As long as there are many ways to draw cuts

in the power grid graph, we assume that a given contingency

is of “island” type only if all the remaining lines in the cut are

overloaded after the initial tripping events. The likely outcome

of such a contingency is the islanding of the subgrid after the

overloaded lines are tripped. Depending on the distribution

of load and generation within this island the cascade might

propagate further or remain contained in this island.

In figures 5 and 10 we show the lines that participate

in these types of contingencies in red and blue colors. Red

indicates that the line participate only in “island” type of

contingencies, and blue is used for lines that can participate

in other types of contingencies as well. Yellow lines do not

participate in “island” type of contingencies at all.

In figure 12 we show an example of such an islanding

contingency illustrating in the same figure both the physical

layout of the corresponding island, its representation in the

contingency graph before and after reduction, and, finally, its

representation in the influence graph. As one can see from

the section 4 of this figure there are two chains of power lines

interfacing a small subgrid with the power system. Cutting

any two chains in any of their lines results in an overload

on the third chain. One can note, that the relative large size

of chains results in a large number of contingencies before

the graph reduction. One can also see from the influence

graph that it does not matter which of the chains are cut as

in the contingency - cutting any two of them will result in

an overload of the third chain.

The second class of contingencies is not related to the

weakly connected islands and does not have any specific

physical layout signatures. They arise due to the large number

of N − 1 contingencies that are close to the margin of being

dangerous, so that whenever such a contingency occurs, one

of the lines in the power grid becomes almost overloaded.

Tripping of other line in the grid results in additional power

Fig. 12. Example of ”island” type of contingency

flow readjustment and may act as a “last straw” pushing

the nearly overloaded line over the limit. These types of

contingencies constitute a majority of all observed in our

numerical experiment. This is not surprising given the fact

that the optimal power flow solutions are often found with

N −1 contingency security condition imposed as a constraint

[16] and the long-term evolution of the grid is also driven by

the N − 1 security condition [17]. The solution naturally lies

on the boundary of the feasible region thus resulting in near

overload of some of the lines. This results in a system exposed

to a large number of N −2 contingencies. More sophisticated

schemes, based on chance constrainted optimization may be

required to find the solutions that reduce the overall risks

associated with N − 2 contingencies.

An example of this type of contingency is shown in Fig.

13. The physical layout of the power grid with the lines

involved in the contingencies is not shown because the

large number of lines that can participate in this subset of

contingencies are scattered all over the power grid. The N−1
contingency associated with tripping of the central line #98
in the contingency graph results in high loading of the line

#377. The flow through line #377 reaches almost 93% of

the line capacity. Any of the lines connected to the central
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Fig. 13. Example of N − 1 contingency that is close to margin of being
dangerous

one in the contingency graph produces an additional power

flowing through the line #377 leading to the overload.

The non-local nature of the most double contingencies

can be illustrated by looking at the distribution of graphical

distances between the initiating contingencies and the over-

loaded lines. This distribution is presented in Fig. 14. As one

can see most of the initiating lines are separated from one

another by 5 or more nodes in the original power grid with

the largest separation being as high as 12. The distribution of

distances between the initiating and overloaded lines is more

narrow, however this effect may be attributed to the algorithm

of distance calculation, that used the distance between the

closest among the set of initially tripped and overloaded

lines. In any case, this distribution highlights the nonlocal

nature of the contingencies and indicates serious flaws of the

topological models based on the nearest neighbor interaction

(see also [18] for the discussion of this point). In the future

we plan to extend this study to other more appropriate metrics,

like electric distance [19].

All the contingencies that we have observed in our study

can be explained by these two mechanisms. This character-

ization of dangerous contingencies may be used as a basis

for heuristic contingency selection algorithms in situations

where direct non-heuristic approaches are not available or

computationally prohibitive. Although the model that we used

in our study was based on linear DC power flow equations,

the qualitative nature of the overloads is universal and not

reliant on any approximations. So we believe that the same

type of contingencies will be observed in more realistic AC

type models.

