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Abstract 
In this paper, we validate and analyze the ability of 

an agent-based metaheuristic to facilitate the 
negotiation of consensus among distributed, networked 
agents. Our metaheuristic is based on the process 
honeybees use to achieve consensus in selecting a new 
nest site. We show that our metaheuristic successfully 
guides systems to a consensus in a high percentage of 
cases and that the quorum size parameter controls the 
trade-off between optimality of choice versus time to 
consensus and failure rate. Despite agents having 
communication with only their local neighbors and the 
absence of centralized data aggregation, coordination, 
or mediation, our metaheuristic frequently results in the 
same consensus as that which would be returned by one 
or more well-known voting algorithms that require 
global knowledge and centralized tallying to generate a 
solution; when it does not, the returned consensus is 
usually an alternative similar in quality to the globally-
informed option. 

1. Introduction 

Social communities and multi-agent systems 
sometimes face the problem of having to reach a 
consensus on a single choice selected from among 
several discrete options. While individual members of 
these groups might differ in their preferred ranking of 
the available choices and/or the perceived quality of 
each choice, it may nevertheless be in the best interest 
of the entire community that it reach a consensus on
only one of the available choices. Resolving the conflict 
between individual disagreements and the need for 
collective agreement on the final outcome depends on 
both social choice theory, which is concerned with the 
aggregation of individual preferences to derive a group 
preference, and negotiation protocols, which are 
concerned with processes that individuals with 
conflicting preferences can use to effect compromise.  

Most current voting and negotiation protocols use a 
centralized mediator and/or operate under the 

assumption that each individual can communicate 
directly with every other. In practice, however, it is not 
always possible to have full interconnection of 
individuals, and centralized mediation may cause an 
undesirable bottleneck or single point of failure 
affecting scalability and robustness. Essentially, we 
would like a way to determine the choice that a 
collective would prefer if each member voted for its 
favored choice, without actually having to hold an 
election, which requires all votes to be consolidated for 
tallying. Instead, we desire that the collective reach an 
agreement by interacting with and persuading only their 
local neighbors.  

Potential applications for this type of algorithm 
include, among other possibilities, traffic control 
software in which road segments negotiate a desired 
speed limit based on perceived traffic flow or devices 
connected to a smart electric grid that must agree upon 
production and consumption rates or schedules. As is 
typical of metaheuristic techniques; however, the 
iterative nature of this algorithm can lead to lengthy 
execution times. One of the findings we present in this 
paper shows how the quorum size parameter can be 
adjusted to manipulate the algorithm’s average speed to 
consensus; nevertheless, this metaheuristic is likely to 
be more suitable for offline negotiation, perhaps in 
conjunction with machine learning techniques.  

In this paper, we present the experimental 
performance results of our decentralized, unmediated, 
agent-based, metaheuristic process for consensus 
negotiation that approximates the negotiation protocol 
used by honeybee scouts to reach consensus on a new 
nest site. Results from experiments indicate that, more 
than 94% of the time, the metaheuristic yields collective 
agreement on a single choice that matches the outcome 
that would have resulted from an election using 
plurality, range, and/or Borda voting. Unlike these 
voting systems, however, our metaheuristic is able to 
produce a consensus without the need for a centralized 
mechanism for vote tallying. Additionally, agents are 
able to reach compromises resulting in global consensus 
despite negotiating with only their local neighbors 
rather than requiring full interconnectedness and 
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individual negotiation with all other agents. In the rare 
instances that our metaheuristic does not reach a 
consensus predicted by one of the three voting systems 
above, the decision reached is usually very similar in 
quality to the outcome predicted by the voting systems. 

The remainder of the paper is structured as follows. 
In Section 2 we provide background on the consensus 
negotiation problem, describe the bee behavior upon 
which our metaheuristic is based, and give an overview 
our metaheuristic technique. In Section 3 we discuss the 
metaheuristic parameters and methodology we used in 
our experiments. In Section 4 we analyze and discuss 
the results. In Section 5 we present our conclusion and 
suggest future work. 

