
Theme-based Product Release Planning: An Analytical Approach

Nishant Agarwal
BITS Pilani University, India

nishant21591@gmail.com

Reza Karimpour

University of Calgary, Canada
reza.karimpour@ucalgary.ca

Guenther Ruhe

University of Calgary, Canada
ruhe@ucalgary.ca

Abstract

Release planning is part of iterative software
development and strongly impacts the success of a
product by providing a roadmap for future releases. As
such, it is of key importance for lean and agile
organizations. Often features are highly dependent on
each other and the value of a release is influenced by a
set of bundled features constituting a theme.

This paper addresses the topic of theme-based
release planning. Themes might be defined, manually,
upfront or as the result of computer-based analysis. In
this paper, we propose an analytical approach to
detect themes from a given set of feature dependencies.
On top of an existing release planning methodology
called EVOLVE II, our approach applies clustering
performed on a feature dependency graph. The release
plans generated from such an approach are a balance
between two goals: (i) considering the values of
individual features, (ii) detecting and utilizing synergy
effects between semantically related features.

As a proof-of-concept, we present a case study
addressing the theme-based release planning for 50
features of a text processing system. The preliminary
evaluation results show improved release plans with
regards to accommodating themes.

Keywords: Release planning, theme-based product
release planning, feature dependencies, clustering, case
study.

1. Introduction

As software and other products are getting more
and more complex and larger in size, incremental and
iterative development is rapidly replacing monolithic
product creation approaches [1]. Release plans have to
consider various criteria like time-to-market, customer
satisfaction and risk [2]. Systematic methods for
product release planning are seen as an approach to
maximize stakeholder satisfaction, generate higher
revenues and achieve resource-efficient development
[3].

One of the key aspects of lean product management
is to focus on creating value, rather than blindly

shipping features. Certain features would have higher
value when they are released along with a specific set
of features, leading to better release plans [4], [5].
Offering semantically related features as a bundle helps
the product manager to deliver products that are
focused on a particular “theme” per release.

A theme is meta-functionality of a product release,
integrating a number of individual features under a
joint umbrella. It can be thought of as an abstraction,
i.e., a group of features that are inter-related to each
other in a way that they depict a context and can be
viewed as a single entity from a higher level.

Theme-based release planning aims at offering
features in a particular release in consideration of their
semantic cohesiveness. The release plans generated
from such an approach are a balance between two
goals: (i) considering the values of individual features,
(ii) detecting and utilizing synergy effects between
semantically related features.

The main contributions of the paper are:
• A clustering based approach for soliciting

themes from existing feature dependencies
(value, effort or usage related).

• Analytical approach for theme-based planning
which is based on an existing release planning
optimization method called EVOLVE II.

• Performing a case study for planning of 50
features and 81 feature dependencies and
subsequent comparison of the results gained
from application of theme-based release
planning versus planning on isolated features.

Through our approach, we were able to generate
theme-centered release plans of proven degree of
optimality in terms of overall value and quality.
Besides, the managers are given the flexibility to
administer the release planning process.

The paper is structured into eight sections. Section
2 describes related work. Section 3 presents a short
description of the formal approach to theme-based
release planning. The methodology and
implementation with integrated tool support are
presented in Section 4. The case study design is
described in Section 5, followed by the results and key
findings presented in Section 6. Threats to validity are

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.582

4739

discussed in Section 7. A summary and outlook for
future research is provided in Section 8.

2. Related work

2.1. Release planning

One of the most prominent issues involved in
incremental and iterative software development is to
decide upon which features should be offered when
and why. This decision is inherently complex and of
high impact on overall business success. Various
formal and informal methods for release planning
exist. For an overview, we refer to [3]. In Scrum [6],
releases are planned using a simple greedy algorithm
by selecting the highest priority product backlog items
into proposed releases. Schwaber [7] suggests that the
product owner should use a pool of imaginary Ping-
Pong balls to allocate relative business value to
backlog items. Greening [8] discusses various
challenges and application of Enterprise Scrum for
larger project teams.

Carlshamre [9] observed that a large number of
features might be non-isolated and depend on other
features. An overview of the state-of-the art in feature
dependencies is given in [10]. A solution
accommodating advanced feature constraints and its
empirical evaluation is presented in [11].

