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Abstract 
Although providing understandable information is 

a critical component in healthcare, few tools exist to 
help clinicians identify difficult sections in text. We 
systematically examine sixteen features for predicting 
the difficulty of health texts using six different machine 
learning algorithms. Three represent new features not 
previously examined: medical concept density; 
specificity (calculated using word-level depth in 
MeSH); and ambiguity (calculated using the number of 
UMLS Metathesaurus concepts associated with a 
word).  We examine these features for a binary 
prediction task on 118,000 simple and difficult 
sentences from a sentence-aligned corpus. Using all 
features, random forests is the most accurate with 84% 
accuracy. Model analysis of the six models and a 
complementary ablation study shows that the 
specificity and ambiguity features are the strongest 
predictors (24% combined impact on accuracy). 
Notably, a training size study showed that even with a 
1% sample (1,062 sentences) an accuracy of 80% can 
be achieved. 

 
 

1. Introduction  
 

Lifespans continue to increase, survival rates for 
those with many chronic diseases have drastically 
improved, and more and more treatments are being 
discovered for a variety of illnesses.  However, 
healthcare funding and the time availability of 
practitioners have not increased to match.  To combat 
these conflicting views, improving patient health 
literacy is becoming an increasingly important goal in 
healthcare. Increased health literacy can improve 
preventive behaviors and access to suitable care by the 
population. It has been argued that for the Patient 
Protection and Affordable Care Act (ACA, a law that 
came into effect in the US in 2010) to be successful, 
more effort is needed to increase the health literacy of 
millions of Americans [1]. Similarly, the Healthy 
People 2010 statement by the Department of Health 
and Human Services identified health literacy as an 

important national goal 
(http://www.healthypeople.gov/2010).   

An important factor necessary for improving health 
literacy is providing suitable information that people 
can understand. Kuijpers et al. [2] reviewed 18 studies 
aiming to provide web-based, interactive patient 
empowerment tools for cancer patients. They found 
that most tools included a strong educational 
component. However, patients often do not understand 
the information they are provided leading to 
suboptimal health behaviors. Rudd [3] notes there is a 
mismatch between the skills of and demands on 
patients which can result in troublesome health 
outcomes and it is an ethical imperative to improve the 
information transfer.  Fincham [4] suggests that both 
education of practitioners and outreach activities are 
necessary to bridge the health literacy gap.  

Although many methods for educating patients 
exist, text still remains one of the most cost-effective 
methods of disseminating information.  The challenge 
is that writing easy-to-understand text is difficult, and 
existing tools aimed at simplifying text have not been 
convincingly shown to positively and significantly 
affect text understanding. While the intentions are 
good, few existing approaches have been shown to 
increase health literacy and improve health outcomes. 

We advocate that evidence-based research is 
needed to provide tools that support the clinical 
practitioners in writing easy to understand text and that 
support the patients in reading the information.  To this 
end, the long-term goal of our project is to develop a 
writing support tool for clinical practitioners that 
leverages modern technology. We use large 
vocabularies and machine learning to identify 
important traits and suggest easier alternatives.  We 
believe that the ability to provide appropriate text is 
beneficial for individual patients as well as the 
population at large when they access documents 
prepared for the public. 

In this paper, we focus on the problem of predicting 
the difficulty of text and identifying the most important 
text features contributing to that difficulty.  Such 
features can be used to identify text sections requiring 
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simplification and then to guide the simplification 
process [5, 6]. For example, Table 1 shows example 
sentences from a sentence aligned corpus of English 
Wikipedia and Simple English Wikipedia.  The 
sentences generally convey the same meaning, but the 
simple sentences are written more simply by including 
simpler sentence structure, vocabulary and concepts.  

We explore a feature-based approach for predicting 
text difficulty. Traditional readability formulas often 
utilize a very small number of features to predict the 
difficulty of a text.  Instead, we utilize machine 
learning approaches, which can integrate a much larger 
number of features that can capture a more varied 
collection of text characteristics. In addition, the 
features can be combined in a meaningful way by 
weighting based on usefulness.  By examining a 
feature-based approach we can also understand which 
features are most informative and can be used as part 
of future simplification tools. 