2. Background 

2.1. Related Work 

A significant amount of the research conducted in 
the development of automated negotiation has resulted 
in protocols that require the use of a centralized 
mediator that passes proposals and counter-proposals 
between negotiating agents. Examples of this trend can 
be found in [4, 7, 8, 10, 11, 13, 26, 28], all of which rely 
upon some sort of centralized mediation. In addition to 
being dependent on a centralized mediator, none of 
these protocols place restrictions on which pairs of 
agents are allowed to negotiate through the mediator; 
they assume that all agents are fully-connected, or at 
least connected to a mediator, so they can potentially 
negotiate with any other agent. Agents situated in the 
physical world, however, may not operate in conditions 
compatible with these assumptions; there may be 
physical barriers to direct communication with other 
agents in the system, and for the sake of robustness, it is 
often desirable to avoid potential single points of failure, 
such as a centralized mediator. 

A number of natural systems have evolved to 
handle the problem of arriving at a consensus without 
full interconnection or dedicated mediators. Examples 
include groups of animals choosing a collective 
direction of travel [18] and insect colony nest site 
selection [14, 20, 27]. In studying these systems, it has 
been shown that groups can arrive at decentralized 
consensus decisions using simple rules, even when 
individuals participating in the decision making are 
ignorant of global knowledge, such as the current 
majority preference or the quality of their own 
information [2]. In this paper, we focus specifically on 
the techniques used by honeybee swarms to form 
consensus on selection of a new nest site location.  

Much like the combination of cooperation and 
competition evident in most agent-based negotiations 

[28], the negotiation process by which honeybees form 
a consensus on a new nest site relies upon a balance of 
independent, competitive proposals and interdependent, 
cooperative persuasion [6, 12]. Unlike many other 
negotiation scenarios, however, failure of a honeybee 
swarm to come to a sufficiently rapid consensus on a 
new nest site location can result in the death of the 
swarm. If a new nest site is not located quickly enough, 
the swarm may die of exposure, whereas reaching a split 
decision can result in the splitting of the swarm and loss 
of the queen, which is similarly fatal to the colony [16].

Given such dire consequences of failure, the 
honeybee decision making process, and therefore our 
proposed metaheuristic, prioritizes compromise over 
individual stubbornness. This prioritization is not 
without precedent in negotiation protocols where it has 
been observed that early and frequent concessions are 
key to successful negotiation of complex contracts [10].
Like in [10], we treat consensus formation as an 
adaptive optimization problem where the objective is to 
iteratively improve the social well-being of the 
collective through an iterative, stochastic process; 
however, whereas the negotiation protocol in [10] uses 
simulated annealing as its foundation, we borrow 
features from particle swarm optimization [9],
particularly the ideas of local neighbor interactions and 
the competition between social and cognitive 
influences, as the foundation for our metaheuristic 
approach.  

2.2. Honeybee Decision Making Overview 

To understand the rationale for our metaheuristic 
negotiation protocol, one must first have a basic 
understanding of honeybee nest site selection behavior. 
We provide enough detail here to understand the 
mechanics of our negotiation protocol. For a more 
comprehensive description of the behavior, see [12, 16,
17, 20-22, 25, 27], from which the following description 
is derived. 

When a honeybee swarm must find a new nest site, 
the swarm leaves the old nest and forms a cluster nearby. 
A relatively small sub-population of the swarm, the 
scout bees, then depart the swarm in search of candidate 
nest sites. Scouts are either successful in finding a 
potential site and return to the swarm with a site 
preference, or else they are unsuccessful and return to 
the swarm as uncommitted scouts.  

A scout that finds a potential site performs a 
“waggle dance” at the swarm to tell its sister scouts 
where the candidate site is located, and the enthusiasm 
of her dance is proportional to the scout’s perceived 
quality of the candidate site. Between dances for a site, 
the scout will make trips between the swarm and 
candidate site. How long the scout will continue to 
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dance for and visit the candidate site is also proportional 
to the scout’s perceived quality of the site. A scout will 
spend more time dancing for a high-quality site than for 
one of mediocre quality. 

