
PAID VS. VOLUNTEER WORK IN OPEN SOURCE

Dirk Riehle
Computer Science Department

Friedrich-Alexander University Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

dirk@riehle.org

Philipp Riemer
Computer Science Department

Friedrich-Alexander University Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

contact@philippriemer.de

Carsten Kolassa
Software Engineering

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

carsten@kolassa.de

Michael Schmidt
Mathematics Department

Friedrich-Alexander University Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

michael.schmidt.nbg@gmail.com

ABSTRACT

Many open source projects have long become commercial.
This paper shows just how much of open source software de-
velopment is paid work and how much has remained volun-
teer work. Using a conservative approach, we find that about
50% of all open source software development has been paid
work for many years now and that many small projects are
fully paid for by companies. However, we also find that any
non-trivial project balances the amount of paid developer
with volunteer work, and we suggest that the ratio of volun-
teer to paid work can serve as an indicator for the health of
open source projects and aid the management of the respec-
tive communities.

Index Terms—Open source software, empirical software
engineering, volunteer open source, paid open source.

1. INTRODUCTION

Open source software development has long be-
come an important commercial activity. Corbet et al.'s
analyses of recent Linux kernel releases show that a
large part of this work is being carried out by develop-
ers using their companies' email addresses when sub-
mitting code [6], implying that they are paid for the
work by their employers.

However, while commercial contributions to the
Linux kernel have been widely acknowledged, little is
known about the overall commercial contribution to
open source projects in the form of paid rather than
volunteer development work.

In this paper we show that open source has both
strong and broad commercial support by companies

paying developers to perform open source software de-
velopment. Also, we suggest that understanding the re-
lationship between paid and volunteer work in open
source projects will aid project leaders in steering their
community.

This work makes the following contributions:

• It shows empirically that open source has
strong commercial support across a broad
range of projects,

• it shows the possible range of healthy paid-to-
volunteer work ratios to help project steering,

• it presents measurements of
◦ how much open source work is being per-

formed during working time,
◦ how open source working time work has

changed over the years,
◦ the percentage of open source program-

mers that are paid programmers, and,
◦ the distribution of volunteer vs. paid

work across open source projects,
• using the Linux kernel specifically and a large

sample of active open source projects (>5.000
projects).

The paper is organized as follows: In Section 2, we
describe our research approach and define key terms.
In Section 3 we present the main empirical results. In
Section 4 we discuss our findings as well as their limi-
tations. In Section 5 we review related work in and
Section 6 we present final conclusions.

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.407

3286

2. RESEARCH APPROACH

2.1 Definitions

We use the following definitions:

• An author of some piece of code is the creator
of the code, i.e., the original developer.

• A commit is the process of putting some piece
of code into a code repository.

• Code repository is used as a synonym for
configuration management system.

• A committer is a software developer who has
the necessary rights to commit to a code
repository.

• Maintainer is a synonym for a committer (as
used in Linux kernel development).

• A patch is a code contribution submitted to a
committer for inclusion in the project.

A code contribution by an author indicates when
the code was written and a commit by a committer in-
dicates when the committer integrated the code into the
code base. Author and committer are roles. Typically,
in a two-step process, an author submits a patch and a
committer integrates the patch into the main code base.
An author, who is also a committer, can do both of
these steps as one. The common case is that an author
is not a committer, hence we separate both roles in our
analysis of the Linux kernel.

Moreover, we define the following time-related
terms using common governmental regulations in
Western countries:

• Working time is the time from 9am to 5pm lo-
cal time, Mondays to Fridays.

• Spare time is all the time that is not working
time.

Consequently, working time and spare time depend
on the time zone of the developer.

2.2 Data Sources

We use two data sources: The Linux kernel and the
Ohloh projects. Our analysis of the Linux kernel devel-
opment work is based on its public configuration man-
agement data found at Kernel.org [5]. Since 2005, it
has been managed using Git, which in contrast to older
configuration management systems lets us distinguish
the authors of some code, i.e., the original developer,
from the committer of the code, who integrated it into
the kernel code base. For this work, we downloaded
the whole configuration management history from
2005 to 2011.

Our analysis of open source projects is based on a
2008 snapshot of the Ohloh open source project data-

base [20]. Using Daffara's definition of "active
projects" [7], we find that our database snapshot con-
tains 5,117 active open source projects. Daffara esti-
mates that there were about 18,000 active open source
projects in the world by August 2007, so our sample
represents about 30% of the total active project popula-
tion at that time. While not wholly representative for
open source at its time, it is close nevertheless.