We build upon previous approaches for predicting 
text difficulty using machine learning in two key ways.  
First, we introduce a number of new features including 
features that capture the number of concepts used and 
the specificity and ambiguity of the words used. To our 
knowledge, these features have not been previously 
examined.  Second, we explore a broader range of 
machine learning approaches to fully test the features 
in a broad range of settings and to examine how 
different machine learning approaches perform in this 
problem domain. 
 
2. Literature Review  
 
2.1 Patient and Consumer Health Literacy 
 

Many researchers have focused on measuring 
patient health literacy so that information provided to 
the patient can be adjusted accordingly.  The Test of 

Functional Health Literacy in Adults (TOFHLA) and 
its shortened version Short-TOFHLA (S-TOFHLA) [7, 
8] are among the most popular instruments. They 
require respondents to fill in the blanks in sentences by 
choosing one of four words. Another commonly used 
test is the Rapid Estimate of Adult Literacy in 
Medicine (REALM) [9] which requires patients to read 
medical terms out loud. A variety of other tests have 
been developed, for example, Chew [10] developed a 
3-item scale, validated using the S-TOFHLA. 

Studies evaluating the importance of health literacy 
in relation to health outcomes have shown a wide range 
of results. Al Sayah et al. [11] reviewed 24 studies 
where health literacy was measured as part of a 
diabetes-related study. They report evidence for a 
relationship between health literacy and diabetes 
knowledge and self-care but no evidence for a direct 
relationship between health literacy and clinical 
outcomes. They reason that the existence of indirect 
relationships, e.g., health literacy was related to 
communication quality with the healthcare provider, 
and the diversity of measurements used can explain 
this lack of a strong direct relationship.  Similar results 
were found for other medical conditions. For arthritis 
patients [12], health literacy was related to knowledge 
but not directly to adherence to medicine. For patients 
with hypertension, health literacy was not shown to 
correlate with adherence to treatment [13].  

In contrast, Omachi et al. [14] conducted structured 
telephone interviews with 277 people. They reported 
that lower health literacy was associated with worse 
outcomes for chronic obstructive pulmonary disease 
(COPD): worse COPD severity, higher helplessness, 
and higher likelihood of hospitalizations and 
emergency department visits. Sun et al.  [15] focused 
on respiratory diseases and conducted a pathway model 
analysis with the relationship between health literacy 
and behavior as one of the relations investigated. Based 

Table 1. Three example sentences pairs with the difficult (i.e. unsimplified) sentence and the 
corresponding simple sentence. 

Difficult: 
 
 
Simple: 

Magnetic resonance imaging (MRI), or nuclear magnetic resonance imaging (NMRI), or 
magnetic resonance tomography (MRT) is a medical imaging technique used in radiology 
to visualize detailed internal structures. 
Magnetic resonance imaging (MRI), or magnetic resonance imaging (NMRI), are machines 
that doctors use to give a visual representation of soft tissue (flesh) inside the body. 
 

Difficult: 
 
Simple: 

Penicillin has since become the most widely used antibiotic to date, and is still used for 
many gram-positive bacterial infections. 
Penicillin is a common antibiotic, used to treat bacterial infections. 

Difficult: 
Simple: 

The outer wall of the human heart is composed of three layers. 
The heart has three layers. 
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on survey results from 3,222 respondents, they 
conclude that health literacy and prior knowledge are 
the top determinants in health behavior. 
 
2.2 Text Readability 
 

Similar to health literacy, there are a variety 
instruments for measuring the readability of text. The 
goal of such instruments is to assign a rating indicating 
how difficult an existing text is and indicate required 
literacy levels needed to understand the information 
presented in a text. They are based on simple text 
surface characteristics such as word and sentence 
length, which are used as stand-ins for text complexity 
[16]. The most commonly used formulas are the 
Flesch-Kincaid grade level formulas [17], but others 
such as the Measure of Gobbledygook (SMOG), 
Gunning-Fog index, DISCERN [18] and HON code 
(http://www.hon.ch/) are also used.  

