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Abstract—Modeling the dependencies among multiple tem-
poral attributes derived from integrated healthcare databases
represents an unprecedented opportunity to support medical and
administrative decisions. However, existing predictive models are
not yet able to successfully anticipate health conditions based
on multiple (sparse) time sequences derived from repositories of
health-records. To tackle this problem, we propose new predictive
models able to learn from an expressive temporal structure, a
time-enriched itemset sequence, which captures both temporal
and cross-attribute dependencies. Revised pattern-based models
and hidden Markov models are proposed to address the proper-
ties of the target integrative temporal structures. The conducted
experiments hold evidence for the utility and accuracy of the
proposed predictive models to anticipate health conditions, such
as the need for surgeries.

Index Terms—integrated healthcare data, sparse temporal
data, cross-attribute dependencies, pattern-based prediction,
Markov-based prediction.

I. INTRODUCTION

The increasing integration and availability of healthcare

data is triggering new opportunities to support medical and

administrative decisions. In this paper, we tackle the problem

of defining predictive models able to deal with multiple

sparse time sequences. Each time sequence is derived from a

monitored attribute of interest across a time period. Attributes

provide alternative healthcare views related with diagnoses,

treatments, prescriptions or lab records. This problem differs

from multivariate time series analysis since the domain of the

target attributes varies and their records are not temporally

aligned.
The existing predictive models for temporal data are not able

to consider multiple time sequences per instance (patient) and,

therefore, cannot capture their structural interdependencies.

Alternatively, the existing integrative learning proposals are a

simple composition of separated predictive models learned for

each time sequence followed by a voting stage [1]. Similarly,

feature-based classifiers rely on features that are independently

collected from each time sequence. These learning settings

prevent existing predictive models from considering structural

dependencies among alternative health-related aspects, which

are critical to support prognostics and planning tasks from

integrated healthcare data.

In this paper we aim to define and study the behavior of

alternative classifiers that are able to adequately model the

dependencies among multiple (sparse) time sequences from

integrated healthcare data. For this purpose we, first, propose

a data mapping step that combines the multiple attributes into

one single temporal structure. Second, we propose two pre-

dictive models to capture these dependencies. The first model,

P2MID, relies on classification rules based on time-enriched

sequential patterns to capture integrated healthcare profiles.

The second model, M2ID, relies on customized hidden Markov

models to be sensitive to the varying length and sparsity degree

of patient health-records. These directions are compared and

evaluated against baseline classifiers for different medical

tasks: prediction of hospitalization and surgery needs, and

prediction of future healthcare conditions and procedures (in

accordance with ICD-9-CM and CPT standards [2], [3]).

The paper is structured as follows. In Section II, the target

task is motivated and contributions from existing research

covered. In Section III, we describe the proposed solutions.

Finally, results and critical implications are synthesized in

Section IV.

II. BACKGROUND

The challenges of defining predictive models from large

repositories of health-records have been largely synthesized

[4]–[7]. In particular, supervised learning from integrated

healthcare data is challenged by two major aspects. First, the

length and the sampling occurrence grid of healthcare events

vary both among patients and across different time periods

within each patient, which leads to the need to deal with

arbitrary levels of sparsity. Second, an integrated analysis of

multiple healthcare attributes is required for more accurate

decisions. Exemplifying, determining if a patient needs to be

hospitalized is not only dependent on the past hospitalizations

but conditionally dependent on the patient clinical history

composed by evaluations, treatments, prescriptions and diag-

nosis. In this section we cover the contributions and limitations

of existing work for each one of these two challenges.

Def. 2.1: Let Σ be an alphabet of symbols, and t be a

timestamp. A time sequence w ∈ W is an ordered multi-set
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of events {(σi, ti) | σi ∈ Σ, ti+1 ≥ ti, i = 1..n} with n ∈ N

occurrences, where W is the set of all time sequences.

