
Formal Aspects of Enterprise Modeling Methods:
A Comparison Framework

Domenik Bork
University of Vienna

Research Group Knowledge Engineering
domenik.bork@univie.ac.at

Hans-Georg Fill
University of Vienna

Research Group Knowledge Engineering
hans-georg.fill@univie.ac.at

Abstract
For the design of work and knowledge systems it

is today common to revert to enterprise modeling
methods. These methods not only support the
representation and analysis of complex interactions
between technical services and human actors. The
resulting models also provide value through acting as
knowledge bases themselves. Thereby, the
formalization of modeling methods is essential to
unambiguously define their structure, behavior, and
semantics, and enable an intersubjective
understanding and machine-processability.

In this paper we analyze and compare six
common enterprise modeling methods in regard to
the formalization of their process-related aspects.
From this comparison we derive implications for
choosing an appropriate method when designing
work and knowledge systems.

1. Introduction

When designing advanced knowledge systems
and work systems that integrate emerging
technologies with existing business processes for
leveraging additional value for enterprises, one is
confronted with high complexity due to the numerous
dimensions that need to be taken into account [1].
These dimensions include environmental factors such
as the globalization of businesses, increasing
employee mobility or fierce international
competition, as well as technical aspects such as
rapid and frequent changes in information and
communication technologies, c.f. [2]. In order to
manage this complexity and support the
communication between users and developers, it is
common to revert to conceptual enterprise modeling
methods. These methods permit to represent static
and dynamic phenomena of systems prior to their
implementation [3]. Conceptual modeling produces a
“common understanding” and is used “as a
communication, analysis, and documentation tool for

domain knowledge and IS requirements” [4, p. 702].
Furthermore, it provides input for the system design
process [4, 3]. In addition, the models provide value
themselves by acting as machine-processable
knowledge bases for answering queries, simulating
behavior, performing reasoning, verification &
validation, or generating executable code [5].

For realizing this additional model value it is
important to provide sound and intersubjectively
exchangeable foundations for the underlying
modeling methods. This is required not only for
ensuring the exact understanding of the structure and
behavior of the modeling methods. It is essential for
realizing the processing by machines in the form of
algorithms and the interoperability between different
systems. As Meseguer and Preece state, “the absence
of formal specifications limits the capacity of
knowledge-based systems”, concluding that formal
specifications can play a fundamental role in
accomplishing “adequate answers to issues such as
correctness, completeness, robustness, precision,
safety, and so forth” [6, p. 321]. Thus it becomes
necessary to provide formalized, i.e. unambiguous,
specifications of enterprise modeling methods. For
some of these methods such specifications have been
available already at the time of their introduction,
whereas for others such formal specifications have
been added later or are not yet available – see e.g. the
recent discussion centering around the current formal
specification of UML1 structural and behavioral
semantics [7] and formal visual specifications2.

In the paper at hand we first describe the
components of modeling methods and their degrees
of formalization in Section 2. Based on these
foundations we present a framework for analyzing
the degree of formalization of enterprise modeling
methods. We then apply the framework to six

1 Unified Modeling Language (UML) Superstructure Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/,
Last Access: 2013-08-29
2 Diagram Definition (DD) Specification Version 1.0,
http://www.omg.org/spec/DD/1.0/, Last Access: 2013-08-29

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.422

3400

common enterprise modeling methods to identify the
degree of formalization of their process-related
aspects in Section 3. A discussion on how these
insights influence the value of the resulting models
for machine-based processing follows in Section 4.
The paper is concluded with an outlook on further
research steps and potential implications of the
research for the conceptualization of modeling
methods.

2. Foundations

In this Section we will outline the foundations for
generally describing modeling methods. Therefore,
we consider the modeling language, modeling
procedure, and mechanisms and algorithms.
Subsequently, we will discuss the formalization of
the constituents of modeling methods. The goal is to
describe, how to specify modeling methods formally.
This results in a comparison framework which can
then be applied in Section 3 in order to analyze six
enterprise modeling methods.

2.1. Enterprise modeling methods

The complexity of today’s enterprise systems
fosters the need for approaches that can handle the
complexity and break it down into manageable parts
for a human being. Over the last years, several
enterprise modeling methods have been introduced in
theory and practice trying to bridge that gap.
Enterprise modeling methods divide the complexity
of an enterprise by providing dedicated views on that
enterprise - e.g. views on the structure, behavior,
processes, organization of an enterprise.

A central aspect of almost any enterprise
modeling approach is the definition of the behavioral
aspects of an enterprise by means of processes [8].
These processes are usually described using models.
They play a vital role for the enterprise which is why
the design of work systems, supporting and realizing
those processes, should be strongly aligned to the
process models.

