
Toward an Understanding of Job Satisfaction on Agile Teams:
Agile Development as Work Redesign

John F. Tripp

Baylor University
john_tripp@baylor.edu

Cynthia K. Riemenschneider
Baylor University

c_riemenschneider@baylor.edu

Abstract

Agile methodologists have claimed that a key value
proposition for the adoption of agile methods is that
the methods’ practices, processes, and philosophy
make people more motivated and satisfied with their
jobs. However, while several studies have found
evidence for this impact, there has not been extensive
theoretical support to explain why. In this study, we
use the lens of Hackman & Oldham’s job
characteristics model to motivate a theory of
motivation and satisfaction amongst agile development
teams. We propose that agile teams are, in fact,
redesigning work in the very way that Hackman &
Oldham propose will increase job perceptions, and
lead to greater job satisfaction. We report the initial
results of a research-in-progress study. Using a
quantitative survey of 104 software professionals, we
test the theory and find preliminary support for our
model and hypotheses.

1. Introduction

Over the past decade, agile software development
methods have become extensively used and, according
to a recent Forrester report, have now been adopted to
some extent by a majority of companies [24]. The
proponents of agile methods have made two particular
claims about the impacts of their use. First, they claim
that the methods produce better software. This claim
has been researched to a great extent, and support has
been found as to the impact of some agile practices on
project success. The second key claim of agile
practitioners is that people who work on agile teams
are more motivated and satisfied. Specifically, they
claim that when agile methods are used, people “want
to work there” [11]. While initial research has been
performed on the impacts of particular agile practices
on motivation [e.g., 13] , research on this claim of agile
impacts is still in its infancy.

To explore this issue, we utilize the Job
Characteristics Model [JCM; 10] as a lens through
which to view the impacts of agile software

development method use on individuals’ perceptions
and attitudes they develop about their jobs. The JCM
proposes that the characteristics of a job influence a
person’s perceptions of the job, and their attitudes
about it. The JCM has been used as a lens to study the
impact of job design on job satisfaction [e.g., 10],
turnover intention [e.g., 1], work exhaustion [14] and
more. While there is substantial empirical support on
the impacts of job characteristics on job attitudes in
many IS contexts, far less research has been performed
on how the design of work in IS teams may impact the
perceptions of job characteristics. Given that agile
practitioners have made particular claims about the fact
that their methods produce the by-product of higher job
satisfaction amongst the team members, it is
reasonable to assume that the use of the methods may
impact job perceptions.

The previous research on motivation and job
satisfaction on agile teams has been largely executed
using a case study approach. Tessem & Maurer [21]
used a case study of a team using the Extreme
Programming (XP) agile method. Their findings
suggested that the JCM constructs were observable,
and while some interviewees stated that they were
satisfied, their data couldn’t support testing this.
McHugh et al. [13] investigated the impact of the use
of agile practices on agile team motivation. Using
Beecham et al.’s [4] factors of IS worker motivation,
they observed and identified the impact of three
feedback mechanisms of agile methods – iteration
planning, daily stand up meeting, and the iteration
retrospective as being associated with perceptions of
JCM constructs. The presence of this initial evidence
warrants further study of our research question:

How does agile method use impact job

satisfaction?

Broadly, our research objective is to adapt and

expand the JCM to the context of agile method use.
Using the JCM as our starting point, we develop a
model that proposes that the use of agile methods
impacts job satisfaction, mediated by its impact on job

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.494

3993

perceptions. Further, we propose moderating effects of
iteration speed and previous experience using non-
agile methods. This model contributes to the previous
IS literature by focusing on the antecedents of job
perceptions, and by recognizing that ISD methods are,
to a great extent, engines of work redesign. Further,
this model contributes to the literature by providing a
theoretical lens through which to explain the impacts
of agile methods on job attitudes.

2. Theoretical Background

2.1. The Job Characteristics Model and Job
Satisfaction

Hackman and Oldham’s [10] Job Characteristics
Model (JCM) is one of the most tested theoretical
models in social science. It defines five job
characteristic perceptions that impact a person’s
attitude about their job. They are: task significance,
which is defined as the extent to which a person
believes that their job has impact on the lives of people
– either society at large or in an organization; task
identity, which means the extent to which a job’s tasks
are “whole”, or involve the completion of a complete
and identifiable outcome; skill variety, which is
defined as the extent to which a job is perceived as
requiring the use of multiple skills, talents and
experience; autonomy: the extent to which an
employee is given discretion as to how to complete the
work required, and set a schedule for completion; and
finally, feedback, which is the extent to which the
process of completing the work provides a person with
information through which an employee can evaluate
his performance.

