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Abstract 
Auctions are important tools for resource 

allocation and price negotiations, while combinatorial 
auctions are perceived to achieve higher efficiency 
when allocating multiple items. In the recent decade, 
many auction designs are proposed and proven to be 
efficient, incentive compatible, and tractable. However 
most of the results hinge on quasi-linear preference 
bidders with ultimate patience, which is not quite 
realistic. In reality human bidders cannot engage in 
hundreds of auction rounds evaluating thousands of 
package combinations simultaneously.  They either 
withdraw early or bid only on a limited subset of 
valuable packages. In this paper, we introduce bid 
ranges, with an additional sealed-bid phase before a 
Combinatorial Clock auction for information 
elicitation. With range information, the auction can 
start at higher prices with fewer rounds, and bidders 
are informed with the most relevant packages. Our 
design reduces the complexity both for the bidders and 
auctioneer, and is verified with computational 
simulations.  
 

1. Introduction  

Auctions are important tools for resource allocation 
and price negotiations. With the help of inter-
connected computers, electronic auctions are capable 
of allocation much faster than multi-lateral 
negotiations. However human participation is still 
critical for the final decisions, as many attributes 
cannot be fully specified electronically and need to be 
traded off carefully. Since human bidders cannot 
iterate through auction rounds as fast as computers do, 
one way to improve the efficiency of auctions is to 
reduce auction rounds. Over the years, auction theory 
has perfected in single-unit negotiations, thus in this 
paper we focus on the more general and realistic multi-
item cases.   

Combinatorial auctions are perceived to achieve 
higher efficiency when allocating multiple items. The 
increase in efficiency comes from the possibility to 
express sub- or super-additive valuations among items, 
which is impossible for traditional single-unit auctions. 
One classic example is a purchase of return tickets: An 
outbound ticket is only useful if the inbound ticket is 
also secured. If a bidder has bidden for both the return 
tickets but only wins a single one, he encounters the 
Exposure Problem, i.e. winning an incomplete package 
at prices above valuations [15]. 

Enabling package bidding solves the exposure 
problem, at the cost of increased complexity. In this 
case the bidders need to evaluate an exponential 
amount of combinations for optimal bidding, while the 
auctioneer needs to solve an NP-hard winner 
determination problem (WDP) for efficient allocation 
[21]. Between the bidders and the auctioneer, an 
exponential amount of information needs to be 
communicated for finding the efficient allocation [25],
and the auction may require excessive rounds before 
converging to the final allocation [37]. 

The bid elicitation problem and the WDP have been 
studied extensively over the years [26, 36]. Most 
designs fall into two categories, the open Ascending 
Auctions which are extensions of the popular English 
auction, and the sealed-bid Vickrey auction [5]. In 
practice, ascending auctions are favored over sealed-
bid auctions for better price discovery and 
transparency, which may enhance allocative efficiency 
and auction revenues [13]. 

The other two issues from package bidding, the 
Communication Complexity and Excessive Rounds,
receive relatively less attention. One remedy is proxy 
bidding [3], which essentially converts the auction into 
a sealed-bid format. In many other studies, the problem 
is simply assumed away with Quasi-Linear Preference 
bidders, who is only interested about packages and bid 
prices, and have no time preference.  

It is a crucial mistake to assume that bidders have
unlimited patience. In practice, excessive auction 
rounds do dampen the allocative efficiency. Shachat et 
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al. [38] points out that bidders exit early as a response 
to “the tediousness of the English auction”, while Isaac 
et al. [17] unveils the rationale behind jump-biddings 
as bidder impatience and strategic manipulation. Once 
bidders deviate from the equilibrium bidding strategies, 
nice theoretical properties, such as full efficiency and 
incentive compatibility, are no longer guaranteed. Thus 
accelerating the auction process is highly relevant for 
actually achieving these theoretical virtues in practice, 
especially with internet auctions such as eBay or uShip,
where the stake is lower than spectrum auctions and 
bidders are more impatient.  

One observation from actual auctions is that real 
competition occurs mostly in the final rounds of the 
auction. The early rounds just drive up the prices 
without changing demand or supply. Skipping these 
early rounds reduces the information communicated 
and the tediousness of the auction.  

In this paper, we introduce bid ranges to address the 
issue, based on the highly successful Combinatorial 
Clock (CC) auction format [32, 14]. Our design adds 
an additional sealed-bid phase before the clock auction, 
in which bidders submit binding ranges indicating their 
interested bid intervals. The auctioneer learns the 
demand and derives the non-zero item prices from the 
lower bounds of the submitted ranges. These prices 
serve as the starting price of the second phase clock 
auction. In the clock phase, bidders are required to bid 
within the range, so to prevent strategic abuse of the 
signaling opportunity with the ranges. The winners are 
exempt from the lower bounds to prevent “winner’s 
curse” and to eliminate the incentive of bid-shading.  