EVOLVE II [3] is an evolutionary release planning
method that tries to generate optimized and diversified
release plan alternatives. It is a complete framework
encompassing every stage of the release planning
process, from modeling to stakeholder input, plan
optimization, and post-optimization tasks like what-if
analysis. EVOLVE II has an associated decision
support system called ReleasePlanner (RP) [12] which
is designed to implement and support the planning
process. A stakeholder-centric variation of it was
evaluated in [13] for the planning of an agile tool
called Agilefant. In this paper, we apply
ReleasePlanner with the advanced capabilities of [11]
to accommodate more complex feature dependencies.
This allows us to determine optimized release plans in
consideration of extracted themes.

2.2. Theme-orientation

With regard to theme-based release planning, there
have been a few attempts by researchers to group
features into clusters, using different metrics and
perform release planning using these clusters. Feature
trees were used by Fricker and Schumacher et al. [14]
to perform release planning by grouping features by

constructing feature trees. They also model software
evolution with introduction of new features through
different graphs and visualizations. However, the entire
process of construction of trees and decision making is
mostly manual. Additionally, requirements in the
software descriptions are not prioritized in their
research. Even, some textual descriptions might lead to
different interpretations resulting in improper
groupings.

Agile and lean practices favor theme-based
releases. Leffingwell, in [4], states that a release is
characterized primarily by a release theme and a
release date, followed by a list of prioritized features.
He also mentions that in agile planning, a release plan
constitutes a release theme, list of features,
assumptions, dependencies and other components. It is
mentioned that strategic product themes are realized by
epics [5], and how epics are decomposed into specific
features.

Finally, there have been studies on requirement
clustering as well. For instance in [15], authors use
clustering and visualization to facilitate the discovering
of unknown requirement interdependencies.

3. Problem statement

In this section, a semi-formalized description of the
theme-based release planning problem is given. The
formulation is based on the definition of features and
their interdependencies, the definition of resource
constraints, and the description of the planning
objective.

3.1. Features and their interdependencies

This paper uses the concept of a “feature” as the
basic unit for release planning. Features are the
characteristics of the product offered to the customer.
According to the definition given by Wiegers [16], a
product feature is defined as a set of logically related
requirements that provide a capability to the user and
enable the satisfaction of business objectives.

We assume a set of features F = {f(1), f(2), … ,
f(N)}. The goal of theme-based release planning is to
assign the features to a finite number K of release (or
sub-release) options, such that the overall value of the
releases is maximized, where the value is determined
by both the value of the individual features and the
contribution to a specific theme of the product.

Features are often dependent on one another. Many
types of dependencies can exist between features.
Some of the dependencies are described below:

4740

Weak Precedence: Features A and B are in a weak
precedence dependency if feature B cannot be offered
in an earlier release than feature A. However, both the
features can be offered in the same release.

Strict Precedence: Feature A and feature B are in
strict precedence if feature A has to be offered in an
earlier release than feature B. Both of them cannot be
offered in the same release.

Coupling: Feature A is coupled to feature B
signifies that both the features have to be offered in the
same release creating a cyclic dependency between the
two.

Synergy: If features A and B have a synergy
dependency between them, then the value of both of
these features increases by a fixed percentage (given
by the user) in case they are offered together in a
release.

NAND: If features A and B are connected together
by a NAND dependency, then both of them cannot be
offered together in a release.

Based on the nature of their dependency, we
broadly classify feature dependencies into direct and
indirect dependencies:

Direct Dependencies: They reflect a degree of
similarity between features. Hence, features directly
dependent are assumed to have a degree of
commonality amongst them. Examples are coupling,
weak precedence, and synergy.

Indirect Dependencies: They reflect a degree of
dissimilarity between features linked together by such
dependencies. Hence, features connected by such
dependencies are assumed to differ from one another to
some extent and their occurrence together in a release
is not favorable. Examples are strict precedence, and
NAND.

3.2. Resource constrains

Each feature consumes different types of resources
for its implementation. Let us consider T different
resource types being relevant to implement the
features. Every feature f(i) requires an amount of
human resources r(i,t). Every release option k has a
certain amount of resource capacity of type t available.
This capacity bound is denoted by Cap(k,t). Thus, the
resource requirements for all features assigned to
release k must satisfy the following constraints:

∑ i: x(i)=k r(i,t) ≤ Cap(k,t) for k = 1…K and t = 1..T

Besides human resources, features might consume
financial resources as well. Human resources can also
be expressed in monetary terms taking into account the
financial effort to provide these resources.