Perceptions of job characteristics impact affective
states such as job satisfaction and work exhaustion.
These are well-tested consequents of job characteristic
perceptions. Further, strong claims by agile proponents
[e.g., 11], and some initial evidence of impacts [21]
indicate that these constructs may be directly impacted
by agile method use. Job satisfaction is an affective
response that is associated with one’s experiences at
work [23], Work exhaustion is defined as the depletion
of one’s emotional, mental, and physical resources due
to work experiences [14]. Work exhaustion has been
shown to be associated with lower job satisfaction
[5,18], and higher turnover [14].

2.2. Job Design Principles and their Impact on
Job Characteristics

The influential relationship of job characteristics on
job satisfaction and work exhaustion is well established
[e.g., 1,2,14,15,18]. Hackman & Oldham [10] also
propose that there are principles of work design that , if

followed, can influence perceptions of job
characteristics. They argue that by designing work
according to these principles, job perceptions and
therefore job attitudes can be improved. The five
principles are 1) Combining Tasks, 2) Forming Natural
Work Units, 3) Establishing Client Relationships, 4)
Vertically Loading the Job, and 5) Opening Feedback
Channels. We present a short explanation of each
below.

Combining tasks. Hackman & Oldham argue that
many of the issues with work design emerged as a
result of the fractionalization of jobs that arose out of
the principles of “scientific management”. They argue
that if job tasks are recombined, workers will develop
and exercise a broader range of skills. In addition, they
will better understand how their work relates to the
completion of a “whole” product.

Software development can, in a certain sense, take
a work fractionalization approach. By dividing the
work of software development across teams who focus
on particular “layers” of the software (database,
business logic, user interface), the ability to see the
results of tasks being related to a completed product is
reduced.

Forming natural work units. Hackman & Oldham
suggest that in a quest for efficiency, work has been
divided without care for the impact on worker
satisfaction. This may lead to seemingly unrelated and
unnatural set of tasks that a worker may address in a
given time period. This leads to lower task identity and
task significance.

Hackman & Oldham argue that by creating natural
work units, employees develop an “ownership”
response. Rather than identifying their work as “data
access layer coding”, programmers in the above
example should being to identify their work as “data
access layer coding for the XYZ module”. Developing
this ownership mentality can increase the perceived
meaningfulness and perceived value of the work. As
such, forming natural work units is expected to
increase task significance and task identity.

Establishing client relationships. When work is
fractured and specialized, many workers do not have
contact with the actual client for whom the work is
completed. If employees lack direct contact with the
customer, feedback is filtered through others, and
employees lose a key source of information through
which they can understand the impacts of their work,
which reduces task significance. Further, direct client
feedback is likely to provide the clearest information
through which an employee can evaluate the quality of
their work.

Besides the impact of direct communication on
feedback, Hackman & Oldham argue that skill variety

3994

and autonomy also increase due to establishing client
relationships.

In the traditional software development context, the
potential division between the “analyst”, “architect”,
“coder” and the “tester” often creates several layers of
hierarchy between an employee and the actual client.

Vertical loading. Hackman et al. [9] consider this
to be potentially the most crucial job design principle.
Due to specialization, jobs responsibilities have been
split between the doing and the planning and
controlling of the work. This creates a gap between
these components of the job. By vertically loading the
job, Hackman and his co-authors propose to reduce the
distance between the doing and the planning and
controlling of a given piece of work. “When a job is
vertically loaded, responsibilities and controls that
formerly were reserved for higher levels of
management are added to the job.” [10:64]

In a traditional software development environment,
decisions regarding the design and implementation of
the system may be made by one group of employees,
while the “doing” of the implementation may be
completed by another set of employees, indicating a
lack of vertical loading.

Finally, by opening feedback channels, employees
are able to obtain additional information relevant to the
planning, doing, and results of their work. As feedback
is one of the JCM constructs, providing additional
opportunities and avenues through which to obtain
feedback should increase this perception. While
establishing client relationships provides a source of
client-supplied information, additional opportunities
for feedback can be designed into the work itself. By
adding the task of quality control to an employee’s job
of making a product or delivering a service, the
employee can obtain direct feedback about their
performance. Further, automated procedures can check
the quality of a product, and provide feedback directly
to the individual who created it.