This paper is structured as follows: Section 2 
compares a selection of combinatorial auction designs, 
and section 3 introduces the bid ranges to a CC auction 
setup. We then evaluate the effect of bid ranges 
through computational simulations in section 4, before 
concluding briefly with a research outlook in section 5. 

2. Related Work  

The primary goal of auction design is Allocative 
Efficiency, which is to maximize the welfare of all 
agents [10], or to award items to the bidder with the 
highest valuations. Efficiency is strictly distinguished 
from auction revenues. Another common objective is 
Incentive Compatibility where truth revelation of 
valuations is optimal for the bidders [7]. 

The benchmark for combinatorial auctions is the 
Generalized Vickrey Auction. Vickrey auction is 
theoretically remarkable for being the only direct 
revelation mechanism that is efficient and Strategy 
Proof, with general valuations and quasi-linear 
preference agents [28]. However, Vickrey auction 
suffers serious drawbacks, such as low revenue and 

vulnerable to collusive bidding [5, 35]. The revenue 
drawback is more severe for procurement auctions 
since arbitrarily large payments to the bidders can be 
induced [11].

Combinatorial auctions gain popularity with the 
rise of high-stake auctions like the Federal 
Communications Commission (FCC) Spectrum 
auction. The FCC, however, has been using the non-
package Simultaneous Ascending Auction (SAA) for 
years, due to concerns over complexity and the 
Threshold Problem, where small bidders try to “free 
ride” on each other and fail to outbid a large package 
bid [12]. Recently, the FCC is reported to choose a 
new design called Hierarchical Package Bidding 
(HPB) for the upcoming auctions [16]. In HPB, 
packages are predefined and structured in hierarchies. 
The tree structure of packaging allows HPB to solve 
the allocation problem in linear complexity, which is 
impossible if bidders can freely bid on any 
combinations of packages. 

The relationship between various true
combinatorial auctions (CA) is depicted in Figure 1 
(based on [31]). Some designs transfer the WDP to the 
bidder side, so that the auctioneer does not solve the 
complex allocation problem (AUSM [6], PAUSE 
[20]). In most designs the computation burden of 
allocation is bore by the auctioneer, and they can be 
classified with respect to the pricing schemes. 

Prices are linear if the price of a package equals the 
sum of the item prices within the package; Prices are 
anonymous if every bidder pays the same price for the 
same package. Non-anonymous prices are also called 
discriminatory prices. Although linear and anonymous 
prices simplify the auction design, there are valuations 
such that only non-linear and discriminatory prices can
support the efficient allocation [10]. 

Multi-Item Auctions

Pseudo 
CA (SAA)

Limited 
CA (HPB)

True CA
Unlimited Package

Bidder-Side 
Allocation (PAUSE)

Auctioneer-Side 
Allocation

Linear Prices
(RAD, ALPS) Non-Linear Prices

Anonymous Prices
(iBundle 2)

Discriminatory Prices
(iBundle 3, AAPB,

dVSV, CC)

Figure 1. Classification of 
Combinatorial Auctions
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Examples of linear and anonymous pricing are the 
Resource Allocation Design (RAD) [19] and ALPS 
[8]. The linear ask prices are calculated from the dual 
problem of the efficient allocation problem, and need 
to be approximated when the dual prices are non-
linear. Inefficiency may occur when such linear dual 
prices do not exist. 

With non-linear and non-anonymous prices, several 
ascending auction designs are proven to be efficient: 
The iBundle auction [27, 29], the Ascending Auctions 
with Package Bidding (AAPB) [3, 4], and the dVSV 
auction [39]. These are extensions to the English 
auction where WDP is solved in each round, with 
losing bidders trying to outbid the provisional winners. 
Besides the complexity in solving WDP, solving it in 
each round requires multiple tie-breakers. In iBundle 
and AAPB auctions jump-bidding is still possible, 
while dVSV is essentially a clock auction where prices 
are set by the auctioneer. 

An alternative to the English ascending auctions is 
the Combinatorial Clock auction (CC) [32]. CC 
maintains a price clock for each item, and the prices 
tick up in each auction round if the item is demanded 
by more than one bidder. CC stops when all item 
demands are equal to or below supply. WDP is only 
needed in under-supply situations and the winners are 
determined with all previous bids. Although price 
communication is linear in each round, it should be 
emphasized that CC is a non-linear discriminatory 
price auction, since the final allocation is calculated 
from all previous bids, whose price need not equal to 
the final ask prices.  

