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Abstract
Many commercial mobile applications or “apps” 

have surfaced in the past few years, such as Polar, 
Suunto, etc., to assist hobby runners in their personal 
fitness training. Although they partially consider vital 
parameters such as heart rate, blood pressure, etc., they 
do not consider the specific health constraints and 
requirements of rehabilitation patients. Nevertheless, 
the hobby scenario is also important for long-term, self-
responsible rehabilitation training. As motivation is a 
key success factor in this phase, personal interests of the 
user have to be considered. The work presented in this 
paper tackles this problem context from a design science 
perspective, and derives a new concept for pervasive 
mobile assistance in the aforementioned scenarios. The 
approach covers specific route characteristics, its 
impact on the user and the user’s personal preferences. 
The paper concludes with a description of an 
implemented proof-of-concept as a personal health 
system for self-motivated and self-controlled disease 
management. 

1. Introduction  

Many mobile applications like Polar and Suunto [1] 
that assist mobile fitness training by taking into account 
sensors monitoring body functions and vital parameters 
have emerged in the past few years. However, such 
applications do not live up to their full potential, as they 
do not take into account other important aspects such as 
context information. For health applications such as 
running and biking, it is less important to get from A to 
B, than to meet specific requirements (e.g. taking into 
account bus stops as described in Yu et al. [2]), such as 
the hilliness of a route, specific interests of the user, 
points of interests (POIs), etc. In this context, these 
recommendations are similar to recommendations for 
location-based services, e.g. mobile tourist guides. 
Personalization in recommending running routes is 
more similar to approaches for location-based services 
than to traditional routing problems. However, for the 
ability to react to context changes of a user in real-time, 
traditional routing problems have to be dealt with. 

For patient-centered e-health (PCEH), it is not 
sufficient to focus solely on Health Information Systems 
and Health Portals. A combination of patient focus, 
patient activity and patient empowerment improves the 
user acceptance and allows users to integrate a health 
aspect into their everyday life [3], [4]. 

Context in pervasive systems does not only include 
the user's location, but also temporal characteristics of 
the involved entities and their relationships [5]. In our 
case, this includes character and accessibility 
information of POIs and routes. For example, a POI 
might not be accessible 24 hours a day, but may be 
restricted to certain opening hours. A route might 
contain mud sections, which are not suitable to use after 
a rainy day. This paper prioritizes context 
characteristics, which are specific for running routes.

This paper investigates the requirements of a 
specific, personal health system for runners with a 
hybrid approach: combining recommendation 
mechanisms of location-based services with traditional 
routing concepts, i.e. simulation techniques as proposed 
in [6] will be applied to PHS for runners. The former 
allows the assistance system to provide personalized 
recommendation of routes, the latter allows for dynamic 
route adaptation due to context changes, i.e. in-/decrease 
of heart rate. Some of these context parameters are 
interdependent and have a strong impact on energy 
consumption and training success [7]. The envisioned 
application will target both fitness and health scenarios. 
Thus, medical requirements and lifestyle aspects will be 
considered. An assistance system offering these 
functionalities must be able to define multiple criteria in 
a personalized way, in order to fulfill these 
requirements. 

The research in this paper follows a design-oriented 
research approach [8]. According to design-oriented 
methodology, an artifact is being created in a 
prototypical approach in order to meet collected 
requirements fitting to a specific problem description. In 
section 2 different approaches from literature are being 
discussed, in order to identify gaps for location-aware 
assistance of outdoor training situations. Section 3 is 
concerned with the derivation of requirements for such 
an assistance system. Section 4 describes the 
recommendation mechanism of the assistance system, 
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which incorporates the detected requirements. 
Furthermore, the prototypical evaluation is presented to 
provide a proof-of-concept. The paper concludes with a 
conclusion and an outlook. 

2. Related Work  

The following overview of related work is divided 
into three approaches. They are either based on 
optimization and combination of route segments, 
approaches for recommendation of routes and POIs as 
location-based services and eventually personalized 
approaches and requirements in the eHealth and 
mHealth domain.  