The remainder of our study is based on the
proposition that the philosophy and the widely used
practices of agile methods address each of the job
design principles presented above and, because of this,
impacts job characteristic perceptions and attitudes
such as job satisfaction and work exhaustion.

2.3. Agile Methods As Job Redesign

Agile methods prescribe a wide range of practices.
In this study we focus on those most widely used and
those where research has shown a potential impact on
job perceptions. According to source data provided by
VersionOne from the State of Agile Survey (2011), the
eleven most used agile practices (in rank order) are:

1. Daily Stand Up Meeting

2. Iteration Planning
3. Unit Testing
4. Retrospectives
5. Burndown
6. Release Planning
7. Velocity
8. Automated Builds
9. Continuous Integration
10. Coding Standards
11. Refactoring
As the level of reported use drop significantly after

these initial 11 practices, we focus primarily on these
practices. In addition to these top 11 practices, we will
consider the use of pair programming (rank order 16)
due to evidence from the literature [e.g., 21] that
suggests an impact on job characteristic perceptions.
Further, due to the similarity and interrelatedness of
release planning, iteration planning, and velocity, we
combine these practices into the concept of “work
planning” Definitions of each of these practices, as
well as mappings to job design principles are provided
in Table 1.

Daily Stand Up Meeting: The daily stand up
meeting helps to both establish client relationships, and
to open feedback channels. The team as a whole
performs this practice each day. Each member of the
team attends, and provides information to the team
regarding the work performed the previous day, the
work planned for the day, and any blocking or
coordination issues he or she has encountered [19].
Agile methods also prescribe that, when possible, the
business owner should attend this meeting daily.

Several job design principles are in play during the
daily stand up meeting. By providing the opportunity
for direct discussion of the current status of the project,
each team member is able to directly interact with the
customer, and with each other. Questions can be asked
of the customer, establishing client relationships.
Further, team members can bring up issues that may
have been created due to the work previously
performed by another team member. In this manner,
feedback channels are opened, allowing team members
to better judge the quality of their previous work.

Work Planning. Release planning, Iteration
planning, and Velocity are congruent with three of the
job design principles as noted in Table 1. Release
planning defines at a high level the order in which
features will be deployed. Iteration planning is
performed before each work cycle, as the team and
customer together define the features included in the
next cycle, divide the features into tasks, and estimate
the work to be performed.

Further, work planning supports establishing client
relationships by including both the client
representatives and team members in the planning.

3995

According to both Scrum and XP, the client is
responsible for choosing the priorities of tasks to
include in the release and iteration, while the
developers are responsible for estimating the work to
complete those priorities. The team uses its defined
velocity [3] in order to establish the amount of work
that can fit into a work cycle.

Table 1: Job Design Principles and Agile Practices
Agile Practice CT FNWU ECR VL OFC

Daily Standup
Meeting X X

Work Planning:
 Release

Planning
 Iteration

Planning
 Velocity

 X X X

Unit Testing X X
Retrospectives X X
Burndown X X
Automated Builds X X X
Continuous
Integration X X X

Coding Standards X
Refactoring X X
Pair Programming X X X
CT- Combining Tasks , FNWU – Form Natural Work
Units, ECR – Establish Customer Relationships, VL –
Vertical Loading the Job, OFC – Opening Feedback
Channels

Finally, by including the tasks of planning and

estimating in the jobs of the team members, agile team
members’ roles are expanded. Planning and estimating
were often the purview of management or others
outside the team. The inclusion of these tasks that are
related to the management of the project vertically load
agile team members’ jobs.

Unit Testing. Unit testing refers to the process of
writing a separate suite of code that is not part of the
system that is designed to exercise and test system
code [12]. This practice both combines tasks, and
opens feedback channels.

Initial unit testing of software has always been a
task that developers completed. However, most
developers did not write persistent code suites to test
software systems. With the emergence of unit testing
frameworks, teams now write unit tests that are
preserved for use by all members of the team. These
tests combine tasks in two ways. First, the code is an
example of documentation in practice, as the tests
themselves provide guidance as to the functionality of

the system. Further, these tests can be run at any time,
allowing a developer to test the consequences of a code
change across the entire system. In this way, unit tests
combine tasks previously performed by the business
analyst role and the tester role.