For those with low health literacy, it is advocated 
that text is rewritten in simple and plain language. 
While the Centers for Disease Control and Prevention 
provide comprehensive advice in their guide for 
creating easy-to-understand materials 
(http://www.cdc.gov/healthliteracy/pdf/Simply_Put.pdf
), the need for easy-to use and efficient tools for 
(re)writing text result in a strong (over)reliance on 
readability formulas. As a result, readability formulas 
continue to be used as the sole judgment tool to assess 
text in a variety of settings and topics. For example, 
they are used to evaluate surveys [19], patient 
information leaflets provided by hospitals [20], or 
website discussing a variety of topics such as ear tubes 
[21], speech and language difficulties [22], and 
nephrology articles on Wikipedia [23] among others. 

Unfortunately, the usability of readability formulas 
is limited and there is little evidence that the output of 
these tools directly results in improved understanding 
by readers. Many studies report a wide variety of 
results demonstrating the difficulty of the problem. 
Application of the formulas does not pinpoint the 
difficult sections in a text and does not provide 
suggested alternative writings. Furthermore, their 
ratings have not convincingly been shown to correlate 
with understanding, and in some cases, simplifying text 
using the formulas negatively affects readability 
because writing style rather than content is changed 
[24].  Not surprisingly, increasingly more concerns are 
raised about the effectiveness of these formulas for 
simplifying consumer health texts [25].  
 
2.3 Learned Readability Measures 
 

To combat some of the drawbacks of static 
readability formulas, recent work has explored learning 

readability formulas from corpora with known 
readability levels.  Features that may be associated 
with text difficulty are extracted and then used with the 
known readability levels to learn a readability measure, 
often using machine learning methods.  By viewing the 
problem as a computational learning problem, a much 
more robust and exhaustive set of features can be 
systematically explored, avoiding many of the 
drawbacks of the existing static approaches.  These 
models have been shown to predict the readability 
levels of text significantly better than static readability 
formulas [26].  The drawback of these models is they 
require training data and are therefore domain specific 
based on the training data [6]. 

In addition to use as a prediction tool, learned 
readability measures can also be a driver for 
identifying features that are indicators of simplicity and 
can be integrated in simplification tools.  A variety of 
features have been suggested. Most models include 
some surface features similar to those used by the static 
formulas such as average word length or sentence 
length [27, 28] along with other lexical features such as 
occurrence of words found in a simple lexicon [28].  
Syntactic features including both part of speech and 
parse tree components have also been explored [28-
30].  More importantly, higher level features that 
capture more complex phenomena in the text such as 
the occurrence of named entities [29] and language 
model scores [6, 31] have been incorporated into these 
models. 

Because of the reliance of these approaches on 
training data annotated with readability level (or 
collected from sources where different target reading 
levels are known), different target audiences and 
different text types have been examined.  Audiences 
have included people with poor literacy [6], second 
language learners [31] and people with cognitive 
disabilities [32, 33].  Corpora used for training have 
included Wikipedia [28], books [27], magazines [29], 
and web pages [34]. 
 
2.4 Specificity and Ambiguity 
 

In medicine, the plain language initiative 
(http://www.nih.gov/clearcommunication/plainlanguag
e.htm) aims to provide information appropriate for 
consumers and patients. This does not mean ‘dumbing 
down’ text, but often requires use of non-medical terms 
since most patients and consumers do not have a 
medical background.  Intuitively, for most readers, text 
containing increasingly more technical and medical 
terms or words with different meanings in medicine, 
will be increasingly difficult to understand. We aim to 
capture this rationale with the development and 
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evaluation of two new features: term specificity and 
term ambiguity. 

We view specificity as a measure of the technicality 
of a term in the medical domain.  For example, 
compare the terms “heart” and “endocardium”. Both 
are terms related to the cardiovascular system and, in 
particular the heart.  While “heart” is less specific, for 
most people it is more accessible and more familiar.  A 
number of approaches have been previously suggested 
to measure word specificity including inverse 
document frequency [35], syntactic signals [36] and 
WordNet [37].  None of these approaches have been 
utilized for text readability nor were they designed for 
health-related concepts.  Our notion of specificity 
relies on depth information within a word hierarchy of 
medical terms.  Previous work has utilized similar 
word hierarchies in WordNet for text similarity [38], 
though not to calculate word specificity and not for 
health-related content. 