2.1. Route adaptation and recommendation 

In the area of dynamic route adaptation, Chen 
proposes a system in which optimal path candidates are 
pre-computed offline, but the final route is calculated on 
the fly by utilizing heuristics respecting the driver's 
preferences [9].  With the same goal, Pang uses a fuzzy-
neural approach to orientate a route selection on the 
driver's preference. Given a route map and a user-
selected route and based on enough training sessions, 
the selection function is able to adapt to the actual 
decision making of the use [10]. Hitoshi uses a genetic 
algorithm mimicking viral infections to optimize the 
route selection based on travel time [11], [12]. 

In the following, related papers for route 
recommendations are analyzed in terms of applied 
filtering and ranking mechanisms, incorporation of user 
feedback and real-time adaption to context changes, i.e. 
handling of live data and configurable rankers.  

Zenker and Ludwig [13] conclude that route 
recommendation becomes more complex when reaction 
to live data is incorporated. They examine the 
combination of pedestrian navigation with event 
recommendation and live public transportation. Their 
system consists of three components, recommendation, 
route generation and navigation. They are loosely 
coupled, i.e. the results of the recommendation (goals) 
are input to the route generation and the results of the 
route generation (way) is the input for the navigation. 
However, unexpected changes, e.g. missing the bus, are 
not covered by this approach. Van Setten et al. [14] 
propose an application for a tourist scenario. It depicts a 
selection of nearby buildings, friends and other objects, 
viewable on a map and in a list on the mobile phone. 
Vicinity to the user is a hard criterion for filtering. 
Ranking is designed modular and combines different 
methods. Not every ranking method is used with each 

request, but methods are combined depending on the 
request. User feedback is incorporated by the system 
considering factors such as “last time visited”. 

Tumas and Ricci [15] describe a tourist guide which 
combines recommendation of points of interest with 
recommendation of routes in a transit network (network 
that bridges at least two different types of networks). 
Several routes are generated which exhibit different 
features, e.g. fastest route, walking route, route 
consisting of central streets, etc. According to a user 
profile an overall satisfaction score is generated for each 
route. The ranking function is a sum of sub-functions, 
which evaluate different attributes and their adherence 
to the user profile. The sub-functions are not necessarily 
equal for each user since they vary with the preferences 
specified by the user. 

Priedhorsky et al. [16] talk about using collaborative 
filtering mechanisms for estimating ratings of unrated 
byways for personalizing bikeability ratings in a 
geowiki for bicyclists. Preferences of a user are 
specified in the search interface where a user orders 
attributes for the preferred bike route in accordance to 
their relevance. Thus, only session-specific preferences 
are specified as opposed to an approach defined by Ricci 
and Nguyen [17] which defines a user model with 
session-specific preferences and long-term preferences. 

Regarding data acquisition Völkel and Weber [18]  
develop a system for personalized multi-criteria routing 
for mobility impaired pedestrians. They investigate 
user-driven map annotation as well as the development 
of routing methods utilizing the acquired data. Here, 
environmental conditions such as availability of road 
segments are collected in a collaborative manner. 
Changes over time of environmental conditions are 
considered by assigning lower priority to older ratings 
and higher priority to recent annotations when creating 
the overall rating value for the attribute. Adaptation is 
realized by providing a 5-point Likert scale, one for each 
criterion to be rated regarding its individual importance. 
These ratings are correlated with weights in the costs 
function. Baus et al. [19] and Schmidt-Belz [20] provide  
more extensive surveys of location-aware mobile 
guides. Their work can be used as starting point for 
extending the related work section based on our applied 
evaluation scheme. Only the most relevant articles have 
been included in this overview. In terms of modularity 
Bellotti et al. [21] compute final scores for items based 
on the results of several evaluation models. The way 
these models are combined can be specified in a set of 
rules, or inferred from the user’s context.  
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2.2. POI recommendation