Experiments [9, 37] showed that CC achieves high 
efficiency with less auction rounds, and the feature that 
provisional winners are not announced enhances CC’s 
robustness against tacit collusion and strategic gaming 
[18]. With demand masking valuations CC might be 
inefficient, but this can be fixed by enforcing PowerSet
bidding and a Partial Revelation Pricing rule [9], or 
introducing an additional sealed-bid round after the 
clock phase [2, 14].

With the jump-bidding gone in CC, impatient 
bidders are more likely to exit early. Thus, it is more 
beneficial to accelerate CC than the English ascending 
auctions. In this paper, we introduce bid ranges, which 
provide non-zero starting prices for the CC auction. 
Our design starts with an additional sealed-bid phase, 
where bidders indicate a lower bound and an upper 
bound for each bid. The starting prices are derived 
from the submitted bounds, and bidders are required to 
bid between the bounds throughout the clock auction, 
with winners being exempt from the lower bounds. We 
showed that this contributes to reduced auction rounds 
without reducing efficiency. In practice human bidders 
do not bid on all packages with value [37], thus, if the 

auctioneer partially provides the bound information to 
the bidders, the bidders can learn about the demand 
and focus on the most relevant packages. We believe 
that the reduced complexity makes combinatorial 
auctions more accessible for common applications 
such as finding carriers for transportation requests. 

The efficiency of the auction often requires truth 
revelation of the bidder valuations. Adopting Vickrey 
pricing is an instant solution for incentive compatibility 
[30]. However, Vickrey prices at times lie outside the 
core of the efficient outcome, i.e. they are too low to 
separate the winning bidders from the losing ones. The 
solution is either to enforce gross substitutes valuations 
for bidders so that Vickrey prices stay in the core [3, 
39], to provide one-time discount on the final prices so 
that bidders get the core allocation but pays the 
Vickrey prices [1, 24, 30], or to forgo Vickrey pricing 
and identify an optimal price in the core that minimizes 
the distortion of deviating from Vickrey prices [14].
Since these payment rules are well studied and trivial 
to switch in CC, we leave the payment part of the 
auction open, as there is no general best option and the 
choices largely depend on the specific applications.  

3. Bid Ranges and the Combinatorial 
Clock Auction 

Our design builds upon the CC+ auction in [9]. A 
pre-auction sealed-bid round is added for learning the 
bid ranges and setting the starting prices, and then the 
bid ranges are enforced during the auction through
activity rules. In the following subsections, we first 
introduce CC and CC+ auction in 3.1, and then the bid 
ranges in 3.2. 

3.1 The Combinatorial Clock Auction 

The combinatorial clock (CC) auction is a general-
ization of the single-unit Japanese auction [33], while 
CC+ is an improvement over the CC on efficiency and 
incentive compatibility [9]. 

For notation we assume a total of n bidders, each 
bidder i bids bi(S) for the subset S of the m items. In 
CC each item j has a price clock Pj. The auction starts 
with zero prices and all bidders demand all items with 
positive valuations. During the auction, the price Pj
increases by an increment of ε, if more than one bidder 
demands the item j. Bidder i withdraws the bid bi(S) on
package S, when the price-sum for the package is too 
high. The price-sum at which the bid withdraws is 
recorded as the bid price bi(S) = ∑j∈S Pj. When all 
prices stop increasing, i.e. there is no over-demand, the 
auctioneer solves for the provisional winner based on 
the recorded bid prices.   
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If a demanded item j does not belong to the final 
allocation, the auction enters the under-supply stage. 
Under-supply happens when the price Pj is too low to 
be provisional winning. Thus the auctioneer needs to 
increase Pj further until either item j becomes part of 
the allocation or the bidder withdraws the bid. The 
final allocation assigns package Xi to bidder i at price 
Pi(S) solved from WDP. 

Since the winner determination problem is solved 
with all the bids in the end, the efficiency of CC hinges 
on the bidding strategies. One common assumption is 
straight forward bidding, where bidders only bid on 
packages with highest payoff (ui(S) = vi(S) – bi(S)). 
This can be inefficient for CC, when bidder valuations 
are demand-masking [9]. 

An example clarifies the auction process and the 
problem with demand-masking valuations. Supposed 
there are two bidders with two items A, B. The bidder 
valuations are listed in table 1.  

Table 1. An example of the CC Auction  

Bidder A B AB
1 70€ 170€ -
2 10€ - 160€

Suppose PA increases first. Bidder two withdraws 
the bid on A at 10€, and then bidder one withdraws at 
70€. Since there is only one bid AB left covering A, PA
stops increasing at 70€. 