We view ambiguity as a measure of vagueness or 
uncertainty of the exact meaning of a term in the 
medical domain, often referred to as semantic 
ambiguity or lexical ambiguity. Semantic ambiguity 
has been shown to result in slower response times, 
longer processing times and longer fixation times [39].  
This delaying phenomena is sometimes referred to as 
the “ambiguity disadvantage” [40].  This disadvantage 
is particularly prominent when the different possible 
meanings of a term are similar [41], as is common for 
medical terms. Word ambiguity can also be a challenge 
for many natural language processing applications, 
though some progress has been made on automated 
word sense disambiguation [42, 43]. 
 
3. Methods 
 
3.1 Corpus 

 
Many corpora have been used to compare 

readability formulas and to examine the effectiveness 
of features including comparing blog versus medical 
articles [44], news articles [30], student magazine 
articles, and children’s books [27].  However, most of 
these corpora consist of at most a few hundred example 
texts.  We used a significantly larger data set consisting 
of 118,000 aligned sentence pairs collected from 
English Wikipedia (http://en.wikipedia.org/) and 
Simple English Wikipedia 
(http://simple.wikipedia.org/), with the former 
representing unsimplified sentences and the latter 
simplified sentences [45].  Throughout the rest of this 
paper we will refer to those sentences/examples from 
English Wikipedia as “difficult” and 
sentences/examples from Simple English Wikipedia as 
“simple”. 

This corpus has a number of benefits for this study.  
First, the size of the corpus allows for large-scale 
analysis on a large variation of examples.  Second, the 
corpus is sentence aligned and contains, for each 
difficult sentence, a corresponding simple sentence.  
This helps normalize for content and other variation 
between the simple and difficult examples.  Third, 
when simplifying health-related articles it is important 
that all text is understandable, not just the medical 
terms.  This corpus includes articles and terms for both 
medical and non-medical terms and allows us to 
examine characteristics of both in aggregate. 

We used modern implementations of the machine 
learning algorithms and a server with 16GB of memory 
and Intel Core i7-2600 CPU @ 3.40GHz processor.  
However, running the full range of experiments 
involving 10-fold cross validation over multiple 
different learning approaches is computationally 
intensive.  Therefore, the data set we examined 
consisting of 118,000 sentence pairs was a random 
subsample from the original data set [45], which 
consisted of 137,000 pairs. Preliminary experiments 
showed similar results for a number of the approaches 
on the full data set. 
 
3.2 Text Features 

 
We examined 16 features for use in predicting the 
difficulty of text.  The features were extracted for each 
sentence in the corpus and ranged from surface 
features, such as the number of words and characters, 
to aggregate features designed to model how 
ambiguous the words in a sentence are.  Below we 
outline each feature. Some of these features have been 
previously suggested such as surface features, part of 
speech features and vocabulary features.  In this work, 
we introduce a new collection of features based on the 
number of concepts in a sentence and two new 
aggregate features, specificity and ambiguity. 
 

Surface features: To capture basic text characteristics 
we extract the number of characters and the number of 
words.  
 

Part-of-speech (POS) features: The POS is 
automatically tagged using the Natural Language 
Toolkit (NLTK) [46] and then we count the number of 
nouns, adjectives, verbs and adverbs in the sentence, 
each as an individual feature.  We group together the 
remaining parts of speech into one feature and count 
their occurrence. Similar features have been used in 
previous work for predicting sentence and document 
simplicity [28]. 
Vocabulary features: Previous work has shown that 
text familiarity, as measured by frequency, has an 
effect on text simplicity [47, 48] .  Motivated by this, 
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we generated features to capture the general frequency 
of the words in the sentence.  For each word in the 
sentence we obtained the unigram frequency from the 
Google Web Corpus [49], which contains n-gram 
counts from the web.  Using these counts, we included 
features for the average, median and standard deviation 
for the words in the sentence. In addition, we counted 
the number of words not occurring in the 5000 most 
frequent unigrams in the Google Web Corpus.  This 
feature was designed to help capture the number of 
unfamiliar words. 
 

Concept Density features: The number of concepts 
talked about in a sentence and how related these 
concepts are to each other can have an impact on the 
difficulty of a sentence.  We use the Unified Medical 
Language System (UMLS), a resource provided by the 
National Library of Medicine 
(http://www.nlm.nih.gov/research/umls/).  The UMLS 
contains millions of health-related terms, which are 
each assigned to one or more concepts in the 
Metathesaurus. Each concept is assigned to one or 
more semantic types in the Semantic Network.  