In terms of ontology-supported route and POI 
recommendations Tomai et al. [22] describe a context 
matching algorithm for trip planning for tourism which 
generates a mapping between a user profile ontology 
and an ontology containing tourism information. The 
specification of the actual profile of a user is limited by 
the predefined user profile ontology, i.e. a user can only 
chose from a list of alternatives that correspond to the 
sub-concepts of the “interests” concept. Filtering 
removes services that do not match the service type 
selected by the user. The second step involves finding 
the correspondences between concepts and properties in 
the user profile and those in the tourism ontology. 
Additional information such as projected length of stay 
is used to further filter out services. Ranking is better 
described as grouping since results are classified into 
exact and approximate results. 

Ontologies are also used for configuration purposes. 
Van Setten et al. [14] describe a mobile tourist 
application which uses different recommendation 
strategies for different classes of POIs. As the semantics 
of POIs are described by an ontology, the 
recommendation engine is aware of the class hierarchy 
of each POI. So, if a prediction strategy exists for the 
actual class of a POI, then that strategy is chosen, 
otherwise a parent class with an associated 
recommendation strategy is used. Furthermore, 
ontologies are used to create semantically rich queries.

2.3. Related approaches in e/mHealth 

There is some related work in the areas of eHealth 
and mHealth (mobile health), that focuses on similar 
application areas as the presented approach. As such, the 
depicted solution can be seen as an mHealth solution. 

 Ontologies can be used to correlate health 
phenomena with context information, for example route 
characteristics and personalized training plans. 
McGuinness et al. [23] describe how semantic web 
technologies can improve the data integration and 
visualization in health portals.  

Koay et al. [24] evaluate the pervasiveness of a 
remote patient management system (RPMS). They 
describe a use case scenario, in which a patient suffering 
from an embolic stroke needs to take medicine and 
participate in rehabilitation measures. The RPMS is 
supposed to act as a warning system for any 
deterioration of the patient’s health status. To find the 
optimal mobile device for a patient’s condition, they 

derive non-functional requirements by exploiting 
several ontologies.

The study of Fisher et al. [25] shows that the aspect 
of personalization is crucial to improving a user’s search 
experience and the resulting recommendation quality in 
a health information portal. 

While those findings provide hints for the design of 
a patient-centered health application, they do not go into 
detail about a specific service. Our goal is to seamlessly 
integrate a solution in the patient’s everyday life with 
the help of available mobile devices. This allows an easy 
adaption and lowers barriers for the usage. 

3. Requirements Analysis  

Based on the analyzed related work, requirements 
for the envisioned solution are elicited. The references 
from section 2 are used to justify the relevance of such 
requirements. However, it is evident that existing 
approaches for health- or fitness-related 
recommendations take into account location-based 
factors very sparsely. Especially, the interdependencies 
between the aforementioned aspects call for an 
integrated view on the assistance problem in mobile 
health and fitness scenarios. This section provides a 
coherent set of requirements for a system that combines 
the benefits of the different approaches. 

Returning to the reviewed papers in section 2 only 
the paper of Zenker and Ludwig [13] describes a 
simplified approach to combining location-based 
services recommendation with traditional route 
recommendation. However, unexpected changes, e.g. 
missing the bus, road characteristics, etc., are not 
covered by this approach. Additionally, several 
requirements can be derived for the mHealth aspect. 
This primarily includes the need for personalization and 
the importance of a remote monitoring functionality for 
critical health cases. 

In the following the derived requirements for the 
envisioned system are set out. It is a hybrid system from 
a recommender systems point of view, as it comprises 
collaborative, content-based and knowledge-based 
filtering and ranking mechanisms (cf. [26]).

Requirement 1: Consideration of domain-specific 
route features: A route model needs to not only provide 
traditional features such as length and average 
traversing time for route segments, but also to cover 
domain-specific aspects such as underground, 
environment, walking aspects, etc. [15] 

Requirement 2: Consideration of points of 
interest: For a hybrid approach which also incorporates 
recommendation of location-based services as in tourist 
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scenarios, a route model needs to incorporate relevant 
points of interest, which can be related to routes [15]. 