Supervised learning from temporal structures has been

mainly centered on time series, a specific time sequence where

events are temporally equally distant, thus, not allowing for co-

occurrences and sparsity. The less researched learning methods

over time sequences have been driven by two major tasks:

prediction [8], estimation of future time points of a single

time sequence based on training time sequences, and sequence
classification [9], labeling of an unlabeled time sequence from

labeled time sequences. In this context, generative and pattern-

based methods have been proposed. Generative methods in-

clude formal languages, dynamic Bayesian networks, Markov

chains, and time-sensitive neural networks (NNs) such as

recurrent or time-delay NNs [9]–[12]. Pattern-based methods

for prediction include supervised rule discovery to predict or

constrain upcoming events [13]–[15]. Pattern-based methods

for sequence classification commonly rely on the extraction

and weighting of discriminative prototype features for each

class [16]. Common features include sequential patterns and

wavelets, among others [17], [18].

A shortcoming of the majority of these methods is that

sparsity is roughly treated by ignoring the temporal distance

among events. Only ordering relations among events are

considered. An alternative strategy to avoid sparsity that also

results in a significant loss of information is to convert time

sequences into feature vectors by adopting an aggregation

criterion as the counting of events across sequent periods [1].

Although the supervised inference of temporal rules can solve

this problem, this option is not yet scalable [14].

Additionally, these learning methods are not able to consider

multiple time sequences per instance. Note that existing contri-

butions from multivariate time series analysis and multivariate

responses prediction are not applicable for the target integrated

settings since both the domain and length across the target

multiple time sequences per instance varies.

Def. 2.2: Given a training dataset D = {x1, .., xm} with

tuples in the form of xi = {w1 ∈ W
1, ...,wp ∈ W

p, y ∈ Y},
the target task of classification from integrated temporal data
is to learn a mapping model M : W1, ...,Wp → Y , where Y is

the set of classes.

The target task of classification from multiple time se-

quences is formalized in Def.2.2. In literature, three strategies

are adopted to answer this task. One direction has been to learn

one model separately for each time sequence [19]. A model

for disease anticipation is addressed in [20] relying on admin-

istrative records tracking drug prescriptions, hospitalizations,

and daily hospital activities. The drawback of these solutions

is the loss of critical integrated views that does not show up

when each attribute is analyzed separately.

A second option is to extract features from multiple time

sequences by relying on clustering methods that rely on edit-

distance metrics based on insert-delete-replace operations [21].

The drawback here resides on the complexity of defining

effective distance metrics suitable for different patients and

attributes.

A final option is to perform a preprocessing stage that

incorporates multiple attributes at several time points as done

in [22]. However, this solution is only practical when there

is background knowledge to select specific events of interest

from each attribute.

III. SOLUTION

To deal with the identified three challenges we propose a

solution that relies on a data mapping stage followed by the

learning of predictive models able to deal with the specificities

of the mapped data.

First, in Section III.A, record-centered healthcare databases

are mapped into a single temporal structure per patient that

is both able to preserve the temporal distance among events

and to provide an integrated view of the multiple time

sequences per patient. Second, in Sections III.B and III.C,

existing predictive models are adapted to be able to effectively

and efficiently learn medical conditions using the proposed

temporal structure. In particular, we want this learning to

be shaped by relevant interdependencies across the selected

healthcare attributes. We propose a deterministic classifier,

where these interdependencies are captured through temporal

patterns, and generative classifiers under a Markov assump-

tion, where interdependencies are captured by the learned

transition and emission probabilities of the underlying lattices.

A. Data Mapping

For the proposed mapping, we assume that the input health-

care databases can be mapped into a multi-dimensional scheme

centered on health-records to organize a wide variety of health-

related aspects [23]. A health-record can, thus, be seen as a

central fact table that maintains a high multiplicity of measures

related with multiple dimensions, such as the calendar date,

patient identity, payer, provider, prescription and location.

Since only a small subset of all measures is captured per

health-record, the fact table commonly defines the type and

value of the monitored measures to guarantee the compactness

of the database. Fig.1 provides an illustrative record-centered

database.

Fig. 1: Health record-centric multi-dimensional structure

Under this input data scheme, the retrieval of multiple time

sequences can be done in three simple steps without loss of

information. First, the aggregation dimension, commonly the

patient dimension, is used to split the fact occurrences into a

set of instances.
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Second, a denormalization procedure is applied over the fact

entries <measure type, measure value, dimension identifiers>
to group patient records per measure.