Then PB increases. At 90€, bidder two withdraws 
the bid on AB as the price-sum is 160€. Since there is 
no over-demand, the auctioneer solves for allocation 
and the winner is bidder two with {AB, 160€}. 
However, bidder one demands B without getting it, so 
item B is undersupplied. Thus PB will continue to 
increase beyond 150€. The allocation assigns bidder 
one with {B, 150€} and bidder two with {A, 10€}.

However, if bidder two bids straight-forwardly, he 
will not demand A as a single item at all, because when 
PB is below 150€, bidding A alone yields less payoff 
than bidding AB, i.e. A is “demand-masked” by AB 
[9]. The final allocation assigns AB to bidder two, 
which is inefficient (lower total valuations).

The remedy is to require bidders to demand all 
valuable packages (PowerSet bidding strategy [9]), or 
to provide an additional round, in which bidder two 
learns the market demand and bid on A instead [2, 14].  

To promote incentive compatibility, [9] further 
applies a Full Revelation price update rule and Vickrey 
pricing, under which truthful bidding with the Power-
Set strategy is an ex-post equilibrium.   

3.2 Bid Ranges and the Activity Rules 

The efficiency of CC with PowerSet bidding and 
CC+ has been theoretically proven in [9], in which the 
starting prices need not be zero. The goal is thus to 
increase the starting prices as much as possible, so as 
to skip the early auction rounds.  

Our design features a pre-auction sealed-bid round 
for bidders to submit the bid ranges, two methods for 
setting the starting prices, and the activity rule that 
enforces consistency during the auction.  

At the beginning of the auction bidders are required 
to submit ranges [Li(S), Ui(S)] on every potential bid 
bi(S). The ranges have a predefined length and are 
binding during future rounds: bidders can only bid 
within the ranges, they cannot overbid the ranges, or
bid on new packages that are not covered by any range. 
Therefore by backward induction, bidders have the 
incentive to partially reveal their true valuations.  

Common critiques on identifying all valuations are 
the associated complexity in bid valuation. However, 
as [25] shows, for L items, “a price must be revealed 
for each of the 2L-1 bundles” for efficient allocation,
such complexity cannot be avoided if full efficiency is 
desired for auction design.

From the submitted ranges the auctioneer calculates 
the starting prices of the auction. Intuitively, prices can 
be set to the infimum of all lower bounds, which is to 
find price that best matches the lower bounds. The goal 
is to minimize the distortions δi(S) on package S, if the 
price-sum must be lower than the lower bound Li(S):
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A simpler alternative is to raise the price from zero 
uniformly, until certain lower bound is broken: 
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The two methods for setting the starting prices are 
evaluated in section 4. Once prices are set, the normal 
clock auction can start at these higher prices. Our clock 
auction adopts a normal price update rule (or Partial 
Revelation in [9]), with a modification in bidding. In 
CC+ [9] prices increase for all over-demanded items in 
a round, which may be inefficient, since for a package 
of k items the effective price increase would be k-times 
the price increment. Hence, we only increase the price 
for one over-demanded item in each round.  
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Facing the changing prices, the only action a bidder 
can take is to withdraw the bid at certain prices within 
the pre-specified range. The price-sum at which the bid 
is withdrawn becomes the effective bid price.  

To prevent strategic gaming, activity rules are 
enforced during the auction to ensure bid consistency:  

1. Bid bi(S) cannot be withdrawn at price-sums 
below the lower bound Li(S), except in cases 
that bi(S) is the provisional winning bid.

2. Bid bi(S) is automatically withdrawn when the 
price-sum exceeds the upper bound Ui(S).  

3. Withdrawn bids cannot re-enter the auction in 
future auction rounds.  

The rule on the lower bound practically enforces 
the PowerSet bidding rule since every desired package 
must be covered by certain range, which effectively 
places a binding bid higher than the lower bound. 
Winning bids are exempt to avoid “winners’ curse” 
and the incentive of bid-shading.  

The strict upper bounds discourage bid-shading as 
well, since bid-shading strictly reduces the probability 
of winning. The bounds also guarantee auction 
termination. When all the bids are withdrawn (either by 
the bidders or by the upper bounds), the Winner 
Determination Problem (WDP) is solved for the final 
allocation. In undersupplied situations the auction 
continues with more rounds.   

The pseudo-code of the auction is as follows. The 
main process is based on the CC+ [9], with the addition 
of bid ranges, and the modified Partial Revelation
price update rule.  