Several authors have analyzed selected enterprise
modeling methods based on a given application
domain or usage scenario. Lakhoua et al. [9] analyze
several enterprise modeling methods according to the
domains they can be applied in, consistency,
polyvalence, and simulation. Szegheo and Andersen
[10] investigate enterprise modeling methods based
on their underlying approach (i.e. active knowledge
modeling, process modeling, object-oriented
modeling, agent-based systems) and conclude, that
every approach has its application area. The authors

describe in which scenarios the individual approaches
are most suitable. The literature up to now only
considers investigating existing enterprise modeling
methods according to their suitability for a given
application domain or context. The paper at hand
offers a different view on enterprise modeling
methods by analyzing their degree of formalization in
the specification of their process-related aspects.

As has been mentioned above, modeling methods
permit to facilitate the management of complexity in
the area of enterprise information systems. In order to
characterize the constituents of modeling methods
from a generic perspective we will revert to a
framework developed by Karagiannis and Kühn in
the following [11]. As highlighted in Figure 1,
modeling methods in this framework are composed
of two parts: a modeling technique and mechanisms
and algorithms. A modeling technique is further
composed of a modeling language, which includes
the syntax, semantics, and notation, as well as a
modeling procedure. The modeling procedure defines
the steps and results for applying a modeling
language. The mechanisms and algorithms are used
in the modeling procedure based on the definition of
the modeling language. Whereas algorithms stand for
arbitrary steps of calculations that are applied to
instances of a modeling language, mechanisms are
lightweight functionalities implemented in a
modeling tool that are targeted towards supporting
users of the modeling language when engaging in
modeling. They thus encompass aspects such as for
example constraint checking of models, user interface
aids for creating models, e.g. by providing specific
dialogues to ease the creation of multiple elements
simultaneously, or visualization functionalities that
help a modeler to discover relationships between
elements during modeling. Mechanisms and
algorithms may either be generic, i.e. they can be
applied to arbitrary modeling languages, specific, i.e.
they are coupled to a specific modeling language, or
hybrid, i.e. they can be parameterized for several
modeling languages.

2.2. Formal aspects of modeling methods

In order to classify modeling methods according
to their degree of formalization in Section 3, we now
introduce a set of criteria for our investigation. The
criteria are based on the generic concepts of
modeling methods illustrated in Figure 1 by means of
a UML class diagram (the components are visualized
as classes, connected by composition, generalization,
and association relationships). We analyze for each
of the central components (i.e. Modeling Language,
Modeling Procedure, Mechanisms & Algorithms), if

3401

and how they can be formalized. In the context of this
paper we define a ”formal definition” as one that
provides an unambiguous specification that is
intersubjectively understandable and processable by
different computer systems.

2.2.1. Modeling language. A modeling language’s
constituents are notation, syntax, and semantics. The
syntax of a modeling language is usually described in
a formal way using a meta model, therefore utilizing
a meta modeling approach, or a mathematical
notation (e.g. FDMM [12], Z [13]).

The formal specification must define the elements
as well as the set of possible relations between those
elements by means of cardinalities. An informal
specification of syntax is e.g. the definition of
elements using natural language. Semi-formal
specifications result from the combination of formal
and informal specifications, i.e. some elements are
specified formally but some others are introduced in
natural language. Notation and semantics of a
modeling language must be investigated in more
detail as they relate to both, structural and behavioral
aspects of the process models. Formal semantics
assigns an unambiguous meaning to each element of
the language’s syntax [14].

In our study, we decompose notation into static
notation and dynamic notation. If the notation of a
language’s element is fixed at all time, we refer to a
static notation, if the notation can change depending
on the current state (i.e. attribute value) of the
element, we refer to a dynamic notation. Generally,
the range of specifications for notations span from
purely informal (e.g. using natural language) over
semi-formal (e.g. defining shapes: ellipse, rectangle)
up to formal (e.g. shapes implemented with a
programming language, or a precise mathematical
description).

For the semantics, structural and behavioral
aspects are investigated individually. In our analysis,
structural semantics is decomposed into type
semantics and inherent semantics as introduced by
Höfferer [15]. Type semantics is usually defined with
the meta model of a modeling method by providing
semantics for each model element (i.e. type) on a
meta level. Inherent semantics describes the
semantics of concrete instances of the meta model
elements (i.e. concrete instances in the model). Both
can be defined formally using e.g. an ontology as
ontologies ”include computer-usable definitions of
basic concepts in the domain and relationships among
them” [16]. The behavioral semantics describes the
degree of formalization according to the process
model execution. A formal specification of the
behavior can be provided by e.g. relating to the Petri
net semantics or by providing some algebraic
definition. Both, structural and behavioral semantics
can be informally described by using natural
language. The semantic domain ”specifies the very
concepts that exist in the universe of discourse” [14].
Its description can be in natural language (i.e.
informal) or rigorous mathematics (i.e. formal). In
order to provide a formal semantic mapping, a
rigorously defined function from the language’s
syntax to its semantic domain can be defined [14].

2.2.2. Modeling procedure. The modeling procedure
is defined by steps and results in Figure 1. These
criteria describe, how the user actually builds models,
i.e. the sequence of actions performed by the modeler
in order to create valid models. A formal
specification of a modeling procedure can be
provided e.g. by using rule-based systems, triple-
graph grammars, or constraint definition languages.
Informally, a description of the sequence of steps in
e.g. a tabular manner can be given. Semi-formal

Figure 1. Component of modeling methods [11]

3402

specifications would combine formal approaches for
some steps while remaining on an informal level for
other ones.