Finally, for each instance, the calendar-date dimension is

used to compose one time sequence per measure of interest.

Having described the steps required to retrieve multiple time

sequences from an integrated healthcare database, next we pro-

pose a mapping that expressively combines the multiple time

sequences into one single temporal structure that still preserves

cross-attribute dependencies. This temporal structure, a time-
enriched itemset sequence, maps the occurring events from

the multiple time sequences to sets of itemsets according to a

specific time granularity.

Def. 3.1: Let an item be an element from an alphabet Σ.

An itemset I is an ordered set of items. An event, e, is a tuple

(I, t), where e.I is an itemset and e.t a time point.

Def. 3.2: An itemset sequence, s, is an ordered set of

itemsets s=<e1.I, ..., en.I>, from events with time points re-

specting ∀i∈N∧i<n ei.t < ei+1.t.

Def. 3.3: Let a time partitioning be defined by a set of

ϕi contiguous intervals, ∀i∈N
[i × δ, (i + 1) × δ[, where δ is

the considered time granularity. Given a time granularity δ, a

time-enriched itemset sequence is an ordered set of itemsets

<Φ1.I, ...,Φn.I>, where Φi is the set of events occurring

within ϕi partition and Φi.I is the union of all itemsets

occurring within ϕi, ∪kek.I.

Contrasting with simple itemset sequences, time-enriched

itemset sequences allows for the explicit representation

of empty itemsets corresponding to time partitions with-

out occurrences of health-records. Exemplifying, the il-

lustrative set of events, <e1=(a, t1), e2=(d, t1), e3=(b, t5),
e4=(c, t6)>, can be mapped as a simple itemset sequence,

<{a, d}, {b}, {c}>=(ad)bc, or as a time-enriched sequence,

<{a, d},∅, {b, c}>=(ad)∅(bc), when considering δ=2.

We propose a four-step methodology for the composition

of a single time-enriched itemset sequence per instance from

multiple time sequences.

First, numeric time sequences are discretized into ordinal

time sequences using lengthy alphabets.

Second, the dimensionality, |Σ|, of each time sequence wi is

balanced according to a homogeneity criterion. For the adopted

databases in this work, we consider the following homogeneity

criterion:

max(|Σ1|, .., |Σp|) ≤ Δmin(|Σ1|, .., |Σp|), with Δ = 3.

This balancing can be easily done by either aggregating

closed symbols if the alphabet is ordinal, or by applying a

hierarchical clustering method to group symbols according to

the observed Y classes if the alphabet is nominal.
Potential conflicts between the domains of the input time

sequences (items from different attributes sharing the same

symbol) are treated through a simple redefinition of symbols.
Third, a time granularity is adopted to partition the timeline.

For each time sequence, the values from event occurrences are

grouped per time partition. Symbol repetitions are removed.

In this way, each time sequence is mapped as a time-enriched

itemset sequence.
Finally, the itemsets for each time-enriched itemset se-

quence are merged as a single itemset per partition, which

leads to the target single temporal structure.
To illustrate this methodology, consider a dataset where

each patient xi has a domain with three time sequences wi

derived from an integrated healthcare database, corresponding

to the monitored prescriptions, diagnosis and treatments. Since

these time sequences are categorical, there is only the need to

balance their dimensionality by revising their domains (or by

adopting balanced categorizations such as the ICD-9-CM and

CPT standards [2], [3]), and to aggregate their occurrences

according to a time partitioning. Exemplifying, consider a

patient with treatments={(Radiology,Feb), (SurgeryUrinary,Apr)},

conditions={(CancerB,Jan), (RenalFail,Feb), (Seizures,May)}, and

prescriptions={(AnalgesicDrug,Jan)}. Given a month granular-

ity, δ=1, the resulting time-enriched itemset sequence would

be <{CancerB,AnalgesicDrug}, {RenalFail}, ∅, {SurgeryUrinary},

{Seizures}>.