Further, feedback channels are opened due to the
immediate information that is provided to a developer
via a failed test. Many development teams require
coders to run the full suite of tests before committing
code changes to the team repository. By running all of
the tests until they pass, developers can receive
information that allows them to immediately validate
the quality of the code they have written.

Retrospectives. Retrospective meetings occur at the
end of a work cycle. This meeting is specifically
intended to allow the team to reflect on the work
process used in the previous iteration, and give the
team an opportunity to propose and adopt
modifications to the process in the next work cycle.
This process allows the team to be self-directed, and
vertically loads the team with the responsibility of
defining its own development process. Further, it
provides a feedback channel to evaluate the quality of
work for the entire team.

Burndown. The burndown chart provides a
graphical representation that compares the amount of
work planned at a given point in a work cycle with the
amount of work actually completed [20]. Providing
this information to the entire team, rather than
restricting it to a project manager, allows the team to
take action to ensure that the project does not fall
behind. By opening this feedback channel to the team,
the team is empowered and their jobs are vertically
loaded.

Automated Builds and Continuous Integration.
Each of these practices combine tasks, vertically load,
and open feedback channels. Automated builds refer to
the process of creating scripts to generate a complete
and deployable build [12]. This process can be
executed as needed by the team, and reduces the need
for a dedicated configuration manager role or team,
and places the responsibility for ensuring that the
packages are complete and deployable onto the agile
team.

Continuous integration refers to the process of
systematically and regularly both building and
deploying the code to a test server [7]. This process
opens a feedback channel that allows the team to
determine if a change has been completed incorrectly.
It provides feedback above and beyond the process of
automated builds, as it ensures not only that the code
runs on a developer’s machine, but that all of the
configuration changes necessary have been committed
to the code repository.

3996

Coding Standards. Coding standards refers to the
group’s established norms as to code-naming and
consistency [3]. This practice vertically loads the job of
an agile team member, as it is an established set of
rules by which the team will develop software. These
standards are not imposed on the team, but rather are a
form of self-management. Further, each member of the
team is empowered to suggest changes to the standards
either at a retrospective, or during a work cycle.

Refactoring. Refactoring refers to any number of
practices that lead to the removal of redundancy,
elimination of unused functionality, and refresh
obsolete designs [8]. The practice of refactoring both
combines tasks and vertically loads. Refactoring refers
to the commitment of the team to improve the structure
and reduce the complexity of the code whenever
necessary.

Importantly, refactoring is performed by the entire
team, whenever necessary, rather than by a particular
group, or in a process requiring architectural oversight.

Pair Programming. Pair programming refers to the
practice of two developers working together to develop
a portion of code [6]. Pair programming combines
tasks, vertically loads the job, and opens feedback
channels.

When pair programming, it is assumed that the pair
work together to first design the software, and then
build it. In some cases, writing the tests is considered a
light implementation of a design specification. In these
cases, some advocate that the first programmer write
the tests for the code, while the second provides
feedback. When programming the actual system code,
the pair reverses roles. Assigning authority for design,
development, and testing to the pair combines tasks,
and vertically loads.

In addition, the act of working in pairs allows for
mistakes to be identified in the act of coding. When the
observing coder notices a mistake in progress,
immediate feedback can be given to correct it. Further,
as pairs are intended to be fluid structures, recombining
regularly, feedback channels are opened across the
team to ensure that coding standards are being
implemented consistently across the team.

In this section of the paper, we described Hackman
& Oldham’s job characteristics model and job design
principles. Further, we illustrated the numerous ways
in which agile methods’ practices implement the job
design principled. In the next section of the paper we
present our research model and hypotheses.

3. Hypothesis Development

Our research model is presented in Figure 1.

Figure 1: Research Model

Our research model builds on previous research.
Our first hypothesis is well tested in the literature [e.g.,
1,15]. As our research model is incremental in nature,
we include this hypothesis as part of the established
nomological network. Each of the construct definitions
is included in Table 2.

H1. Higher perceptions of job characteristics are
positively related to job satisfaction.

As described in the previous section of the paper,
the use of the agile practices is highly congruent with
the job design principles proposed by Hackman &
Oldham. Because the use of the job design principles is
posited to increase the positive perceptions of work
characteristics, we propose:

H2: The level of agile method use will positively
impact job characteristic perceptions.