2.2.3. Mechanisms & algorithms. Formal
specifications for mechanisms and algorithms of
arbitrary modeling methods have not been regarded
in depth up to now. Whereas lot of effort has been
put into providing formal approaches for the
specification of syntax, semantics, and lately for the
notation, the development of approaches for a formal
specification of mechanisms and algorithms
specifically for modeling methods is still an open
research area. Mechanisms and algorithms are e.g.
simulation algorithms that can be executed on models
or model transformation algorithms, transforming a
source model into a target model by providing a
mapping function between the source meta model
and the target meta model [5]. A formal
representation in this field can be stated, if meta
model mappings are defined or concrete algorithms
are given in a programming language. An informal
description can again be in natural language, whereas
using pseudo code notation or some language
constructs together with natural language could be
classified as semi-formal.

Figure 2 visualizes the analysis framework
applied during the following investigation.

Figure 2. Analysis framework

3. Analysis of selected enterprise
modeling methods

In the following section we analyze a set of
enterprise modeling methods based on the
formalization of the process-related aspects of the

methods. The selection of methods is based on the
involvement of the authors in the implementation and
ample experience with three particular methods (i.e.
BPMS, HORUS, SOM), contrasted with an
international standard (i.e. UML) and one of the most
widely used methods (i.e. ARIS), as well as one
method with unique formal characteristics (i.e.
TOVE). In our analysis we refer to the comparison
criteria in Section 2.2.

3.1. ARIS framework

The architecture of integrated information
systems (ARIS) framework, first published in 1992
by August- Wilhelm Scheer [17, 18], introduces an
integrated framework for describing an enterprise.
ARIS utilizes dedicated views for the description of
functions, organizational structures, data, physical
and non-physical output, and a view on the processes.
In order to describe the behavioral aspects in the
process view, ARIS utilizes Event-Driven Process
Chains (EPC) [19], developed by the University of
Saarland together with the SAP AG in 1992. EPCs
are widely used in industry and still part of SAP
process modeling components [20]. Our analysis
concentrates on the process view of the framework.

Central concepts of an EPC are function, event,
and connectors. Functions are used to model physical
and/or mental activities transforming an input into an
output thereby fulfilling enterprise goals. Events are
used to model a concrete state of the modeled system.
Connectors are used to define the control flow. These
concepts are syntactically described using a meta
model, their type semantics is described informally
using natural language. An inherent semantics is not
defined. The behavioral semantics of EPCs is initially
described informally. Additional research aligned the
behavioral semantics to Petri net theory [21].
Therefore, the behavioral semantics can be stated as
formal. EPCs utilize the simulation of its instances.
The static notation of function, event, and connector
is semi-formally defined by a legend illustrating
sample shapes (i.e., a rounded rectangle for functions,
a hexagon for events, and edges and arrows for
connectors). A dynamic notation is not defined.

A considerable effort has been put into a more
comprehensive formal specification of the semantics
of EPCs (e.g. [22]), especially considering the non-
local semantics (e.g. [23]). The publications state,
that the formal aspects of the Petri net semantics is
not sufficient to describe the behavioral semantics of
EPCs appropriately. In order to overcome that
shortcoming several approaches are published that
introduce a comprehensive formal specification of
both, behavioral semantics and type semantics. Other

3403

authors even argue, that ”there is no sound formal
semantics for EPCs that is fully compliant with the
informal semantics” [24], however providing their
own formalization some years later [25]. Semantic
domain and semantic mapping are defined on an
informal level only. As the initial publication of
EPCs defines some decomposition guidelines for
functions and events, an informal specification of the
modeling procedure is available.

3.2. BPMS method

The Business Process Management Systems
(BPMS) paradigm, which integrates ”the
organizational, analytic as well as the IT aspects of
business processes, is an approach for the
management of business processes” [26]. The method
has been developed at the University of Vienna.
Besides the theoretical concepts, also a commercial
modeling tool for the BPMS method has been
developed called Adonis. The tool is still being used
in a wide range of industrial projects [27].

 BPMS integrates three abstraction levels,
business level, execution level, and evaluation level.
Each is defined by one or more dedicated BPMS-
Processes (i.e. strategic decision, reengineering,
resource allocation, workflow, and performance
evaluation). The creation of business process models
is assigned to the reengineering process. Therefore
we will investigate the reengineering process in the
following.

The syntax of the business process modeling
component is described formally using an algebraic
notation [26]. The type semantics of the central
modeling elements (i.e. activities, subprocesses, and
control flow) is described in natural language.
Sample simulation algorithms are informally defined
[28] and implemented in the Adonis BPMS modeling
tool. Some algorithms have currently been specified
semi-formally [5]. Herbst [29] introduced a mapping
from the BPMS process model elements to the
concepts of Petri nets, therefore providing a formal
semantic mapping and a formal semantic domain.
The behavioral semantics is also inherited through
the Petri net semantics. Although the method defines
inter-dependencies of the several process phases, no
modeling procedure for the creation of business
process models is defined. The static notation of
BPMS business process models is defined semi-
formally by providing graphical visualizations for
some elements of the method, but not for the
relations [29]. A dynamic notation is not defined.