The proposed mapping delivers a single temporal structure

that expressively addresses the three target challenges: struc-

tural sparsity, attribute multiplicity and specific properties from

healthcare databases. A simplified view of this mapping is

provided in Fig.2.

B. Pattern-based Predictive Models
Under the previous mapping, the existing methods for the

analysis of itemset sequences can be extended to be time-

sensitive, and their output used to guide and shape the target

predictive models.
The most common task in this context is the discovery

of sequential patterns to mine frequent precedences and co-

occurrences. Sequential patterns discovered over the target

temporal structure are able to include items from different time

sequences, and, therefore, to explicitly model interdependen-

cies across the multiple health attributes of interest.

Fig. 2: Mapping integrated healthcared databases as a single temporal structure per patient
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Different strategies have been proposed for the use of

temporal patterns for classification, including simple ranking

scores to identify the patterns more able to discriminate each

class, probabilistic induction [16], alternative learners [24],

and optimization methods based on confusion matrices [25].

Despite their utility to mine itemset sequences, these methods

suffer from two problems. First, they are only prepared to

capture frequent precedences and co-occurrences and, there-

fore, are not able to consider temporal distances between

events, which is a critical requirement for the definition of

predictive models. Second, they have been developed in the

scope of genomic studies and multivariate time series analysis,

and, consequently, the argued levels of performance no longer

remain valid for the target sparse healthcare settings, where

relevant sequential patterns are observed for a small number

of instances that share a similar healthcare profile.

For these reasons we propose a new pattern-based classifier,

referred as P2MID (Pattern-based Predictive Models from In-

tegrated Data), which is a variant of existing contributions. The

behavior of the P2MID classifier can be described according

to its training and testing stages. In the training stage a

discriminative model is defined in three steps.

First, a set of time-enriched sequential patterns is generated

for each medical condition. Below, we introduce the revised

temporal notion of a sequential pattern.

Def. 3.4: Let an itemset sequence a=<a1, .., an> be a sub-

sequence of b=<b1, .., bm> if ∃1≤i1<..<in≤m a1⊆bi1 , .., an⊆bin .

Given a set of itemset sequences S and a minimum support

threshold θ, a sequential pattern is a sequence s ∈ S that is

contained in at least θ sequences.

Def. 3.5: A time-enriched sequential pattern is a sequential

pattern observed for specific time interval [ϕi, ϕf ]. A time-

enriched sequential pattern is subset of another, a ⊆ b, if it

is both a subsequence and its time interval is contained in a
time range (ϕai≤ϕbi ∧ ϕaf≥ϕbf ).

Considering the illustrative set, {(ac)∅db, (ac)d∅∅,
(ac)∅∅(bd)}, and a minimum support θ=2, (ac)d is a

simple sequential pattern, while {(ac)d}[ϕi=0, ϕf =2] or

{db}[ϕi=3, ϕf =4] are illustrative time-enriched sequential pat-

terns for a granularity δ=1.

P2MID computes these temporal patterns by defining mul-

tiple temporal aggregations (δ ∈ {1, 2, ..}) followed by the

discovery of co-occurrences for coarser-grained aggregations

under a penalization factor to benefit the discovery sequential

patterns that occur within small time ranges.

Second, the confidence of each pattern in relation to a

particular class is evaluated to compose a new type of rules

of the form s ⇒ y, where s is the temporal pattern and y the

class.

Third, and similarly to CMAR [26], these rules are inserted

in a tree structure if: i) the χ2 test over the rule is above

a specified α-significance level, and if ii) the tree does not

contain a rule with higher priority. Understandably, since

CMAR is not able to deal with sequential patterns, but only

with frequent itemsets, we propose a new priority criterion. A

rule R1 : s1 ⇒ y is said to have priority over R2 : s2 ⇒ y if

s1 ⊆ s2 or if:

conf (R1)>conf (R2) ∨ (conf (R1)=conf (R2) ∧ sup(R1)>sup(R2))
∨(conf (R1)=conf (R2) ∧ sup(R1)=sup(R2)∧ |s1|<|s2|)

Finally, the tree is pruned based on the computed priori-

ties. This tree defines the discriminative pattern-based model,

which is a simple ordered set of tuples (pattern s, class y,

weight β).