2.3 Data Quality

Since 2005, the Linux kernel configuration man-
agement data (using Git) has been providing more pre-
cise information than traditional systems (CVS, svn).
We can distinguish between authors and committers,
and we can assess the exact time of a commit, whether
a code contribution or code integration.

The 2008 Ohloh database snapshot is not quite as
detailed. Collecting 8,705,118 commits from more than
9,192 projects, it does not directly provide all relevant
data. Due to the diversity of configuration management
systems used in open source, Ohloh cannot distinguish
between an author and a committer; thus, we only have
committer data at hand.

Another consequence of the variety of configura-
tion management systems is that Ohloh stores all com-
mit timestamps using UTC, ignoring the original time
zone of a developer. However, for this work, we need
the local time of a commit and hence the time zone.

We address this problem by using location data that
Ohloh provides to determine the timezone of individual
developers. By hand, we identified 580 committers
(out of 45,870 distinct committer ids), constituting
1.3% of the committer population. Those identified
committers performed 646,705 of the 8 million com-
mits, totaling about 8% of the work being performed.

We call the set of identified committers the known
committer set or the known committers, in short.

While we can argue that the original Ohloh data set
is close to being representative of open source, the re-
duced number of known committers may not be. For
one, we identified mostly committers of above average
activity (1.3% of the population performing 8% of the
work), so there is some bias. Thus, we need to under-
stand whether this bias is relevant for the analysis pre-
sented in this paper.

For this, we ranked committers by number of com-
mits and then binned the resulting committer sequence
into 26 different bins. The 26 bins of known commit-
ters all have close-to-equal total numbers of commits
and were suggested by R, the statistical analysis tool
and environment we are using. Thus, the amount of
work in each bin is about the same, but was performed
by very different numbers of people.

3287

Assuming paid work to be work performed Mon-
Fri from 9am-5pm (see below for definition and dis-
cussion), we can calculate the percentage of total work
performed that is paid work. Figure 1 shows this paid-
work-percentage (of total work) by committer bin.

With a null hypothesis that no trend (bias) is appar-
ent (and alternative hypotheses that there is a bias), us-
ing a t-test and assuming a normal distribution, we can-
not reject the null hypothesis at the 95% confidence
level. We therefore have no reason to assume that re-
ducing the overall committer set to the known commit-
ter set introduces a bias that impacts our analysis (but
can also not exclude it).

In addition to the known committers set, we define
an extended committers set or extended committers, in
short. The extended committers set comprises all com-
mitters in the original Ohloh database, where the com-
mitter timezone is either known or assumed. The as-
sumed timezone is determined using the following
heuristic: We first condense all commits of a commit-
ter in the database into a single week. For all commit-
ters where we do not know the time zone, we match
their week on an hourly basis with the weeks of the
known committers set. Using a least-squares approach,
we identify the time zone that has a minimum differ-
ence to the established data. This provides us with the
most probable time zone for the not-known committers
so that we can determine the local time for each com-
mit (ignoring work while traveling).

The known committers set provides a sharp picture
of time-zone-based weekly work activities, including
paid and volunteer work, while the extended commit-
ters set provides a richer (more data), but more fuzzy
picture of the weekly work activities of committers.

In the following, we present both the known and
extended committer data side-by-side.

2.4 Data Interpretation

We would like to understand how much work in
open source is paid work and how it is distributed
across a wide range of open source projects.

As introduced above, we assume that work per-
formed during regular working hours (weekdays, 9am-
5pm) is work paid for by companies or paid for
through self-sponsorship of the developer.

One possible objection to this is that not all cultures
have working weeks of Mon-Fri, 9am-5pm. For exam-
ple, some cultures work on Saturdays.

Figure 2 shows the distribution of commits over the
different timezones of this planet.

All countries, mostly Islamic countries, that work
on Saturdays, show very little open source activity (an
interesting fact in itself). Thus, we feel safe to proceed
with our definition of weekend and weekdays.

Also, one may argue that many people have work-
ing hours outside of 9am-5pm and that we are too con-
servative in our estimate then. For one, we'd rather es-
timate paid work conservatively, but we also shifted
working hour definitions around, to 8am-4pm, 10am-
6pm, 8am-8pm, etc. with no significant change in the
results. Thus, we decided to stick to the most common
workday definition.