Requirement 3: Location-based filtering: 
Location as in vicinity to a user or a user-specified 
location is a hard criterion and, thus needs to be a main 
filtering criterion [14]. 

Requirement 4: Consideration of user-
preferences: Selecting a suitable route is a multi-criteria 
decision problem. Each criterion needs to be evaluated 
in relation to user preference (resulting in a final 
evaluation score for each route (cf. [15], [18], [21]). 
Taking into account the user’s preferences and accepted 
customs helps to improve the user acceptance, which is 
important to provide additional usage value as a 
personal health system (cf. [24], [25]). 

Requirement 5: Just-in-time evaluation of 
ranking criteria: Short-term (e.g. current situational 
context) and long-term user attributes (e.g. interests) 
need to be considered (cf. [16], [17]) when evaluating 
potentially suitable routes for a user. 

Requirement 6: Evaluation of complex, semantic 
interdependencies: Incorporation of ontology 
matching mechanisms provides an additional evaluation 
criterion based on semantics (cf. [14], [22]). 

Requirement 7: Pluggable & easy ranking 
extension: Configurability of evaluation functions 
enables easy extension. (cf. [14], [21]). 

Requirement 8: Interface for event monitoring & 
direct feedback: Direct and indirect user feedback 
needs to be incorporated (cf. [18], [19], [14], [18]). This 
is especially important regarding critical vital data in a 
remote monitoring environment. 

Requirement 9: Collective intelligence based on 
collaborative filtering: Collaborative filtering  
provides additional evaluation possibilities, taking into 
account the actions of similar users or profiles of similar 
routes [16]. 

4. Concept for Route Recommendations 

An integrated assistance system that integrates the 
information from explicit user or physician feedback, 
situational data gathered by the mobile device and 
externally collected information addresses the 
aforementioned requirements. 

The basic concept for route recommendations is 
visualized in the following figure: 

Figure 1. Concept overview 

The overall idea comprises a central 
recommendation platform that acts an assistance system 
towards the mobile users, i.e. runners, fitness coaches or 
medics that supervise the users’ training and configure 
related health statistics, treatment and training plans 
accordingly. Besides direct user feedback, like ratings 
of routes or POIs on-the-go and configuring their 
profiles and interests explicitly, indirect context-
information can be monitored. This includes current 
location and certain vital parameters such as  heartrate 
and blood pressure, which is collected by the mobile 
device and associated sensors. The mobile device acts 
as a proxy for these external sensors. Regarding sensor 
integration we use state-of-the-art approaches, as 
described e.g. in [27], [28]. Some of the information has 
to be interwoven with associated information sources 
such as map services (e.g. Google Maps, 
OpenStreetMap, weather services), in order to consider 
important context information in real-time. Figure 2 
visualizes the information gathered while running a 
certain route.

Figure 2. Segmented route

Based on the GPS information of the user’s mobile 
device, information like altitude information or route 
surface characteristics (e.g. is the route a dirt track, a 
street, etc.) can be gathered by accessing external 
services. This information can be used to forecast the 
possible energy consumption for the training and the 
projected change of certain vital parameters (e.g. in 
some rehabilitation scenarios it might make sense to 
limit the heart rate, thus resulting in avoiding steep 
ascents, etc.). 

The following subsections will explain, how the data 
is modeled, acquired and how the data are analyzed, in 
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order to provide location-based, mobile assistance for 
scenarios in the health and fitness domain.

4.1. Data Acquisition and Route Model

The definition of our route model provides the basis 
for user-driven annotation of running routes. Here, we 
distinguish between automated and manual annotation. 
An example of automated annotation is the generation 
of running route segments through the analysis of GPS 
traces received from the user’s mobile device. 