In the testing stage of P2MID, this discriminative model is

used to classify a specific patient by identifying the closest

temporal patterns and relying on their classes and matching

score. The strength of each group of conditions is calculated

by computing the weighted-χ2 across all the rules s ⇒ y that

satisfy a matching criterion between the temporal pattern s and

the testing instance.

weighted-χ2(y) = Σmatch(si⇒y)(χ
2(si)× χ2(si))/MCS,

with MCS=(min(sup(s), sup(y))-sup(s)sup(y)/N)2×N×e,
where N =| match(si ⇒ y) | and e = 1

sup(y)2 + 1
sup(si)N−

sup(y) + 1
N − sup(si)sup(y) + 1

(N−sup(si))(N−sup(y))

Matching occurs if the time-enriched sequential pattern is

observed for the testing instance within the specified time

frame or if the pattern is observed for the testing instance with

the specified duration but for different time partitions (time

shift condition). For this latter case, the rule score is divided

by the difference of partitions to penalize the temporal shift.

Finally, the strongest condition, y ∈ Y , is output as the

estimated class for a deterministic result, or, alternatively,

the computed strength for each class is delivered as their

probabilistic value.

C. Generative Predictive Models

Unlike pattern-based models, classifiers relying on gen-

erative models provide a rather different behavior. Instead

of modeling the local properties of time sequences using

temporal patterns, they test the fit of the overall time sequence

against the learned lattices. From the wide-range of generative

learners, we selected hidden Markov models (HMMs) due

to their expressive power, compactness, easily parameterized

behavior and propensity to deal with sequential data.

Def. 3.6: A first-order HMM is a stochastic finite automa-

ton, where a set of hidden states are connected according to a

probability transition matrix, T , and have observable emissions

described by a probability matrix, E. The (T,E) pair defines

the HMM architecture.

However, existing Markov-based models are only prepared

to deal with sequences of fixed multivariate order [9]. To be

able to learn HMMs from (time-enriched) itemset sequences,

we propose a new classifier, referred as M2ID (Markov-based

Models from Integrated Data), that relies on a simple data

mapping applied over extended HMM architectures.

The mapping step transforms a (time-enriched) sequence of

itemsets into a univariate sequence by relying on an additional

symbol to represent the delimiters of each time partition. Illus-

trating, the time-enriched itemset sequence, (ac)∅∅d∅(ad),
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is mapped into a univariate sequence $ab$$$d$$ad$, where $

is the symbol that delimits co-occurrences.
By explicitly capturing time partitions, the generative mod-

els became sensitive to the underlying data sparsity since the

parsing of delimiters will shape the transition and emission

probabilities.
Under this mapping, learning generative models from time-

enriched itemset sequences is simply a matter of adjusting the

underlying architectures.
Fully inter-connected architectures, the default case, are

only able to adequately deliver effective models when the num-

ber of delimiters is significantly small in comparison with the

average number of items per instance. This behavioral problem

is related with the heightened convergence of emission prob-

abilities towards the delimiter symbol. Understandably, more

expedite architectures need to be adopted for datasets with

high sparsity or large number of time partitions.
To guarantee an accurate generative modeling of integrated

healthcare data for different settings, we propose an extension

of an alternative Markov-based architecture: Left-to-Right

Architecture (LRA) [27]. LRAs define one unidirected path

with main states intertwined by insertion and deletion states.

Insertion states can be used both to skip rare events and

events that do not significantly discriminate a particular class.

Deletion states in conjunction with insertion states allow the

generative model to adequately cope with the varying rates of

sparsity observed within and across patients.
To turn these architectures able to model time-enriched

itemset sequences, we propose the selection of specific states

(aligning states) along the main path to only emit the de-

limiters of time partitions. Additionally, we forbid any other

state to emit these delimiters by initializing their emission

probabilities as zero.