In general, we have assumed linearity in the
resource constraints, e.g. the financial effort for a set of
features is defined as the sum of the financial efforts
for all individual features. This is not necessarily
fulfilled in all practical cases, but it typically represents
a good compromise between meaningfulness of the
model and the computational effort to solve it.

3.3. Objective function

Defining the objective of planning is critical for
success of planning. Formulation of these objectives is
difficult. As a simplification, objectives typically are
formulated as an additive function defined on the set of
features. For each individual feature, projections on its
potential value, urgency, frequency of use, usefulness
or risk of implementation are made. While often
individual functions are pursued, it appears to be more
realistic to consider a combination of them. We
combine them linearly into a single objective function
expressing the overall utility of a plan.

As discussed in [13], features are prioritized by
stakeholders and resource constraints are applied
before generating a release plan. The objective is the
maximization of a function F(x) among all release
plans x satisfying the technological and resource
constraints, with added advantage for features which
are part of a theme and occur together in a release. F(x)
is composed of the weighted average priority vector
defined for each feature f(n). For further details, see
[3].

4. Theme-based release methodology

To keep focus on the main contribution of the
paper, we concentrate on the new and additional
aspects of the extraction and consideration of themes
as part of the release planning process. On top of the
established planning process of EVOLVE II, we
describe three additional steps called graph
transformation, clustering and theme-based plan
generation. The three components are described below.

4.1. Graph transformation

4.1.1. Description. We consider the interdependencies
between features as underlying criteria for clustering
them into themes. As described earlier, we classify
dependencies into two broad categories, i.e., direct and
indirect. Direct dependencies reflect that there exists
some similarity between the participating features.
Similarly, indirect dependencies reflect that the
participating features are dissimilar. As each

4741

dependency has its own significance, we assign
weights depending upon the importance of the
dependency.

We construct a weighted graph G = (V,E), where V
represents a set of the features of the graph and E is the
set of edges representing the dependencies. If there is a
constraint between two features, then an edge is added
between them in E with positive (negative) weight for
a direct (respectively indirect) dependency. We have
used undirected edges because it is a generic approach
that incorporates all types of dependencies, some of
which are mentioned in the previous section. Directed
edges could not have incorporated dependencies like
synergy, NAND, XOR etc. Thus, an edge between two
features depicts the presence of a constraint between
them. The thickness of the edge represents the weight
of dependency.

The process of graph transformation can be broken
down into the following steps: First, select a constraint
from a list of constraints. For that constraint, add
features that appear in it as nodes, if they are not
already present in the feature graph. Then an edge is
added between every two features that are related to
each other by a dependency in that constraint. The
weight of an edge is determined by the type of
dependency it visualizes. Weights can be pre-assigned
to dependencies by the user. Finally, repeat the steps
above for all constraints in the list.

4.1.2 Illustrative example. We consider a project with
five features called A, B, C, D and E. Among them, the
following three dependencies are defined:

i. A, B, C and D are mutually coupled
ii. A and C precede E

iii. A and C are mutually exclusive
To model the feature graph for this example, we

start from the first dependency in which features A, B,
C and D are involved. As seen in Figure 1(a), we create
a graph in which each feature node is connected to all
other nodes that participate in the dependency
statement. The weight for each edge is set to one.

The second constraint links features A, C and E. In
the model, A, C and E are connected (see Figure 1(b)).
As A and C were already connected due to a previous
constraint, we increase the weight of the edge
connecting these two by one.

Finally, the third statement adds mutual exclusion
constraint between A and C. Hence, to emphasize the
negative effect of this constraint on previous
constraints, we deduct one from the weight of the A-C
edge (see Figure 1(c)).

(a) (b) (c)

Figure 1. Graph transformation for sample
dependencies

4.2. Clustering

Looking for themes from clusters of features, we
applied the Chinese Whispers (CW) [17] algorithm.
Form analyzing tool alternatives such as the one
described in [18], we decided using CW, as it is
simple, fast and interactive. The manager can alter the
parameters in the algorithm to get different clusters.

CW is an efficient graph-clustering algorithm
applicable to undirected, weighted graphs. It has a
linear (in the number of edges) run-time complexity,
which makes CW a very efficient algorithm. The
output is a non-deterministic partitioning of the graph.