During route creation, a user who carries a mobile 
device measures the route by walking. Wireless 
connectivity, e.g., Wi-Fi, or UTMS, is necessary to 
establish a connection to the destination host, the server 
that collects and evaluates the GPS data. To extract the 
information on the user’s actual position we use the 
Google Maps API that provides the data that is modeled 
in the Route Definition. 

Parts of the route can be annotated by the user as 
shown in Figure 2. For instance, we modeled the Terrain 
Segments which are defined by the user. Here the user 
manually assigns the type of terrain to a route segment 
by choosing a new terrain from a list-box. Another 
possible annotation is the change of the route 
environment. It makes a difference if one jogs at 8 pm 
in winter through a lit and inhabited district or a dark 
forest. Since we use time-based recommendations, such 
parameters can improve the quality of recommendations 
to the user. The modular design allows us to include 
further segments later on. 

Another variant of annotations are automatically 
generated annotations that are computed by the system 
for segments of a route that lie between two altitude 
differences. Altitude changes can be defined by 
mathematical rules and are easy to compute as 
contrasted with the manual annotations described 
above.

Figure 3. Data model
A Route (see Figure 3) is created by an admin user 

and contains a name and a short description (e.g., 
“Campus Route: a well-frequented moderate running 
route across the Campus”). The denivelation describes 
the difference in level between the highest and lowest 

point of the track. Hilliness projects the collected GPS 
data of one track on the properties flat, intermediate, or 
hilly. Lit says if the route is illuminated. Finally, a Route 
is rated by users on a Likert scale between 0 and 5. 

The Route entity consists of multiple Checkpoints 
that represent the GPS data, collected during Route 
creation. The GPSLocation maps the data provided by 
the Google Maps API. We decided to abstract from this 
entity because we wanted to avoid having one table with 
a large quantity of GPS coordinates. Such an amount of 
data would slow the speed of database responses. Thus, 
GPSLocation represents a theoretical construct and is 
not implemented in the database. Only objects of 
interest (e.g., Checkpoint, PointOfInterest) are 
specified. 

We decided to aggregate Checkpoints in a construct 
we call Segment. Segments have one start and one 
ending Checkpoint. Those RouteSegments help us to 
accelerate computation during recommendation 
processes where not all Route-related GPS information 
is necessary. TerrainSegment represents one way to use 
Segments: they define changes of a Route’s floor type. 
Therefore, a Route’s creator presses the button ‘surface 
change’ and selects a new surface type from a list (e.g., 
tar, grass, forest). TerrainEnvironment behaves in the 
same way for Route environments (e.g., pedestrian area, 
fields, sea-side). AltitudeSegment is used to define parts 
of a Route that lies between two points of inflection 
where the slope is changing. E.g., if a Route’s slope is 
continuously ascending from the start to the end, the 
system generates one Segment. To avoid operating on 
all data sets when a request for a certain GPS location 
arrives, we developed the BoundingRectangle. This 
entity represents a box that surrounds one Route. 
BoundingRectangle is used during the filtering to find 
objects of interest in the neighborhood of the user. 
Requirement 1 and 2 are covered with this definition of 
a route data model.

4.2. Location-based Filtering

Location-based filtering represents a crucial part of 
the route recommendation, because it reduces the 
amount of data that has to be processed by the ranking 
mechanism, thus significantly improving the overall 
performance. The filtering only keeps routes in the 
result set which are located in the vicinity of the user or 
user-specified location. This vicinity is represented by 
the BoundingRectangle object, which represents a 
rectangular area of interest around a geographic 
location, defined by its four sides. Since the shape of the 
Earth resembles an ellipsoid, the BoundingRectangle 
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does not represent a simple two dimensional geometric 
figure but a curved surface. For this reason, it is defined 
by the corresponding longitudes of its east and west 
sides and the latitudes of its north and south sides, thus 
reducing the magnitude of calculation errors even for 
very large areas. 