Fig. 3: Extended LRA for mining itemset sequences

In this way, we are forcing the predictive models to create

time points of alignment and, therefore, to use the main states

between such special aligning states as the transition-emission

lattices responsible to capture the dependencies across the

multiple health-related attributes of interest. Fig.3 illustrates

the extended LRA architecture.
M2ID adopts Viterbi, an efficient and robust algorithm, to

both learn the generative models and to classify each testing

instance based on its likelihood of being generated by the

learned lattices per class.

D. Illustrative Case
Consider the illustrative task of predicting the need of a

specific treatment T1 for the upcoming quarter from healthcare

data monitored along two years. Consider the presence of 15

clinical procedures (T1-15), 10 major health conditions (D1-

10), 20 lab-test assessments (L1-20) and 15 categories of pre-

scriptions (P1-15). Let us assume that, under a selected month

granularity, the learned P2MID predictor has the follow-

ing top 5 rules: {(D5L8P3)P3}[20, 24]⇒T1 (confidence c=97%

and priority score β=37), {T1}[12, 24]⇒¬T1 (c=91%,β=35),

{(D4L8P2)P2}[16, 22]⇒T1 (c=89%,β=34), {L6P7}[18, 24]⇒¬T1
(c=78%,β=31) and {P4(D4D5)}[14, 20]⇒T1 (c=88%,β=28). Com-

plementary, let us consider two Markov-based lattices, HMMT1

and HMM¬T1, following an extended LRA architecture learned

from a balanced class setting, where HMMT have weighter

transitions towards insert states and the emissions from the

latter hidden states along the main path have superior conver-

gence towards the {D4,P3,D5, L8,P2} set of events.

Understandably, a patient under prediction with the fol-

lowing time-enriched itemset sequence, {(T2P8)(L2P8)(D5P3)
P3∅(L8D4P2P3)(P2P3)}[18,24], is prone to be classified as a

candidate for T1 treatment under both pattern-based and gen-

erative approaches. Pattern-based matching criteria is enough

expressive to consider temporal misalignments and item gaps.

Complementary, this testing sequence is more likely to be

generated by the HMMT1 lattice than the HMM¬T1 lattice.

IV. RESULTS

To evaluate the proposed solutions, the healthcare heritage

prize database1 was adopted. This database integrates health-

care aspects, such as detailed claims, hospitalizations and

monthly number of laboratory tests and prescribed drugs, over

150,000 patients across multiple providers and specialties.

The original relational database was mapped into a multi-

dimensional database and pre-processed according to the map-

ping methodology proposed in section 3.1 to derive time-

enriched time sequences with varying temporal granularities

(month, quarter and semester). We collected a random popu-

lation of 20,000 patients for this assessment. For the month

granularity, each patient has an average number of 4 items per

itemset (σ=2) and 36 itemsets per sequence. For the quarter

granularity, patients have an average number of 12 items per

itemset (σ=3) and 12 itemsets.

We selected three distinct medical tasks from data monitored

along three years: anticipation of surgery, prescription and

hospitalization needs.

The codification of the M2ID method relies on HMMs

and learning settings adapted from the HMM-WEKA exten-

sion (implemented according to [9], [11] sources). Both the

mapping and the target classifiers, P2MID and M2ID, were

implemented in Java (JVM version 1.6.0-24). The following

experiments were computed using an Intel Core i5 2.80GHz

with 6GB of RAM.

A. Observations

The assessment of the prediction performance for each

medical condition is centered on the accuracy levels from a 10-

1http://www.heritagehealthprize.com/c/hhp/data
(under a granted permission for this publication)
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fold cross-validation scheme. A sample reduction method was

applied over the original population to balance the number of

instances per class. To test if there are statistically significant

differences among the levels of accuracy of the different

learners, we preserved the 10-folds across experiments and

performed a paired two-sample two-tailed t-test using a t-
Student distribution with 9 degrees of freedom.