An uncommitted scout may choose to follow the 
dance of a sister scout that found a candidate site or 
return to exploration. This choice is based 
probabilistically on the number of dancing scouts it 
encounters at the swarm. This makes sense intuitively; 
if a large number of scouts are dancing for the same site, 
it is more likely that an uncommitted scout will 
encounter one of these dances and be persuaded by it. 
On the other hand, if very few scouts are dancing for 
sites at the swarm, the uncommitted scout is much more 
likely to give up on finding a dance to follow and go 
exploring on its own. 

If an uncommitted scout chooses to follow a dance, 
she performs her own independent assessment of the 
candidate site, and, if it meets her minimum criteria, she 
will return to the swarm and dance for the site as 
described above. As more scouts are recruited to a 
particular site, the number of scouts visiting the site 
between dances increases. Once a threshold of visitors 
to a candidate site is reached, a quorum for that location 
is formed and bees returning to the swarm from that site 
augment their dances with a “piping” signal. When the 
piping signal reaches a threshold value, a consensus is 
considered to exist, the swarm lifts off, and the scouts 
guide the swarm to the agreed upon site. 

2.3. Swarm Decision-Making Metaheuristic 
Overview 

In order to provide a foundation for understanding 
our methodology and results, this section provides a 
brief overview of the key elements in our metaheuristic 
approach to consensus negotiation and maps 
algorithmic steps to the honeybee decision making 
process. For a more detailed description of the 
algorithm, see [15]. 

In adapting the honeybee behavior to a generic 
negotiation protocol, we make some adjustments. First, 
we do not require agents to go exploring for potential 
options at the outset. Instead, an agent begins 
deliberations with a set of utility values for the set of 
potential outcomes, and agents begin deliberations 
committed to the option that produces the highest 
perceived utility for themselves. Also, whereas a 
honeybee will only dance for sites that meet a minimum 
level of quality and otherwise remain uncommitted, our 
agents maintain a utility value for all options, even those 
for which the agent’s perceived utility is very low. This 
ensures that no agents stubbornly refuse any option and 
eventually become committed to one of the options, as 
described next.

It has been shown in [3] that uninformed 
individuals are an important part of moderating the 
influence of a strongly opinionated minority in forming 
democratic consensus. While none of our agents begin 
deliberations uninformed, we do have a mechanism 
whereby agents become progressively less attached to 
their current preference, just like honeybee enthusiasm 
for a site decays over time. The length of time that an 
agent will stay committed to a particular choice is a 
function of its perceived utility for that choice. An 
evaporation rate is controlled by a model parameter, and 
when an agent’s commitment dips below a model-
specified value the agent becomes neutral and open to 
committing to new options based on the aggregate of 
information provided by its neighbors. This behavior is 
required to achieve the “expiration of dissent” described 
in [19] and allow agents to make the concessions 
required for successful negotiation [10].

For the results presented in this paper, the number 
of simulation ticks an agent will remain committed to a 
choice is equal to the integer value of the preference 
weight for that choice. For example, if an agent’s 
preference distribution over three choices is 
⟨0.40, 0.30, 0.30⟩, this would indicate that the agent 
prefers choice 1 over both choices 2 and 3 by 10% but 
it is indifferent with respect to  choice 2 versus choice 
3, and once committed to choice 1, it remains so 
committed for 40 simulation ticks. In these experiments, 
we used a linear enthusiasm decay function, with the 
commitment level decaying by one point for every 
simulation tick. We chose to use a linear decay function 
because it matches the observed enthusiasm decay of 
honeybees in nest site selection. [20] Thus, in this 
example, by the 40th simulation tick after making its 
choice, the agent’s commitment level reaches 0 and the 
agent becomes uncommitted and open to selecting a 
new choice as described next.  

As previously mentioned, agents have a set of 
neighbors, represented by a graph, with which they can 
communicate. The information provided to an agent by 
a neighbor consists of a set containing the other agents 
in the collective that agree with the neighbor on a 
particular choice (which it either knows about directly 
or has learned about from its own neighbors) along with 
each of that set’s agents’ remaining commitment 
durations for that choice. It should also be noted that, as 
this information is passed from agent to agent, the 
remaining commitment level for each agent in the set is 
decayed in accordance with the previously-described 
decay function. Thus the commitment level associated 
with an agent’s membership in the set stays consistent 
with the agent’s actual commitment level at each 
simulation tick. 