Filtering of nearby routes is performed by using the 
routes' corresponding BoundingRectangles. Only routes 
with BoundingRectangles intersecting with or contained 
in the vicinity's rectangle are considered as nearby (see 
Figure 4). Since in our particular case we are not 
interested in the intersection points or whether we have 
an intersection or inclusion, the checks needing to be 
performed can be simplified, thus the overall 
performance of this filtering mechanism can be 
improved.

Figure 4. Location-based filtering

In addition to route filtering, the filtering process 
performs aadditional filtering of POIs. Since the points 
of interest on or near a route represent an important 
parameter used by the ranking mechanism, they have to 
be related to a particular route and then examined by the 
ranking mechanism. This task is highly computation 
demanding and may greatly reduce the overall 
performance of the ranking mechanism, because of the 
large number of available points of interest. For this 
reason, the matching of points of interest to particular 
routes is pushed down to the filtering process. It is 
performed as a second phase of the filtering process and 
uses the result set produced by the preceding filtering of 
nearby routes. In this phase, we iterate over all relevant 
routes and filter out points of interest, which are not 
contained in their BoundingRectangle or in its vicinity. 
This vicinity is represented by the route's 
BoundingRectangle expanded to an area, which 
contains potential relevant points of interest (cf. Figure 

3). Requirement 2 and 3 are covered with the described 
approach.  

4.3. Ranking

The ranking system is following a plugin-based 
approach. This approach allows the implementation of a 
single plugin per ranking feature, programmatically 
separated from the core system. This allows each plugin 
to be evaluated and weighted individually, and the 
ranking function can be easily expanded and adapted 
without touching the core code. Details on this 
configuration adaptation can be found in [29]. For each 
data type in the system, e.g., a route, a point of interest, 
etc., a specific ranking configuration exists. By 
separating the configurations, we can define which 
plugins are to be used for entities of certain data types 
and how the plugin should be weighted. This allows us 
to easily extend and adapt our system (see requirement 
7). For the following descriptions of the ranking 
mechanism and the individual plugins we are using the 
term “object (�)”, which can be any object of a valid 
data type. 

The final score for an object is composed by several 
partial scores (see formula 1 and requirement 4). 
Depending on the ranking operator (add or multiply) of 
the plugin, a partial score is used to determine the 
multiplier (first component) or is added to the second 
component of the formula. Be n the amount of 
MULTIPLY-Plugins, m the amount of ADD-Plugins and 
ri(�) part-score by a single plugin.

�������	 
 � ����	 
 � ����	���
�����

�
���  (1)

Formula 2 shows the calculation of a partial score by 
such a plugin. Pi(�) is the score assigned to the object by 
the plugin's internal algorithm, and pweight(i) the plugin's 
weight as specified in the configuration.

����	 �
 ���������	 
 ����	

���������	 � ��
� ����	 � !"#$%  (2) 

Location Ranking Plugin. The location ranker will 
determine the distance to the start of a route (or the POI 
respectively). Origin can be any GPS coordinate or 
address, including the user's current location provided 
by his / her mobile device (see Formula 3).

�&'(��	 �

)�'*����#+	

,'(-��'�.-���
(3) 

Time Ranking Plugin. We extract relevant time 
information from the query, which can either be a 
concrete time (like “4 pm” or “August 5th“ ) in the query 
terms or the point in time at which the query was 
executed. The object must provide time information for 
accessibility or a start / end date (e.g. one time running 
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events) and this information needs to fall in a certain 
configurable time range to be evaluated in the time 
ranking plugin (see Formula 4). The time and location 
ranking plugins meet requirement 5.

����� �

/0-��1234560-��7/

8���.-���
 (4) 

Boolean Keyword Ranking. The Boolean 
Keyword Ranker will match semantic concepts in the 
ontology representation of the user profile with 
potentially related concepts of the object.