In order to understand the improvements in performance

from capturing both temporal dependencies and dependencies

between multiple attributes of interest, we included the results

observed from a traditional classification setting (baseline

classifier). For this approach, we mapped the values for the

last 4 occurring events per attribute of interest as simple

features, and, then, applied different classifiers (C4.5, kNN,

Naive Bayes, NN, and SVM) from Weka [28] and selected

the best result. Missing values were introduced for instances

that showed less than four occurrences for one or more of the

monitored health attributes.
Three different medical conditions were target in our ex-

periments: i) surgery anticipation for the upcoming quarter,

ii) prediction of the average number of drug prescriptions

for the upcoming month (by grouping prescription levels

into four classes {0,1,2−5,6+}), and iii) Boolean prediction

of hospitalization needs for the upcoming year. Upcoming

predictions are accomplished by removing from training data

the last temporal partition. In particular, for the last task,

we additionally removed from data the records related with

hospitalizations, i.e., these predictive models were only learned

from attributes related with claims, diagnoses, lab analysis and

drug prescriptions.
Fig.4 illustrates the observed accuracy levels for the differ-

ent medical tasks. The horizontal line marks the default accu-

racy from a random learner based on the number of classes

per task, 1
|Y| . Two major observations can be synthesized.

Fig. 4: Classification accuracy for different tasks

First, the proposed classifiers perform better than traditional

classifiers across the selected prediction tasks. This improve-

ment is statistical significant (at α=1%) and motivates the

importance of modeling temporal and cross-attribute depen-

dencies.
Second, generative models seem to be generally the most

suitable choice. However, differences in performance between

M2ID and M2ID were not found to be statistically significant

(at α=1%) across all tasks. For instance, no statistical signif-

icance difference was found for the surgery prediction task,

which is potentially related with the fact that its anticipation

is well modeled by specific compact sets of health-records

with heightened discriminative power.

To test the behavior of the target predictive models for

varying levels of sparsity, we varied the time granularity from

a month scale up to a semester scale (δ ∈ {1, 3, 6}). This

strongly impacts the number and average length of itemsets

from the mapped time-enriched itemset sequences. Fig.5 com-

pares the accuracy of the target classifiers with different time

granularities for the anticipation of hospitalization needs.

Fig. 5: Accuracy for varying time scales

The adoption of coarse-grained time partitions (semester

granularity) deteriorates the performance of both P2MID and

M2ID methods. For P2MID, the decrease on the number

of partitions leads to the loss of significant precedences as

they are captured as co-occurrences. M2ID behavior becomes

less centered on sequential analysis through temporal align-

ments (less number of states to dedicatedly emit the delimiter

symbol) and more focused on learning the interdependencies

among a higher number of events (items), which is not

the original purpose of predictive models under a Markov

assumption.

Fig. 6: Efficiency for varying size of datasets

The efficiency of the proposed predictive models was as-

sessed for a varying length of patients and varying number of

events (by varying the monitored time period). Fig.6 gathers

the results from this analysis. The efficiency of the proposed

predictive models is significantly worse than traditional classi-

fiers. This is explained by two factors. First, traditional classi-

fiers only learn from a very small subset of the overall events

(the last four records for each one of the target attributes).

Second, the training time of P2MID is expensive since the

(time-enriched) sequential pattern mining task is performed

for very low levels of support. M2ID performance is penalized

by the length and complexity of the extended left-to-right

architectures.
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B. Why P2MID and M2ID methods address the target chal-
lenges?

To support the previously described decisions made for both

the P2MID and M2ID methods, Fig.7 collects the results from

selecting different strategies.

Fig. 7: Impact of P2MID and M2ID decisions

In Fig.7a, the impact of adopting simple sequential pat-

terns versus time-enriched sequential patterns is evaluated.

The difference in performance is statistically significant (at

α=2%). Two main reasons explain the observed differences in

performance.

First, the proposed discriminative models tend to score

preferentially patterns occurring near the time period under

prediction. Also, the allowance of temporal shifts under a

penalization factor during the testing stage offers a time-

dependent informative context for classification. Contrasting,

simple sequential patterns cannot offer temporal guarantees,

and, therefore, the influence of both recent and old events to

discriminate the class under prediction is not clearly differen-

tiated.

Second, the time partitioning strategy allows to deal with

arbitrary high levels sparsity by choosing adequate granularity

levels with impact on the degree of precedences vs. co-

occurrences.