3.3. HORUS

Horus is an enterprise modeling method that
focuses on business process engineering and includes
steps for the integrated modeling of business
processes, the improvement of business processes,
and the application of the created models [30]. For
these purposes, the Horus method comprises four
phases for: preparing process optimization projects,
elaborating the strategy and architecture, analyzing
business processes, and applying the results. To
investigate the formalization dimensions of the
process-related aspects in Horus, we will restrict our
analysis to the third phase of Horus. At the core of
this phase stand so-called procedure models that can
be further linked to organization models, rule models,
object models, key figure models, resource models,
and risk models. The procedure models are based on
high-level Petri nets, which are extended to a Horus
specific variant denoted as XML nets. In XML nets
the objects in the places are XML documents and
transitions are operations on these XML documents
using XQuery3 statements.

For the syntax of Horus procedure models a
mathematical specification is available based on the
FDMM formalism [31]. Regarding the type
semantics of procedure models, the underlying Petri
nets together with formal descriptions of XML nets
provided by Lenz and Oberweis through formal
mappings to XML and XQuery specifications [32]
can be characterized as formal. Accordingly, also the
semantic mappings and the semantic domain for
procedure models are formally defined. For inherent
semantics, Horus procedure models currently do not
offer any facilities. The behavioral semantics of
procedure models are also formally defined by
inheriting the operational semantics of Petri nets. The
static notation of procedure models is described semi-
formally through graphical illustrations. In addition,
procedure models also feature dynamic notation, e.g.
for depicting organizational resources that are linked
to transitions in [32, p. 54ff.]. These dynamic aspects
are also illustrated informally. For the modeling
procedure Schoenthaler et al. show detailed diagrams
based on a Petri-net-like notation on how to use the
various model types. However, this is not detailed
down to the level of modeling objects. Therefore, we
classify the modeling procedure as semi-formal.
Horus procedure models can be used for simulation
algorithms. These are explained by Schoenthaler et
al. in a semi-formal style with mainly textually
describing their behavior together with examples for
illustrating corresponding calculations.

3 See http://www.w3.org/TR/xquery/ accessed 2013-08-29

3404

3.4. SOM

The Semantic Object Model (SOM) [33] method
is a multi-perspective enterprise modeling method.
SOM compromises a layered approach for a
comprehensive description of an enterprise with an
enterprise plan on the top layer, a business process
model on the second layer, and the specification of
resources on the third layer. An emphasis of SOM is
on the specification of business process models using
a multi-view approach [34]. SOM business process
models integrate structural and behavioral aspects,
modeled in different views, into one comprehensive
model. SOM defines views for the structural aspects
(i.e. the Interaction Scheme), the behavior (i.e. the
Task-Event Scheme), and the decomposition of
business objects and business transaction in
Decomposition Diagrams. In the following we refer
to the business process modeling part of SOM [35].

The syntax of SOM business process models is
described in a meta-model. The meta-model also
includes the static notation of the model elements by
providing their respective shapes (e.g. environmental
objects as ellipses, business objects as rectangles,
business transactions as arrows). A dynamic notation
for SOM is not defined. The type semantics of the
business process models is described informally
using natural language, but referring to the concepts
of systems theory, transaction-based coordination,
and object-orientation. The behavioral semantics on
the other hand is inherited from Petri nets and
extended with e.g. the concepts of pre- and post-
conditions, and the relation of transitions to business
objects [33]. Semantic mapping as well as semantic
domain are only described on an informal level.

The modeling procedure is described with precise
decomposition rules that can be applied to business
transactions and business objects respectively. The
rules are described formally using a Backus-Naur
notation. They specify how modelers can apply them
recursively to detail and refine an initial business
process model thereby revealing the coordination
between the business objects. Modeling mechanisms
and algorithms, considering the business process
modeling part, are not defined for SOM.

3.5. TOVE

The diversity of enterprise models and legacy
systems supporting the creation of those models has
led to the correspondence problem [36]. This means,
that it is hard if even possible to compare different
enterprise models. The authors behind TOVE
therefore introduce the idea of a General Enterprise
Model (GEM), that can be extended to a concrete

domain, therefore defining a Deductive Enterprise
Model (DEM). GEMs consists of three parts: A
taxonomy of object classes, for each object class,
relations to other object classes plus a definition of
the semantics of the relation, and a set of attributes
for each object class, together with the intended
meaning of the attribute [36]. Fox et al. used this
GEM to develop the Toronto Virtual Enterprise
Deductive Enterprise Model (TOVE), developed at
the University of Toronto. The goal of the TOVE
project is to create an ontology of an enterprise,
defining the semantics of each component,
implementing a deductive approach by transforming
the semantics into axioms in order to enable
automatic, deductive answering of common questions
on the enterprise, and defining graphical symbols for
the components [37]. In our analysis we will
concentrate on the Activity-State Model which is
based on the Activity-State Ontology of TOVE.