Input: Package bids bi(S), Range [Li(S), Ui(S)]
Result: Allocation X and prices Pi(S)
Initialization:

for j = 1 to m do
Calculate the Starting Prices Pj from Li(S)

for i = 1 to n do Xi ← ø
Repeat

over-demand ← FALSE
under-supply ← FALSE

for j = 1 to m do
for i = 1 to n do

if Pi(S) satisfies the bid range
then

Bidder i update bids bi(S)
else

Enforce the Bid Ranges
end

if ≥ 2 bidders i i' demand item j
then  

Pj ← Pj +ε

over-demand ← TRUE
end
if item j is not part of any bid bi(S)
then

under-supply ← TRUE
end

if over-demand = TRUE 
then go to the next auction round
else if under-supply = TRUE
then

for j = 1 to m do
Assign X based on all previous bids
Calculate Pi(S) for X
if there are demanded items not in X
then

foreach demanded item j not in X do
Pj ← Pj +ε

Enforce the Bid Ranges
else

X is the final allocation, 
auction ends

end

else exit repeat, auction ends.
until stop 

 
Using the example in table 1, assume a range of 

50€ and both bidders place their true valuation in the 
middle of the range, the lower bounds are {A, 45€}, 
{B, 145€} for bidder one, and {A, 0€}, {AB, 135€} for 
bidder two. The infima are PA = 0€, PB = 135€. At PA =
10€ bidder two withdraws bid A. Then at PA = 25€ 
bidder two withdraws bid AB (PA + PB =160€). Since 
bidder one still demands A or B without getting any,
PB starts to increase from 135€. At PB = 150€ the 
provisional winning bid AB is replaced by {A, 10€}
from bidder two and {B, 150€} from bidder one. Now 
there is neither over-demand nor under-supply, the 
auction stops with the same result as in the previous 
example. Starting the auction with uniform prices is the 
same as zero starting prices for this example. 

Having a range rather than a specific value in the 
sealed-bid phase protects bidders’ privacy, and leaves 
them flexibility in bidding. They can bid aggressively 
by setting the true valuations as the lower bounds, or 
bid conservatively with the true valuations as the upper 
bounds. Bidders with fuzzy valuations can benefit from 
such flexibility through price discovery in later rounds,
a feature that sealed-bid or proxy auctions lack. The 
strict upper bound also protects over-ambitious bidder 
from bidding above their true valuations, which can be 
highly useful for risk management. Moreover, if a bid 
on a package is strictly dominated by another bid on 
the same package (i.e. the upper bound is lower than 
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the lower bound of the other bid), then the bidder 
would be notified beforehand. This helps the bidders to 
focus on the most relevant packages and forgo those 
packages of low values. The sealed-bid phase is one-
shot only. It is impossible to enter new ranges later, so 
as to prevent strategic abuse of this opportunity.  

4. Computational Simulations 

The goal of the simulations is to find out: 
1. The impact of different price increments and bid 

ranges on auction rounds and efficiency. 
2. How increased starting prices affect auction 

efficiency, revenue, and auction rounds.  
The CC auction with bid ranges is programmed in 

C# and tested with the Combinatorial Auction Test 
Suite (CATS) [22].

CATS contains distributions stemmed from real 
world applications and previous auction studies (L).
The valuation distributions are mostly normal (-NPV)
or uniform (-UPV), and the uniform distributions are 
generated with fixed bounds (Fixed Random) or 
bounds that scale to the number of items (Linearly 
Random). The valuations for Matching, Paths and 
Regions are determined by problem specific common 
values plus random deviations. The detailed setups are 
as follows [23]:

 Arbitrary: arbitrary distribution for both bids and 

valuations. 

 Matching: bids with complementarities in time slot 

matching, e.g. airport take-off and landing rights. 

 Paths: bids as paths in space, e.g. rail, bandwidth, 

and spectrum auctions.  

 Regions: bids with complementarity in two-

dimensional adjacency, e.g. real-estate auctions.  

 Scheduling: The job shop scheduling problem. The 

bids are multiple jobs with different deadlines 
competing for one resource, and the valuations are 
determined by the latency and deadline of the job. 


 L1: Uniform bids, Fixed Random valuations. 

 L2: Uniform bids, Linearly Random valuations. 

 L3: Constant bids, Fixed Random valuations. 

 L4: Decay distribution for bids (α = 0.55),  

Linearly Random valuations. 

 L5: Normal bids and valuations.  


 L6: Exponential distribution for bids (q = 5),
Linearly Random valuations. 


 L7: Binomial distribution for bids (p = 0.2),  
Linearly Random valuations. 


 L8: Constant bids, quadratic valuation distribution.  