The algorithm performs in a bottom-up fashion:
First, each node is assigned to a unique class. Then the
nodes are processed for a specific number of iterations
and inherit the strongest class in the local
neighborhood. This is the class whose sum of edge
weights to the current node is maximal.

In case of multiple strongest classes, one is chosen
randomly. Regions of the same class stabilize during
the iteration and grow until they reach the border of a
stable region of another class. As the classes are
updated immediately, a node can obtain classes from
the neighborhood that were introduced there in the
same iteration.

4.3. Creating theme-based planning
alternatives

ReleasePlanner [12] is a planning tool that uses
integer and constraint programming in conjunction
with specialized heuristics to generate optimized
release plans. It is designed to handle complex feature
dependencies and to accommodate resource
constraints. The tool takes a list of features,
stakeholder priorities, resource constraints, and
dependencies as input, and generates unique alternative
release plans. Following the diversification principle

4742

[3], it allows the manager choose the best plan for his
purpose.

However, RP is not inherently designed to manage
themes while making release decisions. For this reason,
we add additional synergy constraints in accordance to
the clusters to support themes in the planning process.
We formulate synergy constraints between all pairs of
features in a cluster, with an increment factor for a
pair. Defining clusters like this is advantageous
because it favors bigger subsets of clusters to be
formed. This aspect is integrated into the overall
objective function serving as the goal of planning.

Table 1. Feature list

Feature ID Feature content

1-10 New, Open, Close, Save, Save as, Search,
Protect, Print Preview, Print File, Send To.

11-20 Set Properties, Exit, Undo, Redo, Cut, Copy,
Paste, Paste Special, Go To, Find.

21-30
Replace, Select All, Default, Print Layout,
Web layout, Zoom, Header/Footer, Page
Numbers, Date/Time, Symbol.

31-40
Bookmark, Hyperlink, Font, Paragraph,
Bullets/Numbering, Change Case,
Background, Help, Search, Insert Table.

41-50
Delete Table, Format Table, Import Data,
Sort, Check Spell, Check grammar, Speech,
Mail Merge, Macro, Set Options.

5. Case study design and implementation

5.1. Context

For the purpose of evaluating our approach, we
tested the methodology on a word processing product
that incorporates 50 features and 81 feature
interdependencies. Release plans are generated looking
for three releases (iterations) ahead of time. The dataset
is taken from a graduate course project [19]. It is
available online at
http://pages.cpsc.ucalgary.ca/~ruhe/publications.htm#
CopyOfDataset. As the project is derived from the
commonly known word processing tool MS Word,
some intuitive dependencies were added. The set of
features is summarized in Table 1.

5.2. Implementation

We perform the steps outlined in Section 4 to
generate theme-based release plans for the given
dataset.

5.2.1 Graph transformation. We use an open source
tool Gephi [20] for graph visualization and application
of CW graph clustering. Dependencies are mapped as

edges, with suitable weights for different kinds of
dependencies, according to the rule stated earlier.

For our study, we used three kinds of dependencies,
namely weak precedence, coupling and synergy, with
weights of 1, 2 and 3, respectively. The weights are
decided based on user’s perception of the impact of
each type of dependency.

5.2.2. Clustering. We now apply the CW algorithm to
detect themes from the feature graph. This step favors
stakeholder involvement from the beginning. The user
may (or may not) group the features into rough clusters
beforehand, and the algorithm will refine them and use
them as a basic solution.

As the algorithm is interactive, for different
configurations of input parameters (number of
iterations=15, minimum edge weight=0.0, class
propagation type=top), it produces different clusters.
Hence, the product manager can choose the ones that
fit his purpose. Also note that the results of clustering
algorithm are meant to be taken just as a suggestion.
Managers can alter the clusters and feed them in a
release planning engine. For a specific input, the
algorithm generates different solutions in each
iteration. Figure 2 shows eight clusters generated by
CW.

Figure 2. Clusters generated from CW

5.2.3. Generation of theme-based release plans. We
use ReleasePlanner for finding optimized release plans,
considering themes of products. We added a new
dependency called Synergy same release into the tool
and used it to add constraints between pairs of features
in a cluster, as stated before. We then run the release
planning optimizer to generate plans, which fulfill all

- Circle represents a feature
- Color denotes a cluster
- Edges show dependencies

4743

the added constraints as well. Alternative plans of
different structure are generated, and the most suitable
one is selected (see [3] for further details).