The syntax of the Activity-State model can be
stated to be semi-formal, because on the one side, all
elements of the model are described comprehensively
using taxonomies, on the other side a formal
specification according to their connectivity is
missing [38]. The semantics according to structure
and behavior is completely defined formally,
meaning, that not just the type semantics is described
using ontologies but also the inherent semantics. The
activity-state-time ontology uses the situation
calculus [39] as foundational theory for describing
the semantics to the ontologies of activity, state, and
time [36]. Therefore, the behavioral semantics are
formally defined. The static notation of the elements
are defined semi-formally by providing some sample
models, whereas the dynamic notation is not defined.
The semantic domain is formally defined using
ontologies describing the semantics of the object
classes and relations, whereas the semantic mapping
is on a semi-formal level as it is defined on the semi-
formal syntax. Fox et al. informally describe a
concrete sequence of actions, a modeler must
undertake in order to create a TOVE model. For an
Activity-State model itself is no modeling procedure
defined. As the model is directed towards a deductive
competence, the questions - defined in first-order
logic and programmed in Prolog - represent some
mechanisms & algorithms of TOVE in a formal way.

3.6. UML

The Unified Modeling Language (UML) is the
de-facto industry standard for the object-oriented
specification of software-intense systems [40]. The
current version, UML 2.4.1, provides a rich set of
diagrams for different aspects of a system (e.g. class

3405

diagrams or component diagrams for structural
aspects and activity or sequence diagrams for
behavioral aspects). The UML is used on a broad
basis today. Besides the already defined set of
diagrams by the OMG, modelers have the possibility
to create UML profiles. These UML profiles enable
the UML to be applicable in new and emergent
domains. Nevertheless, we concentrate on behavioral
aspects in our analysis and therefore investigate the
UML Activity Diagrams in the following.

Activity Diagrams (AD) are used to specify the
dynamic behavior of the modeled system by defining
activities, and relations between activities. The
central elements of an AD (i.e. activities and activity
edges) are formally introduced using a meta model4

derived by the Meta-Object Facility (MOF) meta
meta model5. Activity diagrams utilize Petri net like
semantics. Therefore, the behavioral semantics of
ADs can be stated as formal. Considering the
structural semantics, UML provides a semi-formal
type semantics for the elements of ADs. Besides the
informal description of the semantics using natural
language, each diagram element is related to a
concept of the meta model, and therefore to a concept
of the MOF, by a generalization relation. An inherent
semantics is not defined in the specification. The
static notation of each element is defined semi-
formally by describing textual and graphical notation
of the elements using natural language and example
diagrams respectively. A dynamic notation is not
defined by the UML. According to the semantic
mapping and semantic domain no specifications have
been defined. Although the integrated MOF meta
meta model allows for a hands-on definition of meta
model mappings for the transformation of ADs into
related diagrams, generally no mechanisms and
algorithms are defined. The same is true for the
modeling procedure, as the UML generally doesn’t
define any procedure of how models should be
created.

Although we use the standard specification for
our analysis, we want to show some very interesting
current research topics aligned to the UML and
extensions directed to formal specifications. Engels et
al. [40] introduce a semantic domain and a semantic
mapping in order to utilize concrete consistency tests
between different UML diagrams. Others introduce a
formal semantics by mapping the AD concepts into a
mathematical expression called Activity Calculus

4 Unified Modeling Language (UML) Superstructure Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/,
Last Access: 2013-08-29
5 Meta Object Facility (MOF) Core Specification Version 2.4.1,
http://www.omg.org/spec/MOF/2.4.1/PDF/, Last Access: 2013-08-
29

[41]. The OMG itself is also working on introducing
formal specifications by defining a Diagram
Definition language6 (DD). Using the DD, one is able
to define the graphical notation of diagram elements
in a formal way by providing a mapping between the
abstract syntax of the language and the provided
diagram graphics of the DD.

Another interesting development direction
according to the UML is the Foundational UML or
fUML specification7. With fUML, the Object
Management Group defines an execution semantics
for a subset of the UML constructs. The goal is to
”enable compliant models to be transformed into
various executable forms for verification, integration,
and deployment”7. Accordingly, conformance can be
evaluated on two aspects: (1) syntactic conformance,
a conforming model must be restricted to the abstract
syntax, and (2) semantic conformance, a conforming
execution tool must provide execution semantics for
a conforming model that is consistent with the
semantics defined for fUML.

4. Discussion

The analysis shows that the six enterprise
modeling methods investigated in this paper differ
largely according to their degree of formalization in
the process-related aspects. According to our analysis
framework, neither one method is completely
specified formally, nor completely informally. TOVE
is the only enterprise modeling method providing a
formally defined inherent semantics for the created
models, whereas HORUS is the only method
providing at least an informal specification for the
dynamic notation. With five of ten criteria defined
formally and three more criteria defined on a semi-
formal level, TOVE and HORUS are the methods
with the highest degree of formalization in our study.
On the other side of the spectrum is the UML, having
in the current version only two criteria formally
defined. However, according to the UML, several
extensions to the current standard introduce more
formal specifications (see Section 3.6). Table 1 sums
up the results gained during our investigation.