Additionally, we propose direct effects of agile use
on the outcome variables. Agile methodologists report
and some research has supported that agile teams have
higher engagement with the client, higher developer
motivation, and deliver software of higher quality and
with shorter project timelines. Because agile teams
experience higher project success rates

H3: The extent of agile use will positively impact
job satisfaction.

In the next section we present a research-in-
progress study that tests the hypotheses noted above.

4. Methodology

In order to test this preliminary model, we collected
survey data in June 2013, consisting of 104
respondents who were software development
professionals. We utilized the Empanel, Inc. software
developer panel to obtain our respondents.
Respondents were screened to ensure that they were
part of a software development team, and played a
non-management, non-customer role on the team.
Further, we screened for developers with more than 1
year of total experience, and at least six months at their
current organization.

In order to assure quality responses, we positioned
“quality assurance (QA)” questions such as “if you are
still paying attention, select ‘strongly disagree’” at
several points in the survey. If these QA questions
were not properly answered, the respondent was
removed from the sample. Finally, as the questionnaire
was long, and to provide additional assurance that

3997

respondents were paying attention, we dropped any
respondents who completed the questionnaire in less
than 10 minutes.

Table 2: Construct Definitions
Construct Name Definition
Outcome Variables:
Job Satisfaction The extent of positive

emotional response to the job
resulting from an employee’s
appraisal of the job as fulfilling
or congruent with the
individual’s values. (Morris &
Venkatesh 2010)

Perceptions of Job Characteristics:
Skill Variety The extent to which a job

requires the use of different
talents. (Hackman & Oldham
1980; Morris & Venkatesh
2012)

Task Identity The extent to which a job
involves completing a whole
identifiable outcome.
(Hackman & Oldham 1980;
Morris & Venkatesh 2012)

Task
Significance

The extent to which a job has
impact on the lives of people in
an organization or society in
general. (Hackman & Oldham
1980; Morris & Venkatesh
2012)

Autonomy The extent to which a job
provides the employee with
discretion to choose how the
work is done and to set the
schedule for completing the
work activities. (Hackman &
Oldham 1980; Morris &
Venkatesh 2012)

Feedback The extent to which carrying
out the work activities provides
the employee with clear
information about his or her
performance. (Hackman &
Oldham 1980; Morris &
Venkatesh 2012)

Independent Variable
Use of Agile
Practices

The extent to which the
respondent’s team utilizes the
12 practices defined in this
study.

362 respondents began the survey. Of these, 159
were screened out due to the initial screen questions
regarding team role and tenure. 125 more were
disqualified based upon the quality assurance tests
described above. The remaining 104 respondents
completed the entire questionnaire. Respondents who
completed the entire survey were compensated by
Empanel with points redeemable for cash, merchandise
or services. A breakdown of the sample is presented in
Table 3.

Table 3. Sample Breakdown
Team Role N Avg. Dev.

Exp.
Avg. Org.

Tenure
Team Lead 27 8.35 6.22
Architect 6 12.25 11.05
Developer 57 8.47 6.11
PM/Scrum
Master

6 9.93 9.30

QA/Testing 5 5.98 9.28
Business
Analyst

3 4.4 5.9

 We adapted some scales from previous research:

job satisfaction and job characteristics were measured
using scales slightly modified from the Hackman &
Oldham scales as used by Morris and Venkatesh [15].

To measure agile method use, we developed a new
set of items. Practitioners may use similar terms to
describe their practices in use, even as those practices
are not executed in the same manner. Because of this,
we attempted to develop scales that reflected practices
as described by the agile literature [e.g., 3,19]. In order
to develop this scale, one of the authors used agile
development publications and the input of an external
agile researcher, and an agile practitioner to develop an
initial set of items for each of the 12 agile practices of
interest. Once these items were developed, a sorting
exercise was performed using two additional agile
practitioners. Initial agreement on the scales was
approximately 60%. The items that did not perform
well were discussed with the practitioners who did the
sort. Based upon this discussion, the items were
modified or replaced, and a second round of sorting
was performed using three additional agile developers.
The agreement in this sorting exercise was over 85%.
These items were used for the study. Representative
sample questions from the questionnaire are shown in
Appendix B.

Further we measured negative affectivity as a
control [14]. Negative affectivity is a state factor;
individuals who measure high in negative affectivity
are more likely to experience dissatisfaction with
themselves and their lives than those who measure
lower [22]. Finally, we control for six demographic
variables: age, organizational tenure, gender,

3998

education, organizational tenure and total work
experience.