6. Case study results and key findings

The results of the case study are presented in
Section 6.1. Three evaluation metrics are described in
Section 6.2 and key findings of the case study are
summarized in Section 6.3.

6.1. Case study results

Figure 2 shows a visualization of the results of the
clustering algorithm. Detailed results are shown in
Table 2. The nodes represent features and edges are the
dependencies. The weight of each dependency is set by
the user. The edge also becomes thicker as the number
of dependencies between a pair of features increases.
Each color represents a cluster. Both release plans
(with and without application of theme-centric
planning) are 100% optimal in their feature
assignment.

Table 2. Clustering results from CW

 Cluster Features
C1 Cluster 1 Insert Table, Delete Table, Format Table,

Import Data, Sort.
C2 Cluster 2 Undo, Redo, Cut, Copy, Paste, Paste

Special, Go To, Find, Replace, Select All
C3 Cluster 3 New, Open, Close, Save, Save as, Search,

Protect, Print Preview, Print File, Send To,
Set Properties, Exit, Default, Print Layout,
Web layout, Zoom, Header/Footer, Page
Numbers

C4 Cluster 4 Date/Time, Symbol, Bookmark, Hyperlink
C5 Cluster 5 Font, Paragraph, Bullets/Numbering,

Change Case, Background
C6 Cluster 6 Help, Search
C7 Cluster 7 Check Spell, Check grammar, Speech, Set

Options.
C8 Cluster 8 Mail Merge, Macro

Figure 3 shows a visualization of the release plan

generated with theme support. The figure clearly
depicts the number of features assigned to a release,
portion of clusters allotted to different releases and the
dependencies between them. The release plans don’t
totally depend on the themes that were fed as input.
The results are a tradeoff between the most optimal
assignment and theme incorporation. The vertices
denote the features in a release with colors denoting

different clusters. The release plans proposed with and
without clustering are depicted in Table 3.

Figure 3. Release plans with theme focus

In Section 6.3, we discuss the key findings of this
approach. The results clearly state that features in a
cluster tend to stay together in a release. The
methodology gives flexibility to the user to govern the
clustering process. Also, the overall value of plans
improved after applying our approach. The feature
distribution improved because additional synergy was
taken into account.

6.2. Evaluation metrics

We now empirically evaluate our results based on
three metrics aimed to characterize the degree of theme
cohesiveness.

6.2.1. Metric M1. Definition: For a given plan x,
M1(j,k,x) describes the percentage of features of
cluster j assigned to release k (related to the total
number of features of cluster j).

Release 1 Release 2 Release 3

4744

Figure 4 shows the results of the evaluation in
terms of M1 applied on release plans generated with
and without application of the theme focus.

6.2.2. Metric M2. Definition: For a given plan x,
M2(j,k,x) describes the percentage of features of
cluster j assigned to release k (related to the total
number of features of release k).

Figure 5 shows the results of the evaluation in
terms of M2 applied on release plans generated with
and without application of the theme focus.

6.2.3. Metric M3. Definition: For a given plan x,
M3(j,k,x) describes number of interdependencies
amongst the features released in release ‘k’. In other
words, it is the number of edges in the feature graph,
between the features released in a release ‘k’.

Table 4 shows the results of the metric applied on
release plans, before and after applying our approach.

6.3. Key findings

This section describes the key findings based on the
case study and its detailed analysis.

6.3.1 Features in a cluster tend to stay together. We
added synergy constraints for features in a cluster, if
they occur together. Hence, in the final release plan,
features in a cluster tend to be released together. The
RP tries to find a tradeoff solution between the
optimum feature assignment, and an assignment that
puts all features of a cluster together in one release.

Table 3. Release plans with and without the
application of theme based approach

R
elease

Feature set without
theme based approach

Feature set with theme
based approach

1 Insert Table, Delete Table,
Table Format, Sort, Import
Data, Help, Search, Font,
Bullets/Numbering, New
File, Open File, Close File,
Page Numbers,
Header/Footer, Undo a
Task, Select All, Cut,
Copy, Paste, Paste Special,
Go To, Find, Replace,
Date/Time, Symbol,
Bookmark, Hyperlink

Help, Search, Font, New File,
Open File, Close File, Save
File, Save as Different File
Format, Page Numbers, Print
Layout, Header/Footer, Undo
a Task, Select All, Cut, Copy,
Paste, Paste Special, Go To,
Find, Replace, Date/Time,
Symbol, Bookmark,
Hyperlink