Introducing formalization enables the resulting
models to be intersubjectively understandable (i.e.
unambiguous) and processable by different computer
systems. Automated verification, validation, and
model testing is also a positive aspect of formal

6 Diagram Definition (DD) Specification Version 1.0,
http://www.omg.org/spec/DD/1.0/, Last Access: 2013-08-29
7 fUML Specification Version 1.0,
http://www.omg.org/spec/FUML/1.0, Last Access: 2013-08-29

3406

specifications. Generally, introducing a formal
specification enables testing model conformity on a
deeper level.

Whereas most enterprise modeling methods allow
for syntactic conformity checking (i.e. whether the
elements in the model conform to the abstract syntax
defined in the meta model), some others already
provide a semantic conformity checking (i.e. whether
the semantics of a model element is consistent).

 Accordingly, modeling tools can be separated
into (1) tools, providing syntactic conformity, and (2)
tools that also provide a semantic conformity. Models
created with a formally specified semantics can be
compared also on a semantic basis because the
subjectivity of models is reduced, therefore providing
an intersubjective understanding of the model. As
TOVE is the only method in our analysis providing a
completely formal specification of its semantics (i.e.,
type, inherent, and behavioral semantics), TOVE
models can be compared semantically and fully
automated. The definition of a formal behavioral
semantics enables the interchange e.g. between a
modeling tool and a simulation tool seamlessly (e.g.
for BPMS models).

If modeling procedure and mechanisms and
algorithms are specified on a formal level (e.g. in the
case of SOM), a tool developer can use these
specifications as a requirements specification for
building a conforming modeling tool. Additionally
verification & validation of the implementation can
be checked.

The formal specification of the behavioral
semantics – e.g. for HORUS through the mapping to
Petri-nets - directly enables the re-use of existing
analysis functionalities e.g. simulation approaches for
Petri-nets.

To sum up we can state, that the level of
interoperability depends on the level of formalization.

To an extreme, using the diagram definition approach
of the UML, one is able to provide conformity not
only on syntactic and semantic level but also on
notational level.

Besides the discussed positive effects, introducing
more formal specifications also reduces the degree of
freedom for modelers and “increases the effort
involved in creating the specifications” [6]. As
modeling is a very creative and subjective task, it
may in some cases be counterproductive to e.g.
formalize the modeling procedure. The desirable
degree of formalization must therefore be decided for
each modeling method and the dedicated model users
individually. Current developments around the UML
– e.g. fUML, diagram definition - on the other hand
indicate, that more aspects of modeling methods
should be specified in a formal way. ”However, to
enable meaningful exchange of model information
between tools, agreement on semantics and notation
is required”8. This is particular important for
advanced knowledge systems to leverage additional
value of models.

5. Conclusion

Mastering the complexity during the design and
development of work and knowledge systems one
can refer to enterprise modeling methods and
enterprise models. These models can be created using
a rich set of diverse modeling methods. In order to
provide an unambiguous understanding of those
models and to foster the interoperability between
different computer systems, the introduction of

8 Unified Modeling Language (UML) Infrastructure Version 2.4.1,
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/, Last
Access: 2013-08-29

Figure 3. Results of the analysis of the process-related aspects of six enterprise modeling methods

ARIS BPMS HORUS SOM TOVE UML
Syntax formal formal formal formal semi-formal formal

 Inherent Semantics n/a n/a n/a n/a formal n/a
 Behavioral Semantics formal formal formal formal formal formal

 Dynamic Notation n/a n/a informal n/a n/a n/a
Semantic Mapping informal formal formal informal semi-formal informal
Semantic Domain informal formal formal informal formal informal
Modeling Procedure n/a n/a semi-formal formal n/a n/a
Mechanisms & Algorithms formal semi-formal semi-formal n/a formal n/a

Notation
 Static Notation semi-formal

formal formal semi-formalformal informalinformal

semi-formal semi-formal semi-formalsemi-formal semi-formal

Semantics
 Structural Semantics
 Type Semantics

3407

formal specifications is a necessary step towards
managing the heterogeneity and complexity. In
addition, the models provide value themselves by
acting as knowledge bases.

The paper at hand investigated six common
enterprise modeling methods based on their degree of
formalization regarding the process-related aspects.
First, a general comparison framework has been
introduced. This framework has then been applied to
the modeling methods resulting in a comprehensive
discussion of the benefits and drawbacks of
formalization in modeling method specification.

In the future, we are planning to apply the
introduced framework to an even broader set of
modeling methods by reverting to the Open Models
Initiative [42] (OMI). The OMI provides a platform
for tool developers and researchers for
conceptualizing and implementing modeling
methods. This will also include the extension of the
framework to cover non process-related aspects.