All statistical analysis for this study was performed
using STATA Version 12. Initially, we performed an
exploratory factor analysis using principal components
factors for only the items that were developed for the
agile practices. Because we did not expect the factors
to be orthogonal, we used oblique oblimin rotation. We
performed item culling (**), and due to the fact that the
items are new, we retained items that loaded at .6 or
higher, and had no cross loadings over .4. While we
developed measures for 12 agile practices, the items
loaded onto seven factors: Coding Standards, Daily
Standup, Refactoring, Pair Programming, Unit Testing,
Iterative Planning, and Automated Builds. All of the
factors retained mapped to the initial sorting exercise
except iterative planning. As indicated in our
discussion in section three, we grouped release
planning, iteration planning and velocity into a meta-
category called “work planning”. As such, it is not
surprising that the constructs were very similar and did
not discriminate. Iterative planning consists of two of
the items initially conceptualized as iteration planning,
and two of the items conceptualized into velocity. The
remaining items for all agile practices loaded on
multiple factors or failed to load and were dropped.

We then performed a full factor analysis using the
retained agile practices as well as the job
characteristics model and job satisfaction. When
performing the full factor analysis, two more agile
factors (coding standards and unit testing) failed to
discriminate and were dropped. Surprisingly, job
autonomy also failed to load independently from task
identity. We propose that this may be due to the
incongruity between Hackman & Oldham’s concept of
job autonomy and agile method philosophy. Hackman
& Oldham propose that job autonomy is the ability to
act alone without management interference. In
contrast, agile teams take a strongly team-oriented
rather than individually autonomous approach to
action. Because of this, we dropped job autonomy from
the analysis. The final EFA factor loading along with
the Cronbach’s alpha for each construct is presented in
Appendix A. Each of the Cronbach’s alphas was
greater than the recommended .70.

Finally, we performed a confirmatory factor
analysis on the retained measurement model. The CFA
indicated an acceptable fit (CFI = .933, RMSEA=.056,
SRMR=.064).

We assessed common method variance by using
Harman’s single-factor test [16], finding that the first
factor did not account for a majority of the explained
variance explained (only 32% of the 84% explained).
Based on this, common method variance was not
identified. Further, we took several steps to prevent

common method bias. We used different scale headers
for different constructs, and we grouped items by
construct so as not to disrupt the instrument’s logical
flow [16].

We tested for variance inflation factors (VIF) of the
agile factors, and the perceptions of job characteristics
factors. The highest VIF was 1.77, indicating that there
was not an issue with multicollinearity.

For this preliminary analysis, we created an index
for the use of agile methods by averaging the factor
scores for the five retained agile factors. We also
created an index for the JCM by averaging the four
retained JCM factors.

We performed path regression to test our model
with results presented in table 4.

We tested the moderating effect of JCM on AGILE
using the Sobel-Goodman test with bootstrapping [17].
This test confirmed the results of the path regression,
indicating that approximately 19% of the effect of
AGILE on JOBSAT is mediated by JCM.

These preliminary results of our study show that
there is a significant, partially mediated relationship
between the use of agile methods and job satisfaction.

6. Discussion and Next Steps

We developed an initial model of the impacts of
agile method use on job satisfaction. We found
preliminary support for our hypotheses of both the
direct effect of agile method use and the mediating
effect of the job characteristics perceptions on job
satisfaction. These results are summarized in Table 5.

In a test of 104 software professionals, the model
explains 39% of the variation in job satisfaction, and
30% of the variation on the perceptions of job
characteristics. Further, the model supports the partial
mediation of the impact of agile method use on job
satisfaction. The model contributes to the agile
software development and job satisfaction literature by
providing a theoretical lens through which to view the
impact of agile method use on job satisfaction, as well
as to provide evidence of the job design principles
effect on the perceptions of job characteristics. We
discuss next steps below.

One of the next steps in this research project is to
look more deeply into the relationships between the
individual agile method constructs and the job
characteristics constructs. We intend to collect
approximately 200 additional responses during the
summer of 2013 in order to perform more robust
analyses utilizing SEM techniques. Further, we intend
to investigate several moderation effects in order to
attempt to establish boundaries for the relevance of the
theory.