3. PAID WORK IN OPEN SOURCE

3.1 Total Work during Working Time

First, we investigate how much time is being spent
on open source during regular working hours.

Figures 3-6 show the workweek on an hourly base
for the years 2005-2011 for the Linux kernel and for
the years 2000-2007 for the Ohloh data.

Figure 1. Paid-work-percentage of total work for 26
equal-commit-numbers committer bins (higher bin
number means more committers in bin)

Figure 2. Distribution of percentage of total com-
mits over time zones (light gray = known commit-
ters, dark gray = extended committers)

3288

From perusing Figures 3-6, we can gain a number
of insights already. The most obvious insights are that

• there is a clear difference between work days
and weekend days: about twice as much work
is being done on a work day as is on a week-
end day; and that

• most work is being performed during regular
waking and working hours, i.e., from 9am to
5pm, even on the weekends and that

• developers take lunch and dinner breaks with
work picking up again for a few hours after
dinner before quieting down for the night.

With a working time definition of Mon-Fri, 9am-
5pm, Table 1 shows the percentages of all code contri-
butions respectively all commits made during working
time for the Linux kernel and the Ohloh projects:

About 50% of all work contributed to open
source software projects has been provided Mon-
day to Friday, between 9am and 5pm.

3.2 Trends in Work during Working Time

Next, we look at how the working time work spent
on open source has changed over the years.

Figures 7-10 show how the percentage of commits
made during working time changed over the years. In
Figures 7-10, each data point is the percentage of
working time work for the given week. The moving
average is a LOESS curve, and the grayed-out space
around it indicates the 95% confidence interval for a
data point. The widening of that space at the bound-
aries of the graph is an artifact of not using additional
data beyond those boundaries.

Figure 3. Number of commits by authors (when
code is developed) per hour counted over all
weeks 2005-2011 for the Linux Kernel

Figure 4. Number of commits by committers
(when code is integrated) per hour counted over
all weeks 2005-2011 for the Linux Kernel

Figure 5. Number of commits by known commit-
ters per hour counted over all weeks 2000-2007 for
the Ohloh projects

Figure 6. Number of commits by extended com-
mitters per hour counted over all weeks 2000-2007
for the Ohloh projects

3289

The Linux kernel data in Figures 7-8 shows signifi-
cant fluctuations, which reflect the rapid release cycle
of the project. A release is performed about every 80
days [5]. The process is highly regulated with defined
time periods of increasing or decreasing activity. The
activity is highest during the two week merge window,
after which stabilization kicks in and activity decreases
rapidly. Thus, there is no apparent annual schedule.

The Ohloh data, a more diverse data set, also shows
some fluctuations, but much less so. The main annual
dips from 2002 on onwards occur during Christmas
week, where it seems naturally to have a drop in work-
ing time work relative to spare time work (cf. Section 2
for the dominance in open source activity by Western
cultures).

Looking at the Linux kernel data in Fig. 7-8 again,
we can see a clear upward trend for both authors and
committers. Thus, from around 2007 through to 2010
increasing amounts of working time work in relation to
spare time work was being spent on the Linux kernel.
Starting 2010, this growth largely plateaued.

In contrast to the Linux kernel data, the Ohloh data
set shows a straight line. Using a likelihood ratio test
(F-Test), with a straight line as the null hypothesis, we
have to reject any other hypothesis (at a confidence
level of 98%), and conclude that no growth occurred.
The percentage of working time work spent on the
Ohloh projects has remained flat.

However, during these time frames, the total under-
lying data sets have grown substantially. The Linux
kernel is growing at a polynomial rate [13] [23] while
the combined Ohloh project data, and presumably all
of open source, is growing at a near-exponential rate
[8]. Thus, for the Ohloh project data, the year 2000
data is much more sparse than the year 2007 data. Still,
as we just showed, no working time growth occurred in
our open source project data, and the working time per-
centage of total work performed stayed flat.