References

[1] S. Alter, “Defining information systems as work
systems: implications for the IS field”, European Journal of
Information Systems, vol. 17, pp. 448–469, 2008.

[2] R. Maier, Knowledge Management Systems:
Information and Communication Technologies for
Knowledge Management. Springer, 2004, Second Edition.

[3] Y. Wand and R. Weber, “Research Commentary:
Information Systems and Conceptual Modeling - A
Research Agenda”, Information Systems Research, vol. 13,
no. 4, pp. 363-376, 2002.

[4] A. Maes and G. Poels, “Evaluating quality of
conceptual modelling scripts based on user perceptions”,
Data & Knowledge Engineering, 63(3):701 - 724, 2007.

[5] H.-G. Fill and D. Karagiannis, “On the
Conceptualisation of Modelling Methods Using the ADOxx
Meta Modelling Platform”, Enterprise Modelling and
Information Systems Architecture, vol. 8, no. 1, pp. 4-25,
2013.

[6] P. Meseguer and A. D. Preece, “Assessing the Role of
Formal Specifications in Verification and Validation of
Knowledge-Based Systems”, in Proceedings of the Third
International Conference on Achieving Quality in
Software, pp. 317–328, Chapman & Hall, 1996.

[7] E. Seidewitz, “UML: Once More with Meaning”, 2013,
talk at the University of Maryland, 2013/04/15. [Online].
Available:
http://www.isr.umd.edu/sites/default/files/Seidewitz041513
.pptxg, Last Access: 2013-08-28

[8] H. Shen, B. Wall, M. Zaremba, Y. Chen, and J.
Browne, “Integration of business modelling methods for
enterprise information system analysis and user
requirements gathering”, Computers in Industry, vol. 54,
no. 3, pp. 307 - 323, 2004.

[9] M. Lakhoua and M. Rahmouni, “Investigation of the
methods of enterprise modeling”, African Journal of
Business Management, vol. 5, no. 16, pp. 6845-6852, 2011.

[10] O. Szegheo and B. Andersen, “Modeling the Extended
Enterprise: A Comparison of Different Modeling
Approaches”, in Proceedings of International Conference
on Enterprise Modelling (IEMC’99), Verdal, Norge, June
14-16. Productivity Press, 1999.

[11] D. Karagiannis and H. Kühn, Metamodeling
Platforms. Proceedings of the Third international EC-Web
2002 – Dexa, Aix-en-Provence, Springer, 2002, p. 182.

[12] H.-G. Fill, T. Redmond, and D. Karagiannis, “FDMM:
A Formalism for Describing ADOxx Meta Models and
Models”, in Proceeding of ICEIS 2012 - 14th International
Conference on Enterprise Information Systems 2012, vol.
3, pp. 133–144.

[13] J. Abrial and O. U. C. Laboratory, Specification
Language Z: Basic Library. Oxford University Computing
Laboratory, 1980.

[14] D. Harel and B. Rumpe, “Meaningful Modeling:
What’s the Semantics of ”Semantics”?”, Computer, vol.
37, no. 10, pp. 64–72, Oct. 2004.

[15] P. Höfferer, “Achieving business process model
interoperability using metamodels and ontologies”, in
Proceedings of the 15th European Conference on
Information Systems (ECIS 2007), 2007, pp. 1620–1631.

[16] L. Obrst, “Ontologies for Semantically Interoperable
Systems”, in Proceedings of the twelfth International
Conference on Information and Knowledge Management,
ser. CIKM ’03, 2003, pp. 366–369.

[17] A. W. Scheer, Architektur integrierter Informations-
systeme: Grundlagen der Unternehmensmodellierung.
Springer, 1992.

[18] A.-W. Scheer and K. Schneider, “ARIS Architecture
of Integrated Information Systems”, in Handbook on
Architectures of Information Systems, P. Bernus, K.
Mertins, and G. Schmidt, Eds. Springer Berlin Heidelberg,
2006, pp. 605–623.

[19] W. Hoffmann, J. Kirsch, and A. Scheer, Modellierung
mit Ereignisgesteuerten Prozeßketten: Methodenhandbuch,
Veröffentlichungen des Instituts für Wirtschaftsinformatik.
1992.

[20] G. Keller and T. Teufel, SAP R/3 prozessorientiert
anwenden: iteratives Prozess-Prototyping zur Bildung von

3408

Wertschöpfungsketten, ser. Edition SAP. Addison-Wesley-
Longman, 1997.

[21] R. Chen and A.-W. Scheer, Modellierung von Pro-
zessketten mittels Petri-Netz-Theorie. ser. Institut für
Wirtschaftsinformatik im Institut für Empirische
Wirtschaftsforschung an der Universität des Saarlandes,
1994, no. 107.

[22] M. Nüttgens and F. J. Rump, “Syntax und Semantik
Ereignisgesteuerter Prozessketten (EPK)”, in
Prozessorientierte Methoden und Werkzeuge für die
Entwicklung von Informationssystemen - Promise 2002,
LNI, J. Desel and M. Weske, Eds., vol. 21, 2002, pp. 64-77.