In the last results section we provide additional information
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Fig. 14. Topological distances distribution (Blue - distribution of average
topological distances between overloaded lines and corresponding initiating
lines. Red - distribution of distances between initiating lines

about the power flows through the lines that participate in

contingencies either as initiating or overloaded lines.

4. POWER FLOWS IN DANGEROUS CONTINGENCIES

In order to better understand the potential impact of

the contingencies on the grid we have done preliminary

assessment of the power flows through the overloaded lines.

We visualize the data on the power flows using the scatter

plot presented in Fig. 15. The two axes of this plot represent

the power flowing through a given line before and after the

contingency and the limit of the power line flow as defined

in the model. The blue points correspond to the power flows

before the contingency and all lie in the safe region where

the limit is larger than the flow. The configurations after the

contingency are shown in red an all lie in the lower-right

region of the plot where flow exceeds the limit. We also show

the values of the power flows averaged over all the lines in

the grid. There are several interesting conclusions that one

can draw from this plot.

First, one can see that in most of the cases the overloaded

lines barely exceed their limits. This is consistent with the

nature of the most contingencies that are composed out of

nearly dangerous N − 1 contingencies reinforced by a small

push from another tripped line. Most of these contingencies

can be avoided if more restrictive conditions for the N − 1
security are used when choosing the optimal power flow

solution.

Second, we can see that most of the lines that get

overloaded are operated away from their limits, most at half

of their capacity. This is a rather unexpected result which

suggests that the overloading effect is mostly due to the

readjustment of the flow after the contingencies. In other

words it suggests that the most vulnerable lines are not the

ones that operate close to their limits, but the ones that are
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the most sensitive to the tripping of others. Alternatively one

may argue, that in the optimal power flow analysis the most

restrictive constraints are those related to N − 1 contingency

security. On the other hand by looking at the average levels

of power flows and power flow limits we see that most of

the lines that get overloaded have higher than average flow

but lower than average power limit. Some reinformcement or

artificial deloading of this line may therefore reduce most of

the N − 2 contingencies.
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Fig. 15. Scatter plot of power limit versus power flow before and after
contingencies through overloaded lines

In order to understand which lines cause the most dangerous

contingencies we have looked at the joint distribution of total

power flows over the initially tripped lines and the mean

change of power flow over the lines that get overloaded as a

result of contingency. The corresponding results are presented

in Fig. 16. As one can see most of the contingencies are

induced by tripping of some major lines in the grid, the

typical flows over these lines exceeds the average power

flow levels in the grid. This can be explained by the strong

effect of tripping major lines in the grid. Trippings of major

lines produces stronger effect all over the grid and has

higher chances of resulting in a violated constraint. One can

also see well-pronounced clusters of contingencies arranged

in the lines. These clusters correspond to “island” type

contingencies where the the flow from initiating lines gets

entirely redistributed to the the overloaded lines. Depending

on which of the line in the chain was tripped initially different

amount of flow will go through the overloaded lines.

5. SUMMARY AND CONCLUSIONS

We have presented a thorough analysis of all dangerous

N − 2 contingencies observed in the medium size model

of Polish power grid with about 2000 buses. The power

flow model was based on the DC approximation and only

line trip contingencies and thermal power constraints were
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Fig. 16. Scatter plot of sum of power flows through contingencies vs.
mean change of power flow through constraint (sum of power flows through
violated constrains divided by their number).

considered. We have identified several contingency classes

and characterized them via a number of statistical techniques.

The most common type of N − 2 contingency appears

when a certain subgrid is connected to the rest of the grid

with only 2 power lines. Whenever these two lines trip

the grid becomes islanded. These contingencies have purely

topological nature and were not considered in this work. The

number of such contingencies is combinatorially large, there

are several thousand of them in the Polish Grid model.