2 Change Case, Send To, Set
Properties, Exit, Save File,
Save as Different File
Format, Search File,
Protect File, Print Preview,
Print File, Default, Print
Layout, Web layout, Mail
Merge, Macro, Set Options

Paragraph,
Bullets/Numbering, Change
Case, Background, Send To,
Set Properties, Exit, Search
File, Protect File, Print
Preview, Print File, Default,
Web layout, Zoom, Redo a
Task

3 Paragraph, Background,
Zoom, Check Spell, Check
Grammar, Speech, Redo a
Task

Insert Table, Delete Table,
Table Format, Sort, Import
Data, Mail Merge, Macro,
Check Spell, Check
Grammar, Speech, Set
Options

Figure 4. M1 values of plans before and after clustering

4745

Figure 5. Application of metric M2 before

and after clustering (with and without
theme focus)

Table 4. Release coherency values M3

 Without clustering With clustering
R1 57 60
R2 19 12
R3 6 21
Total 82 93

Considering metric M1, if we compare the release

plans of both the approaches, C3 appears to be spread
across all three releases, if the theme-based
methodology was not applied. After applying the
methodology, C3 is spread to just two releases. Also,
in the conventional approach, cluster C5 is spread
across all three releases, while with the new approach,
a major portion of C5 is allocated as theme in Release
2.

Considering metric M3, we conclude that, as a
tendency, there has been an increase in the number of
interdependencies between features packaged into a
release. With the exception of Release 2, the
interdependencies increase for releases 1 and 3. Hence,
the features in a release are more inter-related if our
approach is applied.

Releases are now more theme-specific. Our goal
was to have a release plan where each release reflects a
theme of a product. Considering the M2 metric, for
each release, there has been an improvement in the
coverage of clusters. In the old approach, Release 1, 2
and 3 had portions from 6, 4 and 4 different clusters,
respectively. After applying the theme based approach,
the number reduced to 5, 3, and 3, respectively. Also,
the distribution of clusters has improved in our
approach, leading to more theme-centric release plans.

There is a huge scope of variations in results. To
keep up with the agile and lean methodologies, our
approach allows scope of incremental development by
involving the product manager to vary different aspects
to generate different release plans. The release plans
are not only dependent on the way the clusters are fed
into the software. The plans can be altered by changing
the number of releases, resource capacities per release,
increment factor in synergy constraint, etc. Hence, the
project manager can alter these and can get desired
changes in the results.

6.3.2. Product manager governing the clustering
process. As stated earlier, the product manager can
govern the clustering process. Various input
parameters in the algorithm allow the user to get
different clusters for different configurations. Also,
weak groups can be pre-specified so that the algorithm
refines them into better clusters. Hence, the product
manager can play an important role in deciding the
final clusters. It can serve as a strategy to tap hidden
business value. The proposed method tends to release
dependent features together, thus promoting specific
and theme- based products, rather than releasing
features from different domains. Hence, specificity of a
release can be tapped as a unique marketing strategy
and can be used to get the hidden business value,
which otherwise might have been ignored.

6.3.3. Improved release plans. Adding additional
synergy value to a group of features makes the release
planning optimizer understand that it is beneficial to
release them together. For example, in the earlier
release plan, Save was not released together with open
or new. There is no value of a word processing tool, if
we are not able to save our work. With the
implementation of additional synergy, the RP
understands that if save is release along with Open,
New, etc., it will add more value to the release.
Similarly, Formatting options like Paragraphing,
Bullets etc., are offered together in the theme-base
release plans.

Current implementation leads to constraint
explosion. Our current implementation of this approach
is based on the synergy relationship that may lead to
constraint explosion for bigger datasets and is not
scalable.

7. Threats to validity

Although the results for the current dataset look
convincing and the evaluation metrics suggest the
release plans are theme-based, yet there are some
threats to validity of our approach.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

B
ef

or
e

A
fte

r

B
ef

or
e

A
fte

r

B
ef

or
e

A
fte

r
R1 R2 R3

C8
C7
C6
C5
C4
C3
C2
C1

4746

Firstly, dependencies cannot be the sole criteria for
clustering features into groups. There are many other
approaches like, textual comparison of feature names,
textual comparison of feature description, counting
references between codes of features etc. that can
symbolize themes equally well.