Lucene Full Text Search. This plugin is intended to 
be a backup mechanism if the concept matching fails or 
does not return any results. It will perform a simple full 
text search over the objects description containing all 
available profile information and search query terms. 
The Boolean Keyword Ranker and Lucene full-text 
search address requirement 6.  

Point of Interest Ranking. The first consideration 
is the distance between route and POI (see Figure 5). To 
compute the distance we split the route into segments of 
a fixed length, defined by the amount of checkpoints 
included in the segment. 

Figure 5. POI ranking

This will impair accuracy, but helps to achieve a 
better performance. Due to the vector-based calculation, 
this approach also works in a 3-dimensional space, i.e. 
taking altitude into account. Furthermore, the relevance 
of a given POI to the user's profile needs to be 
considered. Therefore, some ontology matching is also 
needed at this point.

Rating Ranker. This plugin considers the average 
user-rating on the aforementioned Likert scale between 
1 and 5.

Usage Ranker. Usage refers to the amount of times 
an object was used. So the score is calculated by 
dividing the usage indicator of the evaluated object by 
the global maximum usage indicator (cf. Figure 9).

�9:-����	 �

9:-��7

;<= 9:-��
 (5) 

Length Ranker. The Length Ranker ranks routes by 
its length according to the user’s preferences. If a user is 
a long distance runner, e.g. training for a marathon, the 
system computes the most appropriate routes. 

Therefore, the distance between the average length of a 
route in the user’s running history and the routes that 
come in to question for recommendation is calculated.

Duration Ranker. The system allows the users to 
set the duration of their next training session explicitly. 
Therefore, the users’ average duration per unit of length 
is used to calculate the individual’s running time for a 
specific route.

Hilliness Ranker. As mentioned above, routes are 
categorized into three slope categories, namely flat, 
intermediate, or hilly. Routes are sorted into these 
categories according to their denivelation.

Normalization. Finally, we normalize the output 
scores of every single plugin to prevent outliers from 
distorting our results. To do so, we first split the set of 
scores into quartiles. Then we recalculate the score 
relative to the quartile borders, as shown in formula 6.

(6) 

Therefore, each original score is mapped to a new 
score between 0 and 1 and this solves the problem of 
outliers. Figure 6 shows the normalization results for a 
concrete example.

Figure 6. Ranking score normalization

4.4. Implementation

In order to address the limitations of mobile devices 
like limited computational power or slow and expensive 
Internet access, a client/server architecture is realized. 
Figure 7 shows the data flow of route recommendations. 
The mobile side is implemented using jQuery Mobile. 

A user has the possibility to actively search for 
routes via specifying the location and length of the route 
or other terms. A REST interface ensures data exchange 
between client and server. First, the filtering 
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mechanisms reduce the number of suitable routes and 
then the ranking mechanisms assign a ranking score to 
each remaining route to derive an ordered list of suitable 
routes. Filtering and ranking run encapsulated. This led 
us to the decision to use Java Enterprise Edition (JEE) 
which separates the business logic from the data tier and 
the client side. Expensive calculations are moved to the 
server. Every module on the server is implemented as an 
enterprise bean. Due to the fact that this approach 
provides the envisioned modularized structure, it is easy 
to leverage the power of the JEE platform. Furthermore, 
only a fixed number of recommendations are transferred 
to the user interface. Remaining recommendations are 
saved in a cache to reduce computation efforts for the 
client. If the user clicks on “More results” additional 
routes can be loaded quickly from the cache. The same 
approach is applied for route information. Initially, only 
basic information such as name, rating, or distance is 
shown to the user.  

Figure 7. Recommendation process/prototype

Detailed information about a route such as 
denivelation, terrain, POIs, etc., are loaded from the 
cache. This approach decreases the amount of data to 
transfer between server and client. Initial tests have 
shown that response time is decreased significantly. 