At each iteration of the deliberation process, an 
agent that is currently committed to a particular choice 

271



only aggregates the information of neighbors that it 
agrees with. This is equivalent to how honeybees 
visiting a candidate nest site will only see other bees that 
are visiting the same site. On the other hand, if an 
agent’s commitment to a choice has expired, it must 
determine a new choice to which to commit. After 
aggregating its neighbors’ information, if there is only 
one option that has achieved a number of members 
sufficient to meet the quorum threshold, the agent 
automatically commits to it. This is essentially a form of 
preferential attachment and allows an option with a 
sufficient lead to assert its dominance; however, if there 
is no quorum, or if there is more than one quorum, the 
agent uses roulette wheel selection to probabilistically 
make a new commitment based on the percentage of its 
neighbors committed to each option. 

In the case of the honeybee, the end of deliberations 
is signaled by an audible piping signal. To replicate this 
in an artificial setting, the model would require a
broadcast channel. Since we are assuming that agents 
cannot necessarily communicate with every other agent 
and are restricted to communicating with only their 
neighbors, we cannot model any such channel. Instead, 
as is common in adaptive optimization algorithms, we 
simply run our algorithm for a specified number of 
iterations. As we will see in the results section, this 
number does not need to be too large to achieve good 
consensus results. 

3. Methodology 

We conducted a total of 10,000 trials to determine 
how successful the metaheuristic was at reaching an 
acceptable consensus among 200 agents on one of five 
possible choices. The 10,000 trials were split into four 
groups of 2,500 trials, each, using a quorum threshold 
size of 5, 15, 25, and 35, respectively. Our choices of 
values for agent count and quorum sizes come from 
numbers typical in empirical observations of honeybee 
swarms and the values used to model honeybee nest site 
selection in [17]. The quorum sizes we used bracket the 
quorum size of 20 typically used by honeybees [17, 21]. 

For each of the four quorum threshold levels, we 
ran 50-trial batches on each one of 50 different 
randomly-generated agent preference distributions. 
While an agent preference distribution was the same 
within a single batch of 50 trials, each trial within the 
batch used a differently-seeded pseudorandom number 
generator to shuffle the agent neighbor interconnections 
and drive the stochastic agent activation order and 
choices made by the agents at each time tick. 

The random generation of agent preferences was 
performed in two stages. First, a target probability 
distribution (ptarget) for the five choices was generated 

from the uniform distribution �(0, 1) using the method 
described in [24]. This determined what probability 
each choice had of being the preferred choice of an 
agent. For example, a ptarget of ⟨0.16, 0.04, 0.09, 0.68, 
0.03⟩ would indicate that approximately 68% of the 
agents should assign Choice 4 their highest preference, 
whereas approximately 3% should assign Choice 5 their 
highest preference. We then generated a range of 
preference weights for each agent, again from the 
uniform distribution �(0, 1) using the method 
described in [24], and we used a roulette wheel selection 
based on ptarget to assign the generated preferences to 
each of the five choices. This methodology allowed us 
to randomly generate preferences across all agents that 
resulted in collective preference sets that could generate 
winners, losers, and ties, depending on the social rules 
by which they were evaluated. Had we not generated the 
ptarget distribution for preference assignment, the 
uniformly random agent preferences would have been 
distributed so uniformly that each of the five options 
would have received about 20% of the total utility. 

Agents were connected in an augmented ring 
topology where they were connected to their twenty 
nearest neighbors both forward and backward along the 
circumference of the ring. More formally, this is the 20-
regular circulant graph Ci200(1,…,10). In order to judge 
the impact of the location of particular agents on the 
consensus-forming process, we shuffled agent 
neighbors on each trial. 

The acceptability of an outcome can be interpreted 
in different ways. We follow [5] in choosing to evaluate 
our outcomes with respect to the resultant social welfare 
of our artificial multi-agent society. A number of 
possible social welfare metrics are presented in [1, 23,
29]; we use three in the presentation of our results: 
plurality voting, Borda voting, and range voting (which 
is similar to utilitarian social welfare, but uses the 
average utility rather than the sum of the utilities). At 
this point, it should be noted that agents were allowed to 
rank options equally if they both had the same utility. In 
plurality voting, this resulted in the total tally of first-
place votes across all preferences sometimes exceeding 
the number of agents, and this allowance departs from 
what is traditionally allowed in Borda and range voting. 