With growing market share [25] the economic sig-
nificance of the Linux kernel has only been increasing,
so it is not surprising to see growth in working time
work being spent on it. What is surprising is that open
source in total (using the Ohloh data as a proxy), which
has been growing near-exponentially, has maintained a
constant ratio of working time to spare time work.
Thus, for every project with increasing economic sig-
nificance that received more paid development work,
new projects have been started with less working time
engagement, but possibly growing into it. It is too early
to speculate about a stable state of open source in terms
of a stable ratio of paid working time work to volunteer
spare time work contributions, but open source appears
to have reached at least an intermediate stable state.
Thus, even with underlying near-exponential growth,
we expect this ratio to remain stable for now.

3.3 Developer Classification

While overall weekly working times and working
time trends are interesting, we also would like to know
how many developers are earning their living by per-
forming open source software development. Thus, we
now look at individual developers and how much of
their code is written during working time, i.e., to what
extent they are being paid for their work.

Fig. 11-12 show the distribution of developers over
the percentage of work that is paid work (working time
work) for the Linux kernel and Ohloh projects, respec-
tively. It has been counted over all years. Please note
that the y-axis is log-scale and that we are talking
about contributors now, not just contributions. Only the
extended committer data is shown, because the known
set was too small to provide meaningful data for this
particular discussion.

Both the Linux kernel and Ohloh projects are domi-
nated by the extremes: Developers doing all their work
during spare time and developers doing all their work
during working time. Table 2 shows the dominance of
these extremes. Here, we define paid developers to be
those who performed 95% or more of their commits
during working time, and volunteer developers to be
those who performed 95% and more of their commits
during spare time, outside the weekdays 9am-5pm time
frame.

Thus, at least 23.15% of all authors working on the
Linux kernel, totaling 1,807 developers, are paid for
their work. 11.28% of all committers working on the
Linux kernel, totaling 37 developers, are paid for their
work as well. Given the economic significance of the
Linux kernel, one would expect more committers
(maintainers) to be paid for their work than authors. A
possible explanation for not confirming this assump-
tion is the long-term engagement of committers that

Table 1. Percentage of work performed during
working time (9am-5pm, Mon-Fri) for Linux (2005-
2011) and the Ohloh projects (2000-2007)

Percentage of total commits
made during working time

Linux
Kernel

author
45.00%

committer
51.36%

Ohloh
Projects

known
committer

47.3%
(min. 28,2%, max. 58,8%)

extended
committers

55.4%
(min. 36.5%, max. 59.5%)

3290

Figure 7. Data and trend line for percentage of com-
mits made by authors to the Linux Kernel during
working time for a given week

Figure 8. Data and trend line for percentage of com-
mits made by committers to the Linux Kernel dur-
ing working time for a given week

Figure 9. Data and trend line for percentage of com-
mits made to the Ohloh projects during working
time for a given week, known committers

Figure 10. Data and trend line for percentage of
commits made to the Ohloh projects during work-
ing time for a given week, extended committers

Figure 11. Number of authors and committers with
a given average percentage of paid work for the
years 2005-2011 for the Linux Kernel

Figure 12. Number of committers with a given aver-
age percentage of paid work for the years 2000-
2007 for the Ohloh projects, extended committers

3291

motivates many to keep working outside traditional
working time boundaries, which makes them fall out-
side our conservative definition of paid work.

As to the Ohloh projects, 17.97% of all extended
committers, totaling 8,244 developers, are being paid
for their work.

Common to these paid developers is that they do
not work on open source projects in their spare time,
i.e., fall outside the boundaries of the traditional open
source enthusiast and volunteer categories.

3.4 Project Classification

Finally, not only are we interested in what percent-
age of developers are being paid to work on open
source, we also would like to know how they are allo-
cated to projects. It is fair to assume that some projects
get more commercial attention than others. Thus, we
investigate which projects receive this attention. The
Linux kernel project is a single (albeit large) project,
so in this Section we are looking at the Ohloh projects
only.

We find that there is a large number of small (1-2
developers) projects with a long-tail distribution of size
that are fully paid for by companies: All developers,
frequently just one, are making their contributions only
during working time. The top 5 smallest projects in our
sample, fully paid for, are called subtle, WebPA,
ShARPE, gst-openmax, and phpESP.

These smallest projects have low commit numbers
(in the 100's only, sometimes less). Inspection by hand
shows that many times, code is being committed in
large chunks. This is uncommon in traditional open
source software development, where the most frequent
commit size is one line of code [16]. Thus, it is safe to
assume that these small but still active projects are be-
ing developed in-house and are being provided in a
snapshot-style to the public at appropriate times.