Figure 7 shows the overall recommendation process 
and screenshots from the implemented solution. A 
search is triggered from the mobile client application on 
a user’s mobile device. The internal recommendation 
processes the query, converts it into an internal 
representation and performs the filtering and ranking 
operations as described in the preceding subsections. 
The results are returned to the user for selection. The 
selection of the result as well as any other explicit or 
implicit actions of the user on a specific route are 
tracked in the backend and used to improve subsequent 
searches. As a final step all relevant information about 
the chosen route such as a map, terrain description, 
adjacent POIs, etc., are pushed to the user’s mobile 
device.  

5. Conclusion & Outlook  

This paper has presented an integrated concept for a 
location-aware assistance system for scenarios assisting 
outdoor sports activities for both the health (e.g. in 
rehabilitation) and fitness domain. A proposal for an 
architecture of an assistance system has been developed 
and a process for recommendations has been designed 
that covers the core analysis and recommendation 
system, as well as web-based and / or mobile clients for 
gathering data and pushing recommendations to the 
user. 

Based on an analysis of influence factors for 
assistance in outdoor scenarios, requirements have been 
mapped to analytic features that resulted in the design of 
specific ranking functions. Routes are considered as 
objects with certain features, which need to be matched 
to a runner’s profile and context. Initial evaluations have 
shown, that relevancy of route recommendation is well 
received. POIs near or on routes are of particular benefit 
to runners, being tailored to their demands (e.g. rest 
points such as benches or restaurants, nice viewpoints). 
However, routes are not solely considered as objects but 
are described using segments which is similar to 
traditional routing problems with the difference that we 
also describe additional information valuable for 
runners such as terrain type (soil, concrete, etc.) or route 
environment (lit, urban, etc.). As a result, dynamic route 
changes during a run are possible. Such changes can be 
based on distance or other user criteria.  

Overall, the depicted approach represents a major 
step forward compared to current fitness applications: It 
is capable of catering to both fitness and health 
scenarios. Furthermore, it also considers motivations, 
that may not correlate with the training per se, e.g. a 
rehabilitation patient who is interested in specific POIs 
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can be recommended routes which include these. By and 
large, this approach enables a more natural interaction 
of hobby runners and rehabilitation patients and fosters 
their willingness to train on a permanent basis. In terms 
of data acquisition, initial evaluations have shown that 
the recorded GPS data can be very noisy. Naive 
solutions so far considered include filtering out GPS 
data that can be clearly identified as outliers. Other 
segment types have to be captured manually by the user. 
Due to the increasing information about route features 
made available by map providers and increasing 
capabilities of sensors and image recognition, we expect 
the latter to be recordable with a user’s smart phone 
automatically in the near future. Following design-
oriented methodology [30] the created artifact has to be 
evaluated against several criteria in future work: 

• user acceptance: Especially in self-motivated 
rehabilitation training, technology acceptance 
and adoption are crucial factors, to ensure that 
important advice is followed by the patient. 
[31]

• real time responsiveness: Following the work 
of [32], health-critical situations (e.g. 
surpassing a certain threshold in heart rate) 
have to be dealt with in real-time.

• (mobile) network reliability: As the 
communication among devices and people is 
carried out via a mobile or wireless network, 
reliability is crucial to prevent possibly 
hazardous situations for patients (cf. [33]).

• integration of medical personnel: Evaluation 
has to be carried out in clinical studies, in order 
to evaluate the integration of physicians in 
caretakers in the monitoring and treatment 
process (cf. [34]) 

Further direction for future work is personalization 
of the ranking function. In order to achieve this, we will 
apply linear regression on the parameter weights of the 
ranking function. This will emphasize different ranking 
plug-ins in relation to individual user feedback, e.g. 
clicking on the route description, scheduling a run on a 
particular route, positive rating or negative rating of a 
route or no action. Cold-start problems regarding new 
users will be solved by automatic clustering of users. 
This will allow to group users with sparse data with 
others users, thereby allowing the system to use the data 
of other, similar users to guide its recommendation for 
new users. The identification of similar users will also 
be used to inform a runner about other runners with a 
similar fitness level in their vicinity during a run. 
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