For each word in the sentence, we first filter out 
common concepts by ignoring words that occurred in 
the Dale-Chall List [50], a lexicon of common words.  
For each remaining word that is a noun, adjective, verb 
or adverb we look up the word in the UMLS 
Metathesaurus.  To capture the concept density we 
count how many of these remaining words are found in 
the Metathesaurus and the number of different 
concepts found (these will be different when two 
words in the sentence are mapped to the same 
concept).  To measure broader concept density we 
count how many different semantic types are 
represented in the network, as identified by the UMLS 
semantic network. 
 

Specificity: For a given word, we hypothesize that one 
indicator of difficulty is how specific that word is.  To 
measure a word’s specificity we use the UMLS’s link 
to the Medical Subject Heading (MeSH), which 
contains collections of terms arranged in a hierarchical 
structure where height in the structure corresponds to 
the level of specificity.  To calculate the specificity for 
the sentence we sum the specificity level of each word 
in a sentence that we find in the MeSH database.  
Because the MeSH database was hand constructed and 
is limited in size and scope, if a word is not found in 
the database but a synonym (as identified by the 
UMLS Metathesaurus) is, we use the specificity level 
of the synonym as the specificity level of the original 
word. 
 

Ambiguity: Another possible indicator of difficulty is 
how ambiguous a given word is.  To measure this, we 

count how many different UMLS Metathesaurus 
concepts a word is associated with.  This can be seen 
as analogous to counting the number of possible senses 
that a word can have.  For a given sentence, we sum 
the ambiguity of all of the words in the sentence.  

 

To normalize for varying sentence length, we 
divide each feature value by the number of words in 
the sentence and to avoid scale bias, we normalize each 
feature to be between 0 and 1 by dividing each feature 
by the maximum value found in the dataset for that 
feature. 

Table 2 shows example feature values for the 
difficult and simple sentences for our corpus.  The 
difficult sentences tend to be longer than the simple 
sentences [28, 45] and, as has been seen in other data 
sets [47, 48], the difficult sentences tend to have more 
nouns, adjectives and adverbs while the simple 
sentences have more verbs.  The simple sentences tend 
to use higher frequency words, as indicated by higher 
median frequency and the number of words used that 
were ranked >5000.  Difficult sentences tended to use 
more concepts and more semantic types.  Difficult 
sentences had higher specificity, which intuitively 
correlates with the use of more rare terms.  Similarly, 
simple sentences tend to use words that were more 
ambiguous, which tends to correlate with the use of 
more frequent terms. 

Table 2. Average features values for the difficult 
and simple examples from the corpus. 

Feature Difficult Simple 
Surface 
 Character count 0.058 0.048 
 Word Count 0.083 0.072 
Part of speech 
 Nouns 0.086 0.073 
 Adjectives 0.040 0.032 
 Verbs 0.086 0.081 
 Adverbs 0.034 0.028 
 Other 0.056 0.048 
Vocabulary 
 Average frequency 0.318 0.316 
 Median frequency 0.018 0.026 
 Std. dev. of frequency  0.558 0.543 
 Frequency rank 

>5000  
0.287 0.263 

Concept density 
 Concept count 0.045 0.036 
 Unique concept count 0.102 0.083 
 Semantic types 0.176 0.146 
Specificity 0.036 0.017 
Ambiguity 0.029 0.041 
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3.3 Predicting Text Difficulty 
 
We view the text difficulty prediction problem as a 

binary classification problem between simple and 
difficult.  For each example, the sentences are 
tokenized and POS tagged.  We then extract the 16 
features described above. These features are passed to 
the machine learning approach along with the binary 
label of either ‘simple’ (1) or ‘difficult’ (-1). 

In practice, a finer-grained classification would be 
useful.  For many of the machine learning approaches, 
this can be obtained by calibrating the output value or 
confidence score [51] (e.g. the values output by a linear 
regression model can either be used directly to predict 
difficulty or can be binned into discrete difficulty 
levels).  However, since our main goal was to analyze 
the usefulness of the different features we leave that for 
future investigation. 
 