4. Results and Discussion 

For our trials, we consider an appropriate consensus 
result to be one that agrees with at least one of the three 
calculated social welfare metrics mentioned above. In 
practice, the majority of our random preference 
distributions (61%) always result in unanimous 
decisions where the all three social welfare metrics 
return the same choice as socially “best,” and generally 
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speaking, about 85% of our trials result in a unanimous 
decision. In these cases, matching at least one outcome 
is the same as matching all of them and is therefore a 
highly appropriate consensus by our metrics. We 
consider a failure to be any case that does not result in a 
consensus within 3,000 simulation ticks, and we 
consider a sub-optimal result any case that results in a 
consensus that is not one of the results returned by any 
one of the social welfare metrics.  

Figure 1 shows the 95% confidence intervals for 
our trial results. On average, for our four chosen quorum 
sizes, we find that our metaheuristic successfully 
converges to a socially-appropriate consensus over 94%
of the time, regardless of the locations of agents in the 
social network, and it fails to result in any consensus at 
all less than 1% of the time. Figure 2 shows the average 
number of simulation ticks to reach consensus with 95% 
confidence intervals. 

From these figures we can see that the success rate 
of reaching a consensus increases as the quorum size 
increases, but the result is less likely to be an optimal 
one. Varying the size of the quorum allows us to balance 
the trade-off between speed to consensus and quality of 
the result. These results may help explain why 
honeybees have evolved to detect quorums at a
threshold size of about 20, as observed in [17, 21]. 

A question is why raising the quorum threshold, 
which would be intuitively expected to make it harder 
to reach a consensus, actually lowers the failure rate. We 
suspect that increasing this value (up to a point) actually 
has the effect of allowing clear majorities to trigger the 
end of deliberations sooner. When the quorum size is 
small, quorums for several alternatives form easily, 
creating a situation where several quorums must 
compete for selection.  Further work is required to study 
the dynamics underlying this behavior. 

It remains to evaluate the “badness” of the sub-
optimal consensus results. Should our technique be 
faulted for the cases when it comes to a consensus that 
is not in the set of acceptable options returned by our 
social welfare functions? We have not developed 
quantifiable metrics for making this evaluation, but 
Table 1 presents data on all of the probability 
distributions that resulted in sub-optimal consensus 20% 
or more of the time for one or more quorum sizes. 

Figure 1. Probability of consensus results for 
different quorum sizes, shown with 95% 
confidence intervals. 

Table 1. Average choice utility values across all agents for probability distributions resulting in 
>20% sub-optimal selection. 

Probability 
Distribution 

Seed

Average Utility 5 15 25 35
Choice Sub-

Optimal
Fail Sub-

Optimal Fail Sub-
Optimal Fail Sub-

Optimal
Fail

1 2 3 4 5
4 0.21 0.17 0.23 0.15 0.24 0.06 0.00 0.30 0.00 0.26 0.00 0.34 0.00
6 0.35 0.10 0.33 0.09 0.13 0.06 0.10 0.20 0.02 0.28 0.08 0.30 0.00
20 0.30 0.16 0.05 0.27 0.21 0.02 0.00 0.06 0.00 0.08 0.00 0.22 0.00
25 0.25 0.21 0.10 0.25 0.19 0.42 0.00 0.24 0.08 0.20 0.02 0.30 0.00
26 0.15 0.27 0.10 0.24 0.22 0.00 0.00 0.10 0.02 0.10 0.00 0.20 0.00
32 0.21 0.21 0.23 0.09 0.25 0.00 0.00 0.14 0.00 0.22 0.00 0.36 0.00
35 0.25 0.25 0.14 0.18 0.17 0.12 0.00 0.16 0.12 0.38 0.00 0.38 0.00
44 0.24 0.27 0.06 0.15 0.28 0.20 0.08 0.18 0.06 0.32 0.00 0.16 0.00
48 0.17 0.12 0.25 0.25 0.21 0.22 0.04 0.10 0.10 0.20 0.00 0.16 0.00
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Figure 2. Average simulation time ticks to reach 
consensus for varying quorum sizes, shown 
with 95% confidence intervals on logarithmic 
scale. 