The integration of both simple and time-enriched sequential

patterns was observed to slightly increase the overall levels of

accuracy. This can be explained by the inclusion of prece-

dences (modeled by simple sequential patterns) with larger

time frames.

In Fig.7b, the impact of adopting alternative HMM ar-

chitectures is evaluated. The adoption of fully-interconnected

and left-to-right architectures as-is have a significantly worse

performance when compared with the extended left-to-right

architectures. This is explained by two factors.

First, since in the original architectures there are not ded-

icated states to emit delimiters, there is not an explicitly

way of temporally aligning time-enriched itemset sequences

of varying lengths. Although the inclusion of delimiters turns

the learning sensitive to varying levels of sparsity (varying

number of events per time partition), they are associated with

convergence problems on the emission probabilities for the

original architectures since delimiters occur with a significant

larger frequency than normal items.

Second, the selection of specific main states in a left-to-right

architecture to dedicatedly emit delimiters, creates an adequate

generative setting sensitive to the underlying sparsity (given

by the weight of transition probabilities towards deletion or

insertion states) and attribute interdependencies (given by the

most probable emissions along the main path).

C. Implications

The collected results show that the definition of predictive

models prepared to deal with integrated temporal structures,

such as time-enriched itemset sequences, is a promising direc-

tion to deal with the temporal and cross-attribute dependencies

of integrated healthcare data.

The observed behaviors for the two proposed predictive

models present contrasting properties that should be known

before selecting the learner. The decision can vary depending

on multiple factors, such as the considered time granularity,

the selected temporal attributes of interest and the medical

condition under prediction.

On one hand, pattern-based models are able to discriminate

specific integrated profiles of interest. A time-enriched sequen-

tial pattern is able to combine items derived from different

attributes (such as a particular diagnosis, type of prescribed

drug or applied procedure) within a time frame to discriminate

a medical condition (e.g. need for surgery). Pattern-based

methods are particularly prone to predict medical conditions

from small sets of events. In particular, specific records, such

as pregnancy diagnoses, are able to robustly discriminate

conditions. Under this setting, the inclusion of a matching

criterion that allows temporal shifts under a penalized factor

is critical to guarantee that a reasonable number of sequential

patterns are selected for each testing instance. Pattern-based

models are the choice for data contexts with a large number

of uninformative health-records.

One the other hand, generative methods relying on extended

HMM architectures offer a more smoothed behavior as they

consider all the observed events to shape the transition-

emission probabilities (training stage) or to compute the gen-

eration likelihood of a particular instance (testing stage). How-

ever, contrasting with pattern-based models, the accuracy of

generative models degrades in healthcare scenarios where only

a small subset of events per patient effectively discriminate a

medical condition. Additionally, the covered architectures are

not able to prefer more recent events from all the events, which

commonly have a more heightened influence to discriminate

the conditions under prediction.

V. DISCUSSION

This work addresses the problem of learning predictive

models to support medical decisions from integrated health-

care databases, with an incidence on both the temporal and

inter-attribute dependencies. These challenges are motivated,

and the contributions and limitations of existing research to

answer them are synthesized.

To deal with the varying temporal sparsity across patients

and the potential high multiplicity of attributes of interest,
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we propose a new methodology centered in two major steps.

First, a data mapping is proposed to combine multiple time se-

quences derived from multi-dimensional healthcare databases

into a single temporal structure, a time-enriched itemset se-

quence. This structure offers an integrated view of each patient

by preserving conditional dependencies across attributes and

by allowing arbitrary time scales.

Second, two predictive models, one deterministic (P2MID)

and one generative (M2ID), are proposed and compared under

this mapping. P2MID relies on a discriminative model based

on a time-enriched notion of sequential patterns to deliver

time distance guarantees between events, to penalize temporal

misalignments and to favor recent events. M2ID relies on a

modified left-to-right HMM architecture able to discard non-

discriminative events and to deal with patients with varying

number of events. The conducted experiments hold evidence

for the accuracy and utility of the proposed predictive mod-

els. This observation supports the need for developing new

classifiers that are able to model the underlying temporal and

cross-attribute dependencies of integrated healthcare data from

time-enriched itemset sequences.
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