3.4 Machine Learning Approaches 
 

To understand how the features perform across 
multiple different learning approaches, and to identify 
which classifiers work best for this problem domain, 
we investigated six machine learning approaches: 
random forests, decision trees, linear regression, Naïve 
bayes, K-nearest neighbors and support vector 
machines (SVM).  The first five methods were run in R 
(random forests using the randomForest package, 
decision trees the trees package, linear regression using 
the built-in functionality, Naïve Bayes using the e1071 
package and K-nearest neighbors using the class 
package).  SVMs were run using SVMLight [52].  All 
classifiers were run with their default parameter 
setting. 
 
3.5 Experimental Setup 
 
To evaluate the different approaches we used 10-fold 
cross-validation and randomly split the 118,000 
examples into ten, 90/10 splits.  Each model was then 
trained on 90% and evaluated on the remaining 10% 
for each of the ten splits.  The methods were evaluated 
using accuracy of prediction on the test set. We use 
random assignment of labels as the baseline condition 
to compare the individual algorithms against. 
 
4. Results 
 
4.1 Classifier Performance 

 
Table 3 shows the classification accuracy for the six 

machine learning methods averaged using 10-fold 
cross-validation over the 118,000 examples. All 

approaches achieve results that are much better than 
the random baseline, with the random forest approach 
achieving the best results with an accuracy of 84.14%.  
This is better than the best previous results of 80.80% 
[28], which was achieved on a similar task, though not 
exactly the same examples were used.  All differences 
between the classifier accuracies for the ten folds are 
significantly different based on a t-test (p < 0.001) 
except for between linear regression and SVM. 

To understand the types of mistakes that are being 
made by the classifiers, Table 4 shows the confusion 
matrix for the first fold for the random forest classifier.  
Overall, the classifier makes mistakes evenly between 
the two classes.  Similar results were seen for the other 
classifiers. 

 
4.2 Model Analysis 
 

For some of the machine learning approaches we 
can look at the weighting of the features to understand 
which features were most useful in making predictions.  
This is important for later tool development to ensure 
that critical features are included. The analyses below 
refer to models trained on the first split of the data, 
though similar phenomena were seen for the other 
splits.  In almost all cases, the specificity and 
ambiguity features were the most predictive features 
for the models. 
 
Decision Tree:  The decision tree model recursively 
subdivides the data set by picking the features that best 
separate the data. Therefore, the features that best 
discriminate between the classes are the features that 
are chosen earliest and appear higher up in the tree.  
For the decision tree learned, the most informative 

Table 3. Accuracy for the six different machine 
learning approaches averaged over the 10 folds. 
Learning method Accuracy 
Random Forest 84.14% 
Decision Tree 76.75% 
Linear Regression 74.62% 
SVM 74.48% 
K-nearest neighbors 63.82% 
Naïve Bayes 59.41% 
Random 50.11% 

 
Table 4. Confusion matrix for the first fold for 

the random forest classifier. 
             Predicted 

  Difficult Simple 
Actual Difficult 4967 944 
 Simple 891 4998 
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feature was specificity, at the top of the tree, and the 
second most informative was ambiguity, at the second 
level of the tree.  
 
Linear Regression: The linear regression model 
generates a prediction as a weighted linear combination 
of features.  Features with the largest absolute 
standardized weights are therefore the most important.  
The three highest weighted features were character 
count (-18.9), specificity (-14.5) and ambiguity (9.5).  
The next largest feature was weighted 5.9.  This 
correlates with the average features values from Table 
2 where length and specificity were higher for difficult 
sentences, while ambiguity was higher for simple 
sentences. 
 
SVM: We used a linear kernel for the SVM, so the 
separating hyperplane is, like linear regression, a linear 
weighting of the features.  The three highest weighted 
features were specificity (-45.8), ambiguity (31.7), and 
character count (-24.3).  The next largest feature had a 
weight of 4.8. 
 
Naïve Bayes: The Naïve Bayes model learns a 
distribution over features for each class.  By comparing 
the probabilities associated with each feature between 
the simple and difficult probability models we can see 
which features have the strongest disparity and 
therefore the biggest impact.  The two features with the 
largest disparity between the classes were specificity, 
which was twice as probable for the difficult model, 
and ambiguity, which was 1.5 times as probable for the 
simple model. 
 

The random forest classifier is a combination of 
weighted decision trees and is therefore difficult to 
examine feature importance.  K-nearest neighbors is a 
non-parametric classifier and does not provide an 
explicit model. 
 