 Default-hard: Mixed distributions to maximize the 

predicted runtime of WDP.   
We test our auction design with all distributions 

except for Default-hard and L8, since Default-hard are 
designed for algorithm performance testing, while the 
L8 instances have constant valuations. For each 
distribution, 10 random instances are generated with 10 
items and 100 bids. 

To find out the effect of price increments and bid 
ranges, we test each instance with two increments and 
two ranges. The small increment is determined by 
1/100 of the difference between the highest valuation 
and the lowest valuation, while the large increment is 
1/5 of that difference, i.e. with the large increment, the 
price increase on any item is at most 5 times. For the 
bid ranges, the small one has an interval of 10% of the 
highest valuation, while the large one is 50% of the 
highest valuation, i.e. | Ui(S) – Li(S) | = r ∙ max {vi(S)}, 
∀i, S, rsmall = 0.1, rlarge = 0.5.  

In reality these parameters would be determined 
from experience and clear digits must be used to 
prevent code bidding [14]. In addition, we compare 
two methods for calculating the starting prices: 
infimum of the lower bounds (I) versus uniform prices 
(U). These yield 10 setups for each distribution.  

All instances are benchmarked to the CC auction. 
We evaluate our design by Efficiency and Auction 
Rounds. Efficiency is calculated by the valuation sum 
of the winning packages compared to that of the 
valuation-maximizing package. For higher accuracy, 
we do not round-off values within one unit of the price 
increment. The average results are reported in table 2.
In the test, all bidders withdraw their bids when the 
price-sum of the package exceeds the true valuations, 
and they all follow a conservative strategy by setting 
the lowest possible range, i.e. the truth valuation as the 
upper bound. We have also tested the situations where 
ranges are set randomly, the results are similar, so they 
are not reported. For clarity, we report relative changes 
for auction rounds.  

Table 2. Simulation on CATS instances with true valuation as upper bound 

Large price increment: 1/5 Valuation Difference. (efficiency / auction rounds)

Distribution
Efficiency Large Range 50% Small Range 10% Rounds Large Range 50% Small Range 10%

CC Infimum Uniform Infimum Uniform CC Infimum Uniform Infimum Uniform
Arbitrary 96.0% 92.6% 96.0% 92.2% 96.0% 29.3 -10% 0% -18% 0%

Arbitrary-NPV 97.7% 96.4% 97.7% 95.1% 97.7% 25.5 -9% 0% -16% 0%
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Arbitrary-UPV 96.7% 96.1% 96.7% 93.9% 96.7% 27.6 -9% 0% -19% 0%
Matching [1] 99.6% 98.6% 99.6% 99.0% 99.6% 41.8 -9% 0% -15% 0%

Paths 99.8% 99.1% 99.8% 99.6% 99.8% 51.9 -16% 0% -15% 0%
Regions 94.9% 91.8% 94.9% 94.2% 94.9% 30.4 -13% 0% -18% 0%

Regions-NPV 93.4% 94.1% 93.4% 94.2% 93.4% 27.9 -10% 0% -18% 0%
Regions-UPV 96.1% 95.9% 96.1% 93.8% 96.1% 28.9 -13% 0% -23% 0%

Scheduling 99.2% 99.7% 99.2% 99.5% 99.2% 31.9 -3% 0% -6% 0%
L1 [2] 100.0% 100.0% 100.0% 100.0% 100.0% 212 -25% -40% -46% -73%

L2 98.8% 98.6% 98.8% 99.5% 98.8% 29.2 -3% 0% -8% 0%
L3 99.9% 96.2% 99.9% 95.7% 99.9% 43.6 -3% 0% -4% 0%
L4 97.3% 97.9% 97.3% 96.3% 97.3% 35.0 -10% 0% -19% 0%

L5 [2] 100.0% 100.0% 100.0% 99.4% 100.0% 54.3 -19% -19% -35% -38%
L6 97.1% 95.7% 97.1% 97.8% 97.1% 30.5 -8% 0% -17% 0%
L7 98.0% 97.7% 98.0% 96.6% 98.0% 42.2 -12% 0% -23% 0%

Small price increment: 1/100 Valuation Difference. (efficiency / auction rounds)

Distribution Efficiency Large Range 50% Small Range 10% Rounds Large Range 50% Small Range 10%
CC Infimum Uniform Infimum Uniform CC Infimum Uniform Infimum Uniform

Arbitrary 100.0% 100.0% 100.0% 100.0% 100.0% 377.7 -18% -11% -35% -24%
Arbitrary-NPV 99.9% 99.9% 99.9% 99.9% 99.9% 321.5 -15% -11% -30% -23%
Arbitrary-UPV 99.9% 99.8% 99.9% 99.8% 99.9% 356.1 -21% -12% -35% -24%