[23] E. Kindler, “On the Semantics of EPCs: A Framework
for Resolving the Vicious Circle”, in International
Conference on Business Process Management (BPM 2004),
Lecture Notes in Computer Science, 2004, pp. 82-97,
Springer-Verlag.

[24] W. V. D. Aalst, J. Desel, and E. Kindler, “On the
semantics of EPCs: A vicious circle”, in Proceedings of the
EPK 2002: Business Process Management Using EPCs,
2002, pp. 71–80.

[25] J. Mendling and W. V. D. Aalst, “Formalization and
Verification of EPCs with OR-Joins Based on State and
Context”, in Proceedings of the 19th International
Conference on Advanced Information Systems Engineering
(CAiSE 2007), Springer-Verlag, 2007, pp. 439–453.

[26] D. Karagiannis, S. Junginger, and R. Strobl,
“Introduction to Business Process Management Systems
Concepts”, in Business Process Modelling, B. Scholz-
Reiterand E. Stickel, Eds. Springer Berlin Heidelberg,
1996, pp. 81–106.

[27] P. Harmon,“The BPTrends 2010 BPM Software Tools
Report on BOC’s Adonis Version 4.0”, BPTrends,
http://www.bptrends.com/publicationfiles/2010%20BPM%
20Tools%20Report-BOCph.pdf, last checked: 2013-09-11.
2010.

[28] J. Herbst, S. Junginger, and H. Kühn, “Simulation in
Financial Services with the Business Process Management
System ADONIS”, in Proceedings of the 9th European
Simulation Symposium (ESS’97), 1997.

[29] J. Herbst, “Ein induktiver Anstaz zur Akquisition und
Adaption von Workflow-Modellen”, Ph.D. dissertation,
University of Ulm, 2001.

[30] F. Schönthaler, G. Vossen, and A. Oberweis, Business
Processes for Business Communities: Modeling Languages,
Methods, Tools. Springer, 2012.

[31] H.-G. Fill, S. Hickl, D. Karagiannis, A. Oberweis, and
A. Schoknecht, “A Formal Specification of the Horus
Modeling Language Using FDMM”, in Proceedings of the
11th International Conference on Wirtschaftsinformatik

(WI2013), R. Alt and B. Franczyk, Eds. Merkur-Verlag,
pp. 1165 – 1179, 2013.

[32] K. Lenz and A. Oberweis, “Interorganizational
Business Process Management with XML Nets”, in Petri
Net Technology for Communication-Based Systems,
Advances in Petri Nets, Springer-Verlag, 2003, vol. 2472,
pp. 243–263.

[33] O. K. Ferstl and E. J. Sinz, Grundlagen der Wirt-
schaftsinformatik, 7th ed. München: Oldenbourg, 2013.

[34] D. Bork and E. J. Sinz, “Bridging the Gap from a
Multi-View Modelling Method to the Design of a Multi-
View Modelling Tool”, Enterprise Modelling and
Information Systems Architecture, in press, 2013.

[35] O. K. Ferstl and E. J. Sinz, “Modeling of Business
Systems Using SOM”, in Handbook on Architectures of
Information Systems, P. Bernus, K. Mertins, and G.
Schmidt, Eds. Berlin: Springer, 2005, pp. 347–367.

[36] M. S. Fox and M. Gruninger, “Enterprise Modeling”,
American Association for Artificial Intelligence, vol. 19,
no. 3, p. 109, 1998.

[37] M. S. Fox, “The TOVE Project Towards a Common-
Sense Model of the Enterprise”, in Proceedings of the 5th
international conference on Industrial and engineering
applications of artificial intelligence and expert systems,
ser. IEA/AIE ’92, 1992, pp. 25-34.

[38] M. S. Fox, J. F. Chionglo, and F. G. Fadel, “A
Common-Sense Model of the Enterprise”, in Proceedings
of the Industrial Engineering Research Conference, 1993,
pp. 425–429.

[39] R. Reiter, “Artificial Intelligence and Mathematical
Theory of Computation”, V. Lifschitz, Ed., 1991, The
Frame Problem in the Situation Calculus: A Simple
Solution (Sometimes) and a Completeness Result for Goal
Regression, pp. 359–380.

[40] G. Engels, J. M. Küster, R. Heckel, and L.
Groenewegen, “A Methodology for Specifying and
Analyzing Consistency of Object-Oriented Behavioral
Models”, in Proceedings of the 8th European Software
Engineering Conference, ACM, 2001, pp. 186–195.

[41] Y. Jarraya and M. Debbabi, “Formal Specification and
Probabilistic Verification of SysML Activity Diagrams”, in
Sixth International Symposium on Theoretical Aspects of
Software Engineering (TASE’2013), 2012, pp. 17–24.

[42] D. Karagiannis, W. Grossmann, and P. Höfferer,
“Open Model Initiative - A Feasibility Study”, 2008, last
checked: 2013-08-30. Available:
http://cms.dke.univie.ac.at/uploads/media/OpenModels
Feasibility Study SEPT 2008.pdf

3409