4.3 Feature Ablation 
 

As an additional experiment to understand the 
impact of the different features we did an ablation 
study for the random forest classifier (the best 
performing approach), calculating the accuracy when 
leaving each feature group out.  As with the previous 
model analysis, understanding the impact of each 
feature and which features are redundant is important 
for future tool development. An ablation study can 
show the impact of omitting specific features in a tool, 
a common requirement when tools need to be fast and 
easy/small to install by users.  In addition, the study is 
needed to confirm results from the model analysis. 

For each of the feature groups, we calculated the 
average accuracy over the 10-folds using all of the 
features except the features in that feature group.  The 
difference between the accuracy of the classifiers with 
all of the features and the accuracy with that feature 
group excluded is an indicator of how impactful the 
feature group is. Table 5 shows the results for the 
ablation study. 

As with the model analysis, the two most impactful 
features were specificity and ambiguity.  When both 
are removed, the overall accuracy of the classifier 
reduces from 84.14% to 60.58%, a 23.56% absolute 
reduction in accuracy.  Even removed individually, 
specificity and ambiguity each result in a larger 
reduction in performance than any of the other feature 
groups.  Of the remaining features, the concept density 
feature had the next most impact when removed and 
the other groups had little impact on performance.  
That does not mean that these other feature groups are 
not useful, only that they do not add additional 
information when taken in the context of the other 
features.  Many of these features groups have been 
shown to be useful by themselves in other studies [27-
29, 31]. 

 
4.4 Impact of Training Data Size 
 

In many domains, such as healthcare, there are only 
small data sets available that either contain difficulty 
annotations or have different variants representing 
different readability levels.  In addition, the data set we 
used only had a binary labeling for difficulty.  For 
many applications a more fine-grained difficulty 
labeling could be useful. Therefore, to understand how 
much data is required to obtain reasonable performance 
for predicting text difficulty we trained the random 
forest classifier on increasing amount of training data 
on the first fold. Figure 1 and Figure 2 show these 

Table 5. Ablation study using random forest 
classifier.  Accuracies are averaged over ten folds 
using all features except the feature group listed. 
Feature group 
excluded 

Accuracy difference 
from all 
features 

Surface 83.96%   0.18 
Part of Speech 83.97%   0.17 
Vocabulary 83.72%   0.42 
Concept Density 81.12%   3.02 
Specificity & 
Ambiguity 

60.58% 23.56 

Specificity 78.31%   5.83 
Ambiguity 79.74%   4.40 
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results for training sizes ranging from 10% to 90% and 
1%-9% respectively.  Even with just 1% of the training 
data (1062 examples) the classifier still achieves an 
accuracy of around 80%.  With 10% of the data 
(10,620 examples) the classifier achieves an accuracy 
of over 83.5%, which is within 1% absolute of the 
score achieved using all of the training data.  These 
results are encouraging for working on similar tasks in 
other domains. 

5. Conclusions 

Better accessibility to health-related information for 
patients is important.  Unfortunately, for much of the 
information available there is currently a mismatch 
between patient education level and the difficulty level 
of the health documents available to them.  To help 
alleviate this, we are working on developing tools both 
to support patients in reading health-related texts and 
to assist content creators (e.g., doctors, practitioners, 
pharmaceutical companies, hospitals) in creating text 
that is more accessible. 

In this paper, we explored 16 features for predicting 
the difficulty of medical texts.  Identifying features that 
correlate with text difficulty can be useful for 
identifying difficult text sections and for directing 
simplifications.  Three of these features have not been 

previously examined before including: concept density, 
specificity, and ambiguity.  Both specificity and 
ambiguity were highly informative for predicting text 
difficulty as seen from corpus statistics, model 
weighting across multiple machine learning 
approaches, and based on a feature ablation study using 
the best performing approach (random forests).  
Specificity is positively correlated with difficulty; text 
that uses more specific medical terms tends to be more 
difficult.  Ambiguity is negatively correlated with 
difficulty; text that uses broader terms, i.e. that have 
more potential meanings, tends to be simpler. In this 
paper, we focused on applications within the health 
domain, however, many of the features we explored 
are generally applicable.  For future work, we plan to 
investigate the impact of these features as components 
of simplification tools.  
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