The largest projects in our sample maintain a paid-
for developer percentage in the 10-20% range. Five ex-
ample projects of this size are GNOME, Netbeans IDE,
Eclipse Platform, KDE, and KVM. These are well-
known open source projects that are being developed

in an open collaborative style, and the paid developer
population of these projects can serve as an indicator of
healthy public open source projects.

4. DISCUSSION OF FINDINGS

In this work, we are making the assumption that
work performed during working time hours (Mon-Fri,
9am-5pm, in the resp. local time zone) is paid work.
This time frame has been defined as working time by
most Western countries and thus we feel justified in
considering it paid work. Even students typically have
to go to class during that time and spending it on open
source development implies economic self-sponsorship
as it delays graduation and hence borrows against fu-
ture income.

The time of a commit is not the actual time the
work was performed; it is the point of time when it is
committed (made public). Thus, the actual work is per-
formed right up to that point in time. In other work we
show that the median time between two commits of the
same open source developer is about 100min [15].
When we ran the analyses with shifted working time
frames, we found little difference to the numbers from
the 9am-5pm time frame and decided to ignore this im-
precision. We believe it has no effect on the results.

There is a cultural bias implied by these working
hours, as some countries work on other days than Mon-
day to Friday. Our analysis of contributions by time
zone (Section 2) demonstrates that open source soft-
ware development is strongly dominated by Western
societies, as witnessed by a sharp drop in activities
around Christian holidays like Easter or Christmas.

One might argue that the Ohloh data is getting old.
One advantage of the Ohloh data is that it draws
broadly on the total population of available open
source projects. It was seeded by the original providers
of the Ohloh service with the most popular open source
projects (by Yahoo search engine ranking) and has
since been maintained by hand by the respective
providers of open source projects. Unlike other data
sources, the Ohloh data it is much less biased to any

Table 2. Distribution of volunteer (spare time) to paid (working time) developers, binned, over all years

Volunteer (Spare Time) Work Mixed Paid (Working Time) Work

Working Time Work % 0% 0.01%-5% 5.01%-94.99% 95%-99.99% 100%

Linux Kernel
author 33.06% 0.35% 43.45% 0.17% 22.98%

committer 11.59% 3.05% 74.09% 1.52% 9.76%

Ohloh Projects
known committers 2.41% 1.21% 95.69% 0.00% 0.69%

extended committers 7.04% 0.4% 74.58% 0.41% 17.56%

3292

particular subgroup of open source projects. If there is
a bias, it is a bias towards active well-working projects,
which happen to be those we are interested in.

Still, it would be desirable to have new data. Unfor-
tunately, there is no alternative at present: No public
access to the new Ohloh data is available on the level
of detail required, other newer data sources are sub-
stantially more biased towards particular subgroups of
open source, and it is prohibitively expensive for a re-
search group to build a comprehensive and representa-
tive data set for all of open source (which is why no-
body has done it yet). Consequently, this is the best re-
search we can do for now.

Our definition of "paid developer" is highly conser-
vative. It is a person who does 95% or more of their
work during working time hours only. It represents a
regular developer with a regular life-style and presum-
ably no interest in open source software development
beyond their work. There are important and common
exceptions to this type of person:

• Many paid developers are open source enthu-
siasts and keep working outside regular work-
ing hours.

• The software industry is by and large not
unionized and tends to ignore regular working
hours.

Consequently, our estimate presents a lower bound-
ary for the number of paid developers.

5. RELATED WORK

Since 2008, Corbet et al. have been providing sta-
tistics about the Linux kernel development annually
[6]. They investigate topics like evolution of the re-
lease frequency as well as number of changes intro-
duced per release. In addition, they provide a list of the
most-active companies supporting the development of
the Linux kernel and list the percentage of commits
performed by each of them. Similar to the work pre-
sented in this paper, the reports distinguish between au-
thors and committers. Corbet et al. consider a contribu-
tion commercial, if it is made using a company's email
address to identify the contributor. They also maintain
a separate mapping list for regular contributors that al-
lows tracking a person even if he or she changes the
employer. They find that at least 75% of all contribu-
tions since 2005 can be assigned to company employ-
ees.

A "Report on the International Status of Open
Source Software 2010" finds that the U.S.A., Australia,
and the West European countries lead the development
and adoption of open source software [19]. This is in
line with our observation that weekly work as well as

holiday drops line up well with Western cultural work
patterns.