3999

Table 4: Regression Results
 Path I Path II

DV: Job Sat

JCM (H1) .227**

AGILE (H2) .299***

Negative Affect. -.253***

Age .012

Education .100

Gender .106

Ethnicity -.029

Org Tenure -.068

Experience -.071

DV: JCM

AGILE (H3) .446***

Negative Affect. -.134

Age -.092

Education -.034

Gender .156

Ethnicity .071

Org Tenure .091

Experience .148

N 104 104

F (9, 94) = 6.74 (8, 95) = 5.15

Prob > F 0.000 0.000

R2 0.3922 0.3027

p<.01, *p<.001

Table 5: Hypothesis Results

Construct Coeff. Support?
H1: JCM � JOBSAT(+) .227** Yes
H2: AGILE � JCM (+) .446*** Yes
H3: AGILE �
JOBSAT(+) .299*** Yes

In addition to furthering our knowledge of the

impact of agile method use on job satisfaction, future
research could also explore how the use of agile

methods impacts other relevant job perceptions such as
perceived work overload and/or turnover intention.

Further, the fact that the classic Hackman &
Oldham construct of Job Autonomy did not emerge as
a discriminant construct in this context is an
unexpected finding. As posited above, this may be
potentially due to the heavy team-orientation of agile
teams. Future research should investigate whether
constructs such as team autonomy may better reflect
the perception of agile teams.

From a practice perspective, the findings also
provide some initial evidence that may be utilized in
the field. Whether or not an organization chooses to
implement agile development methods, the
mechanisms of the practices investigated in this study
may still be applied. Providing teams with greater
control over the way that they perform work, greater
transparency regarding the project goals and objectives
via more frequent feedback from the customer, and
investing in automated testing can be achieved whether
an organization uses agile methods or not.

7. Limitations

As with all studies, there are a few limitations of
this study. The first limitation is with regard to the
generalizability of our findings. The sample drawn for
this study consisted of IS professionals working in
various organizations and industries throughout the
United States and should be fairly generalizable.
However, there are potential cultural and other
differences that may make this study less generalizable
across non-US contexts.

Further, while we conceptualized this study at the
individual level, there is some evidence from our
findings that this concept may be appropriately studied
at the team level, or with a multi-level model. As we
do not have multiple respondents from teams, we
cannot pursue a multi-level analysis with this data.
However, future research should include multiple
respondents from the same team.

8. Conclusion

We have described the preliminary findings of an
exploratory study on the use of agile information
systems development methods and job satisfaction.
Using a sample of 104 software development
professionals surveyed, our study finds evidence of the
positive impact of agile method use on perceptions of
job characteristics, and job satisfaction. We conclude
that there are complex relations still to be discovered
regarding the impact of agile method use on job
perceptions, and that the use of agile methods has the

4000

potential to make non-trivial impacts on the well-being
of software professionals.

9. References

[1] Ahuja, M.K., Chudoba, K.M., Kacmar, C.J., McKnight,
D.H., and George, J.F. IT road warriors: Balancing work-
family conflict, job autonomy, and work overload to mitigate
turnover intentions. MIS Quarterly 31, 1 (2007), 1–17.

[2] Ang, S. and Slaughter, S.A. Work outcomes and job
design for contract versus permanent information systems
professionals on software development teams. MIS Quarterly
25, 3 (2001), 321–350.

[3] Beck, K. Extreme programming explained: embrace
change. Addison-Wesley Professional, 2000.

[4] Beecham, S., Baddoo, N., Hall, T., Robinson, H., and
Sharp, H. Motivation in Software Engineering: A systematic
literature review. Information and Software Technology 50, 9
(2008), 860–878.

[5] Burke, R.J. and Greenglass, E. A longitudinal study of
psychological burnout in teachers. Human Relations 48, 2
(1995), 187–202.

[6] Cockburn, A. and Williams, L. The costs and benefits of
pair programming. (2001), 223–248.

[7] Duvall, P.M., Matyas, S., and Glover, A. Continuous
integration: improving software quality and reducing risk.
Addison-Wesley Professional, 2007.

[8] Fowler, M. Refactoring. Improving the design of Exiting
Code. Addison Wesley Longman, Reading, MA, 1999.

[9] Hackman, J.R., Brousseau, K.R., and Weiss, J.A. The
interaction of task design and group performance strategies in
determining group effectiveness. Organizational Behavior
and Human Performance 16, 2 (1976), 350–365.