Matching [1] 100.0% 100.0% 100.0% 100.0% 100.0% 640.5 -12% -13% -20% -24%
Paths 100.0% 100.0% 100.0% 100.0% 100.0% 783.9 -21% -8% -23% -14%

Regions 100.0% 100.0% 100.0% 99.9% 100.0% 379.5 -15% -6% -33% -15%
Regions-NPV 100.0% 100.0% 100.0% 100.0% 100.0% 347.7 -16% -9% -30% -19%
Regions-UPV 99.9% 99.9% 99.9% 99.9% 99.9% 358.0 -18% -11% -34% -24%

Scheduling 99.9% 100.0% 99.9% 100.0% 99.9% 355.3 -6% -5% -11% -10%
L1 [2] 100.0% 100.0% 100.0% 100.0% 100.0% 4106.7 -34% -43% -57% -76%

L2 100.0% 100.0% 100.0% 100.0% 100.0% 331.3 -10% -3% -22% -10%
L3 100.0% 100.0% 100.0% 100.0% 100.0% 659.1 -1% 0% -3% -1%
L4 99.8% 99.9% 99.8% 99.8% 99.8% 437.4 -16% -21% -34% -41%

L5 [2] 100.0% 100.0% 100.0% 100.0% 100.0% 952.6 -21% -29% -36% -49%
L6 100.0% 100.0% 100.0% 99.9% 100.0% 348.2 -16% -15% -32% -32%
L7 99.9% 100.0% 100.0% 99.9% 100.0% 569.6 -19% -24% -35% -45%

[1] Matching has 12 items due to distribution requirement. 
[2] L1, L5 has 5 items and 20 bids due to the complexity in generating test cases.

 

The simulation result shows that the CC auction 
achieves high efficiencies across all distributions, even 
with very large price increments. Smaller increments 
improve auction efficiency at the cost of more auction 
rounds.  

Introducing bid ranges and setting non-zero starting 
prices do not affect auction efficiency in all settings. In 
the worst case, the efficiency loss is less than one price 
increment (20% for large increment and 1% for small 
increment), which in some studies is regarded as full 
efficiency [27]. 

Even with conservative bid ranges, the reduction in 
auction rounds is significant, except for distribution L2
and L3. The effect is most noticeable using small bid 
ranges and infimum starting prices. Intuitively smaller 
bid ranges lead to higher starting prices. Surprisingly, 

even a range as large as 50% of the highest valuation 
can still reduce auction rounds effectively.  

There are also two caveats from the simulation: 
Firstly large price increment combined with uniform 
starting price has almost no effect. This is because the 
lower bounds of the low bids are so close to zero that 
the uniform price is actually zero. Secondly although 
infimum price is more effective, it also requires more 
time to solve the more complex linear program. 

To find out the revenue implications from the bid 
ranges and non-zero starting prices, we test the CATS 
instances with increasing starting prices that block 
certain low bids before the auction. For each instance, 
we first obtain the uniform starting price, then raise the 
price by a fixed portion of the price increment. The 
increase is 30%, 60%, 90% of the large increment, and 
200%, 400% and 600% of the small increment. The 
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increase is not proportion to the uniform starting prices 
because they are zero in many cases. Since no specific 
payment rule is chosen, we calculate auction revenue 
from the sum of the winning bid prices.

Each instance is tested with two increments, with a
fixed bid range of 50%. We did not test the small bid 
range or the infimum method, since small ranges give 
very limited room for raising the starting prices, while 

the infimum price is highly instance-dependent. All 
instances are benchmarked to the CC auction, and for 
auction rounds and revenue we report the relative 
changes.  

From the listed results in table 3 we see that 
increasing the starting prices modestly has little impact 
on efficiency, strong effect on reducing auction rounds, 
and mixed effect on auction revenue.  

Table 3. Simulation on CATS instances with increased starting prices 

Large price increment: 1/5 Valuation Difference. (efficiency / auction rounds)
Increased 

Distribution       Price
Efficiency Auction Rounds Revenue

30% 60% 90% 30% 60% 90% 30% 60% 90%
Arbitrary 90% 97% 100% -34% -68% -94% +1% 0% -89%

Arbitrary-NPV 97% 87% 100% -35% -74% -94% 0% -20% -95%
Arbitrary-UPV 96% 93% 99% -32% -70% -95% -1% -5% -95%
Matching [1] 99% 99% 99% -9% -19% -29% +1% -1% +1%

Paths 99% 98% 99% -10% -19% -29% -1% +2% -2%
Regions 93% 94% 99% -36% -73% -94% -2% -15% -95%