Godfrey and Tu studied the Linux kernel growth in
2000 [13], and Robles et al., following up on Godrey
and Tu, studied the Linux kernel growth in 2005 [23].
Robles et al. provide a good summary about what
analyses were made in the area of evolution research of
open source software projects. They study 123 stable
and 457 development releases up to April 2005 (the
point in time where the data for our analysis starts)
and, by also counting the number of uncommented
lines of code, confirm a super-linear growth rate, that is
even more significant than already shown in the pre-
ceding paper. At the same time, the authors point out
that not all work in a project is programming, but that
also many tasks, such as testing, are done outside of
the code repository and thus are hard to measure. Inde-
pendently of that paper, a study by Succi et al. about
the growth in "libre" (open source) software systems,
confirms this super-linearity for the Linux kernel [24].

Both the proceedings of ICSE (the international
conference on software engineering) and MSR (a con-
ference on mining software repositories) as well as
other conferences and journals by now provide exten-
sive literature on empirical analyses of open source and
closed source projects. An example classic open source
studies is [17] by Mockus et al. Topics of interest range
from bug prediction [2] [4] [18] [26] through engineer-
ing practices [1] [21] [22], social structures and com-
munity management [3] [14], software evolution [11]
[12], all the way to issues of global collaboration and
distributed development [2]. Research methods itself,
mostly on data quality issues, are also analyzed [9]
[27]. A few papers compare open source with commer-
cial software development [1]. However, to the best of
our knowledge none of this work addresses the issue of
paid vs. volunteer work as discussed in this paper.

We did not find any research that analyzes the com-
mercialization of open source software projects by in-
vestigating when what work was done. A reason might
be that modern version control systems, such as Git
and Mercurial, have allowed us to access commit his-
tory data in detail, including time zone information,
only recently. Older systems, such as CVS or svn only
store a single UTC time stamp per commit.

6. CONCLUSIONS

This paper analyzes to what extent open source
software development has become commercial paid-for
software development. A paid contribution is defined
as having been contributed during regular (Western)
working hours, Mon-Fri, 9am-5pm. By studying the
Linux kernel from 2005 to 2011 and the Ohloh

3293

projects, a large set of more than 5,000 active open
source projects, from 2000 to 2007, we find that about
50% of all contributions to projects in our sample pop-
ulation have been paid work. Moreover, no change in
this percentage has occurred for the Ohloh projects,
suggesting that the ratio of paid-to-volunteer work is
stable in open source for now.

Going one step further, we find that 10-20% of the
developers engaged in our sample projects perform de-
velopment work only during working hours, suggesting
that they are fully paid for their work. Unlike tradi-
tional volunteers, they perform no work on our sample
projects outside this time-frame, making our estimate a
conservative one. We also find that many small
projects are fully paid for, and that larger projects have
a healthy mixture of paid and volunteer work in the 10-
20% range as well. In future work, we intend to ana-
lyze the relationship between these categories of devel-
opers, company engagement, and project success.

REFERENCES

[1] C. Bird, A. Gourley, P. Devanbu "Detecting Patch
Submission and Acceptance in OSS Projects," in
Proceedings of the Fourth International Workshop on
Mining Software Repositories (MSR '07), pp. 26.

[2] C. Bird, N. Nagappan, P. Devanbu, H. Gall, B.
Murphy, "Does distributed development affect software
quality?: An empirical case study of Windows Vista,"
in Communications of the ACM, vol. 52, no. 8, pp. 85-
93.

[3] C. Bird, D. Pattison, R. D'Souza, V. Filkov, P.
Devanbu, "Latent social structure in open source
projects," in SIGSOFT '08/FSE-16 Proceedings, 2008,
pp. 24-35.

[4] E. Capra, "An Empirical Study on the Relationship
Between Software Design Quality, Development Effort
and Governance in Open Source Projects," in IEEE
Transactions on Software Engineering, vol. 34, no. 6
(2008), pp. 765-782.

[5] J. Corbet, "How to participate in the Linux
community," 2008, at
http://www.linuxfoundation.org/content/how-
participate-linux-community.

[6] J. Corbet, G. Kroah-Hartman, and A. McPherson,
"Linux Kernel Development – How fast it is going,
who is doing it, what they are doing, and who is
sponsoring it?", 2012, from
http://go.linuxfoundation.org/who-writes-linux-2012.