[10] Hackman, J. and Oldham, G. Work Redesign. Addison
Wesley, 1980.

[11] Highsmith, J. Agile Software Development Ecosystems.
Addison Wesley, Boston, 2002.

[12] Küster, J., Gschwind, T., and Zimmermann, O.
Incremental development of model transformation chains
using automated testing. Model Driven Engineering
Languages and Systems, (2009), 733–747.

[13] McHugh, O., Conboy, K., and Lang, M. Using agile
practices to influence motivation within it project teams.
Scandinavian Journal of Information Systems 23, 2 (2011),
85–110.

[14] Moore, J.E. One road to turnover: An examination of
work exhaustion in technology professionals. Management
Information Systems Quarterly 24, 1 (2000), 141–168.

[15] Morris, M.G. and Venkatesh, V. Job characteristics and
job satisfaction: Understanding the role of enterprise resource
planning system implementation. MIS Quarterly 34, 1
(2010), 143.

[16] Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., and
Podsakoff, N.P. Common method biases in behavioral
research: A critical review of the literature and recommended
remedies. Journal of Applied Psychology 88, 5 (2003), 879.

[17] Preacher, K.J. and Hayes, A.F. Asymptotic and
resampling strategies for assessing and comparing indirect
effects in multiple mediator models. Behavior Research
Methods 40, 3, 879–891.

[18] Rutner, P.S., Hardgrave, B.C., and McKnight, D.H.
Emotional dissonance and the information technology
professional. MIS Quarterly 32, 3 (2008), 635–652.

[19] Schwaber, K. and Beedle, M. Agile software
development with Scrum. Prentice Hall Upper Saddle River,
NJ, 2002.

[20] Sutherland, J. Agile can scale: Inventing and reinventing
scrum in five companies. Cutter IT Journal 14, 12 (2001), 5–
11.

[21] Tessem, B. and Maurer, F. Job satisfaction and
motivation in a large agile team. In Agile Processes in
Software Engineering and Extreme Programming. Springer,
2007, 54–61.

[22] Watson, D. and Clark, L.A. Negative affectivity: the
disposition to experience aversive emotional states.
Psychological bulletin 96, 3 (1984), 465.

[23] Weiss, H.M. and Cropanzano, R. Affective Events
Theory: A theoretical discussion of the structure, causes and
consequences of affective experiences at work. (1996).

[24] West, D., Grant, T., Gerush, M., and D’Silva, D. Agile
development: Mainstream adoption has changed agility.
Forrester Research, (2010).

4001

Appendix A. Factor Loading Table

 PAIR STAND-
UP

REFAC ITER
PLAN

AUTO
BUILD

FEED-
BACK

TASK
SIG

TASK
ID

SKILL
VAR

JOB
SAT

Pair1 0.8120 0.3017
Pair2 0.8173
Pair3 0.7993
StandUp1 0.8609
StandUp2 0.8328
StandUp3 0.8634
Refac1 0.7374
Refac2 0.8171
Refac3 0.7902
IterPlan1 0.7480
IterPlan2 0.7178
IterPlan3 0.6800
AutoBuild1 0.3435 0.7423
AutoBuild2 0.8043
AutoBuild3 0.8511
Feedback1 0.7613
Feedback2 0.7615
Feedback3 0.7533
TaskSig1 0.7147
TaskSig2 0.8734
TaskSig3 0.6951
TaskID1 0.8896
TaskID2 0.8754
TaskID3 0.8064
Skillvar1 0.8102
Skillvar2 0.8377
Skillvar3 .3041 0.6471
JobSat1 0.8421
JobSat2 0.8495
JobSat3 0.7656

Cronbach’s
Alpha 0.8552 0.9086 0.8344 0.7963 0.8161 0.8115 0.7623 0.8950 0.7741 0.8830

Exploratory factor analysis results, oblique oblimin rotation. Cross loadings over .3 included.

Appendix B. Sample Agile Method Use Questions
Agile Method Use
(7-point scale anchored at (1) Strongly Disagree, (4) Could Agree or Disagree, (7) Strongly Agree)

Agile Method Use: Daily Stand Up

1. The team has a short meeting every day to discuss what is going on with the project.

Agile Method Use: Pair Programming

1. Our code is created by two people working together at a single computer.

Agile Method Use: Refactoring

�� Whenever we see the need, we improve the design of the code we have written previously.�

4002