As we can see, all of these cases have preference 
distributions where the average utilities for two or more 
choices are very close. In fact, it is these similarly-
valued choices that are being selected in the cases when 
a “sub-optimal” consensus is reached, so, in fact, this
result might be better named “nearly-optimal.” This is 
not a surprising result when we consider that our 
metaheuristic is based on the behavior of individual bees 
that, for reasons of survival, value reaching a unanimous 
decision quickly over possibly never reaching a perfect 
decision, especially when the compromise in quality 
required to reach a unanimous decision is very small. It 
also suggests that our metaheuristic generally operates 
according the social rules prescribed by utilitarian social 
welfare. 

A final point of analysis is the speed with which our 
metaheuristic is able to achieve its results. Figure 2 
depicts how the number of simulation ticks required to 
reach consensus, which corresponds to negotiation 
rounds, relates to quorum size. It is interesting to note 
that the average number of negotiation rounds required 
to reach consensus decreases logarithmically with 
respect to increased quorum size. Some of the difference 
in performance between quorum sizes can be attributed 
to the higher failure rate of the smaller quorum 
thresholds where there are more batches with a 

maximum tick count of 3,000. Nevertheless, even when 
the batches with failures are not considered, the higher 
quorum threshold is still faster at generating consensus 
than the lower quorum threshold. We suspect that this 
result is due to the same underlying mechanism as that 
which results in lower failure rates for the higher 
threshold value. 

5. Conclusions and Future Work 

In this paper, we have shown that a metaheuristic 
negotiation protocol based on the simple rules 
honeybees use to negotiate consensus on a new nest site 
produces highly-successful results for negotiation of 
single-attribute, distributed consensus when considered 
from a social welfare perspective. Unlike many other 
utility-based voting and negotiation protocols, our 
technique requires neither dedicated mediators nor 
global knowledge of social preferences to produce 
results similar to those that would result from global 
preference aggregation techniques. Our data indicate 
that our protocol primarily adheres to the social rule set 
of utilitarian social welfare. We have also shown that 
quorum-sensing is an effective technique for balancing 
the influences of conflict and compromise in negotiation 
protocols and that the correct tuning of a quorum size 
threshold parameter can yield faster and higher success 
rates in forming consensus at the cost of decreased 
optimality, but that the selected alternative is still close 
to the optimal choice in average utility. Positions of 
individuals in the social network do not appear to have 
a significant impact on performance in our augmented 
ring topology. 

This negotiation protocol provides many avenues 
for interesting future work in terms of variation and 
scalability. It may very well be the case that our chosen 
network topology is an idealized case that skews our 
results toward high success rates. It also may not be the 
most likely topology for real-world networks. 
Therefore, we have plans to perform further evaluation 
with respect to different network topologies, such as 
hierarchical and small-world networks or dynamic 
topologies. We expect this algorithm to handle dynamic 
topologies especially well, since this would replicate the 
dynamic neighborhoods honeybees encounter on the 
swarm as they travel back and forth between the swarm 
and nest sites. 

We also plan to evaluate this protocol’s scalability 
in both number of negotiating agents and number of 
choices. We have already conducted a limited number 
of experiments which suggest that the algorithm reaches 
consensus in a similar number of simulation ticks as the 
results presented here, even when the number of agents 
is increased by an order of magnitude. Another
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interesting scalability aspect to explore would be to 
determine if we can scale this technique to handle multi-
parameter negotiation. 

In addition, we would like to evaluate the 
robustness of our protocol, such as how our protocol 
handles dynamic group membership and its resilience to 
manipulability by selfish agents. We expect that the 
quorum threshold parameter and the periodic generation 
of neutral agents will be effective in mitigating selfish 
behavior. Finally, we believe we can we improve our 
protocol’s ability to overcome deadlocks that lead to 
failure to reach consensus by incorporating simple 
learning behavior in the agents. 
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