Regions-NPV 92% 94% 98% -35% -73% -92% 0% -26% -92%
Regions-UPV 95% 93% 96% -33% -63% -93% +2% -4% -89%
Scheduling 99% 100% 100% -50% -96% -97% -1% -91% -100%

L1 [2] 100% 100% 98% -13% -25% -38% -5% -5% -8%
L2 100% 100% 100% -35% -97% -97% 0% -100% -100%
L3 100% 100% 100% -16% -29% -44% +2% +1% +1%
L4 98% 99% 100% -25% -52% -85% +3% -9% -68%

L5 [2] 100% 100% 100% -7% -14% -20% 0% -3% 0%
L6 98% 100% 100% -30% -90% -97% 0% -67% -100%
L7 97% 97% 100% -19% -38% -54% +3% +4% +6%

Small price increment: 1/100 Valuation Difference. (efficiency / auction rounds)
Increased 

Distribution       Price
Efficiency Auction Rounds Revenue

200% 400% 600% 200% 400% 600% 200% 400% 600%
Arbitrary 100% 100% 99% -26% -51% -69% 0% 0% -13%

Arbitrary-NPV 100% 100% 98% -26% -50% -69% 0% 0% -4%
Arbitrary-UPV 100% 99% 94% -27% -50% -69% 0% -1% -11%
Matching [1] 100% 100% 100% -27% -53% -76% 0% -2% -11%

Paths 100% 100% 98% -15% -30% -45% 0% 0% -4%
Regions 100% 100% 98% -21% -41% -60% 0% +1% 0%

Regions-NPV 100% 100% 99% -25% -49% -71% +1% +1% -3%
Regions-UPV 100% 100% 100% -22% -43% -62% 0% +1% -2%
Scheduling 100% 100% 100% -24% -47% -67% 0% 0% 0%

L1 [2] 100% 98% 98% -85% -98% -98% -16% -19% -48%
L2 100% 100% 100% -21% -42% -62% 0% 0% 0%
L3 100% 100% 100% -7% -14% -20% 0% 0% 0%
L4 100% 100% 100% -41% -80% -95% 0% 0% -65%

L5 [2] 100% 97% 100% -54% -93% -97% -8% -28% -44%
L6 100% 100% 100% -32% -60% -82% 0% 0% -48%
L7 100% 100% 100% -47% -88% -100% 0% -12% -91%

[1] Matching has 12 items due to distribution requirement. 
[2] L1, L5 has 5 items and 20 bids due to the complexity in generating test cases.
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Compared to the results in table 2, increasing the 
starting prices slightly can effectively reduce auction 
rounds even with uniform price and large increments. 
Continuing to increase the starting price would 
further reduce auction rounds. Although efficiency is 
not greatly affected by the high starting prices, 
auction revenue drops quickly due to reduced 
competition. Thus, unlike in the single-unit auctions 
where optimally setting the reserve price can increase 
auction revenue [34], using starting prices to increase 
revenue is a more challenging issue for combinatorial 
auctions, because the excluded low bids might be part 
of the winning package (as in our example).  

For managerial implications, if the allocation 
requires lots of human interactions, then CC with 
large price increment is sufficiently good. Targeting 
full efficiency requires sufficiently small price 
increments and a high number of auction rounds. The 
auction rounds can be effectively reduced by setting 
the starting prices as the infimum of the lower 
bounds, or slightly higher than the highest uniform 
price below the lower bounds. Using smaller bid 
ranges has only a modest impact. 

5. Conclusion and Research Outlook  

In this paper we present a novel idea of
introducing bid ranges for accelerating combinatorial 
auctions. We apply the bid ranges on one of the most 
successful design, the Combinatorial Clock (CC) 
auction, and show that bid ranges will not dampen 
the allocative efficiency of CC. Even with very large 
bid ranges and large price increments, the combined 
approach is able to maintain high efficiency with 
significantly reduced auction rounds in simulations 
with CATS [22] instances. We believe that the 
reduction in auction rounds contributes to the 
reduction in communication and decision complexity 
in combinatorial auctions, making it more accessible 
as a mean of multi-dimensional internet negotiation. 
Stronger starting prices derived from bid ranges also 
reveal incompetent bids, making it easier to solve 
WDP and allowing bidders to focus on the most 
relevant packages. 

We are currently expanding the simulation to 
more setups to quantify the impact of price increment 
setting, bid range setting, different starting prices and 
more complex bidding strategies. Further sensitivity 
analyses are also planned to optimally set the bid 
ranges and starting prices, so that auction rounds can 
be reduced as much as possible without dampening 
efficiency or auction revenue.  
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