Second type of contingencies is also characterized by grid

islanding, but in contrary to the previous type in this case the

islands are connected to the rest of the grid with more than

two power line chains. Whenever two of those lines are cut,

the rest can become overloaded. These sort of contingencies

constitute about 31% of the total dangerous contingency

count. However, their ratio can be significantly reduced if

the long chains of power lines are reduced to a single line in

contingency enumeration procedure. The likely outcome of

these contingencies is islanding of the grid which can only be

prevented by reinforcing of the overloaded lines or reducing

tripping probability of the contingency initiating lines.

Finally, the last and by far the most common type of

contingencies appears from the nearly dangerous N − 1
contingencies. Whenever a particular N − 1 contingency

results in high loading of one or more power lines, tripping

of many additional lines can lead to overload. In this case this

single N − 1 contingency has multiple N − 2 counterparts,

as many additional lines can lead to overload. Many of

these additional lines participating in the N − 2 contingency

are located far away from corresponding original N − 1
contingency participants. The resulting level of overload

is very close to the actual limit. The number of such

contingencies can be reduced dramatically by enforcing more
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strict N − 1 security constraints in Security Constrained

Optimal Power Flow procedure.

We have observed highly nonuniform distribution of line

participation frequencies in the N −2 contingencies set. Only

about 10% of the total number of lines participate in at

least one N − 2 contingencies. And those that do typically

participate in only 1 or 2 distinct contingencies. However,

there are 5− 10 lines (or about 0.2− 0.5%) that participate

in anomalously high number of contingencies, up to 15− 20
for some lines. Reducing tripping probabilities of these lines

can have dramatic effects on the overall reliability of the grid.

Similarly, there are only 72 unique chains of power lines

that can get overload as a result of N − 2 contingency. Of

those 72 the majority are vulnerable to only 1 − 3 distinct

contingencies, but some get overloaded in more than 20
configurations. Upgrade of those lines or imposal of tighter

constraints on their power is likely the most cost-efficient

way of increasing the power grid reliability.

We have also observed that many of the lines participate in

the contingency set both as the initiating lines in some con-

tingencies and overloaded lines in others. The contingencies

where those lines are overloaded are the natural candidates

for events triggering the large scale cascades in power grid.

If one those lines gets tripped as a result of the overload the

resulting N − 3 contingency will produce more overloads

in the grid. If reinforcement of those lines is not possible,

fast remedial action plan can help protect the grid against the

development of full scale cascade.

We believe that the analysis carried out in this work can help

system operators and the power system academic community

to develop novel approaches to grid reliability improvement.

The most straightforward application of our results is to

use these approaches to identify the lines that participate

most frequently in N − 2 contingencies and find the most

appropriate ways of reducing the risks associated with those

contingencies. This could be accomplished either by physical

upgrades of the lines, or introduction of additional security

motivated constraints in OPF procedures. However the results

may also be used in more sophisticated and indirect ways.

The statistical properties of the N − 2 contingencies may

be used to bias the distribution of starting configurations of

cascade simulation software based on more realistic models

of power grid dynamics. This way faster convergence of the

Monte Carlo based algorithms may be achieved [20]. It may

also help improve various heuristics that were proposed for

contingency selection problems.

Finally, we want to emphasize that there are a lot of

questions that still need to be resolved before the full

understanding of dangerous N − 2 contingencies nature is

achieved. Some specific questions that we would like to

address in the nearest future include but are not limited to

the following. Current analysis was carried out for a single

operating point of the grid. It is not clear how robust are the

results to variations of the operating point. Different operating

points may have different participants of the contingency sets.

The most important lines have to be identified by averaging

over the ensemble of possible states of the systems, and

the resulting set of lines may be very different from the

ones identified in this study. To have some quantitative

suggestions on the risk reduction actions it is also important

to introduce the probability measures that characterize the

frequency of initiating line trips and some ways of assessing

the damage done by particular contingencies. The latter task

can be naturally accomplished with the help of simple cascade

simulators proposed by a number of groups in recent years

[21–23].
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