[7] C. Daffara, "Estimating the number of active and stable
FLOSS projects", 2007, from
http://robertogaloppini.net/2007/08/23/estimating-the-
number-of-active-and-stable-floss-projects (Archived
at http://www.webcitation.org/69t8UM0lX).

[8] A. Deshpande and D. Riehle, "The total growth of open
source," in Proceedings of the fourth Conference on
Open Source Systems (OSS 2008), Springer Verlag,
2008, pp.197–209.

[9] M. Fischer, M. Pinzger, H. Gall, "Populating a release
history database from version control and bug tracking
systems," in Proceedings of the International
Conference on Software Maintenance (ICSM 2003),
pp. 23-32.

[10] FLOSSmole. Collaborative collection and analysis of
free/libre/open source project data, 2012, from
http://flossmole.org/ (Archived at
http://www.webcitation.org/69t9UhDSX).

[11] B. Fluri, M. Wursch, H. C. Gall, "Do Code and
Comments Co-Evolve? On the Relation between
Source Code and Comment Changes," in Proceedings
of the 14th Working Conference on Reverse
Engineering (WCRE 2007), pp. 70-79.

[12] H. C. Gall, M. Lanza, "Software evolution: analysis
and visualization," in Proceedings of the 28th
International Conference on Software Engineering
(ICSE 2006), pp. 1055-1056.

[13] M. W. Godfrey and Q. Tu, "Evolution in open source
software: a case study," in Proceedings of the
International Conference on Software Maintenance
(ICSM), 2000, pp.131–142.

[14] V. K. Gurbani, A. Garvert, J. D. Herbsleb, "A case
study of open source tools and practices in a
commercial setting," in Proceedings of the Fifth
Workshop on Open Source Software Engineering, pp.
1-6.

[15] C. Kolassa, D. Riehle, M.A. Salim. "The empirical
commit frequency distribution of open source
projects." In Proceedings of the 2013 International
Symposium on Open Collaboration (WikiSym +
OpenSym 2013), ACM, 2013, paper C4.

[16] C. Kolassa, D. Riehle, M.A. Salim. “A Model of the
Commit Size Distribution of Open Source.” In
Proceedings of the 39th International Conference on
Current Trends in Theory and Practice of Computer
Science (SOFSEM 2013), LNCS 7741. Springer
Verlag, 2013, pp52-66.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "A case
study of open source software development: The
Apache server," in ICSE 2000 Proceedings, 2000, pp.
263–272.

[18] N. Nagappan, T. Ball, "Using Software Dependencies
and Churn Metrics to Predict Field Failures: An
Empirical Case Study," in First International
Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pp. 364-373.

[19] National Open Source Software Observatory, "Report
on the International Status of Open Source Software,"
2010 (Archived at http://www.webcitation.org/
69t93TcPq).

[20] Ohloh, the open source network, 2012, online at
http://www.ohloh.net/ (Archived at http://www.
webcitation.org/69t9byLCw).

[21] J. W. Paulson, G. Succi, A. Eberlein, "An empirical
study of open-source and closed-source software
products," in Transactions on Software Engineering,
vol. 30, no. 4 (April 2004), pp. 246-256.

[22] P. C. Rigby, D. M. German, M.-A. Storey, "Open
source software peer review practices: a case study of
the apache server," in Proceedings of the 30th

3294

International Conference on Software Engineering
(ICSE 2008), IEEE, pp. 541-550.

[23] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I.
Herraiz, "Evolution and growth in Large libre software
projects," in Proceedings of the eigth international
workshop on Principles of Software Evolution, 2005,
pp. 165–174.

[24] G. Succi, J. Paulson, and A. Eberlein, "Preliminary
results from an empirical study on the growth of open
source and commercial software products," in EDSER-
3 Workshop, co-located with ICSE, 2001.

[25] S. J. Vaughan-Nichols, Linux servers keep growing,
Windows and Unix keep shrinking. ZDnet. (Archived
at http://www.webcitation.org/69wwiYWT9)

[26] T. Zimmermann, N. Nagappan, "Predicting defects
using network analysis on dependency graphs," in
Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008), pp. 531-540.

[27] T. Zimmermann, P. Weißgerber, A. Zeller, "Mining
version histories to guide software changes," in
Proceedings of the 26th International Conference on
Software Engineering (ICSE 2004), pp. 563-572.

3295