Secondly, we can modify the clustering algorithm
more, so that it gives more freedom to the user to
govern the way clusters are formed. There can be
functionalities like the user could manually redistribute
features amongst clusters after the algorithm groups
them. In addition, the PBI size could be included in the
clustering process. Instead of treating features, just as
mere nodes, the algorithm should consider them as
features with value, and apply clustering accordingly.
Also, iterative value addition to subsequent releases
should also be taken into consideration.

Thirdly, using undirected edges for the feature
graph also has a drawback. Though it depicts that the
participating features are connected in some way, it
does not clearly show which feature is dependent on
the other, in case of ‘precedence’ or ‘requires’
dependency. However, it is used as a generic approach
so that it can accommodate several other types of
dependencies mentioned in the paper.

Lastly, the synergy constraint should be modified
to solve the problem of constraint explosion. Instead of
putting a constraint for every pair of feature, it should
be designed in a way such that it favors maximum
features from a cluster to be allocated to one release.
Furthermore, additional evaluation metrics should be
designed to judge whether the approach actually gives
theme based release plans. Additional metrics to
evaluate if a given cluster symbolizes a theme or not
should also be proposed.

8. Summary and future research

We have presented an explorative study on theme
based product release planning. We have discussed its
meaning, advantages and a methodology to implement
it:
• Theme-based release planning helps the project

manager to tap hidden business opportunities by
releasing highly interdependent features together.

• The approach favors delivering specific theme-
oriented products in each release, as opposed to
releasing generic products.

• The method allows stakeholder involvement in the
early stages of release plan development, in terms of
clustering features, feature prioritization, thus
promoting agile methodology.

• A tool support and detailed evaluation supports our
methodology of theme based release planning.

Future work is targeted on mitigating existing
threats to validity and improvement of the
methodology. We will focus on modifying the
clustering algorithm to allow more stakeholder
participation and create alternative clusters that
symbolize the idea of theme. The next milestone is to
modify the synergy constraint, so that the number of
constraints does not increase too much with the
addition of new features. Most importantly, we are
planning for intensive real-world evaluation of the
proposed theme-centric planning approach.
Additionally, integration with issue management
systems like JIRA may be considered. The latest
version of ReleasePlanner supports importing from and
exporting to JIRA.

With regard to the validity of this work, one other
future direction can be to test the entire approach on a
live project possibly by integrating to project’s backlog
dataset, generating the plans and receiving feedback
from development team.

Acknowledgments

This research was supported by the Natural
Sciences and Engineering Research Council of Canada,
NSERC Discovery Grant 250343-12. Authors would
like to thank Fazlul Chowdhury for providing access to
the project data used for the case study. Thanks also to
Amanpreet Singh for useful discussions in the course of
the project and anonymous reviewers for their
constructive feedback.

References

[1] C. Larman and V. R. Basili, “Iterative and incremental
developments: a brief history,” Computer, vol. 36, no. 6, Jun.
2003, pp. 47–56.

[2] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B.
Saleem, and M. U. Shafique, “A systematic review on
strategic release planning models,” Inf. Softw. Technol., vol.
52, no. 3, 2010, pp. 237–248.

[3] G. Ruhe, Product Release Planning: Methods, Tools,
and Applications. Auerbach Publications, 2010.

[4] D. Leffingwell, Scaling software agility: best
practices for large enterprises. Addison-Wesley
Professional, 2007.

[5] D. Leffingwell, Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and the
Enterprise, 1st ed. Addison-Wesley Professional, 2011.

4747

[6] K. Schwaber and M. Beedle, Agile software
development with Scrum. Upper Saddle River: Prentice Hall,
2002.

[7] K. Schwaber, Agile project management with Scrum.
Microsoft Press, 2004.

[8] D. R. Greening, “Enterprise Scrum: Scaling Scrum to
the Executive Level,” in 2010 43rd Hawaii International
Conference on System Sciences (HICSS), 2010, pp. 1–10.

[9] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell,
and J. Natt och Dag, “An industrial survey of requirements
interdependencies in software product release planning,” in
Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, 2001, pp. 84–91.

[10] Å. G. Dahlstedt and A. Persson, “Requirements
Interdependencies: State of the Art and Future Challenges,”
in Engineering and Managing Software Requirements, A.
Aurum and C. Wohlin, Eds. Springer Berlin Heidelberg,
2005, pp. 95–116.

[11] M. Przepiora, R. Karimpour, and G. Ruhe, “A hybrid
release planning method and its empirical justification,” in
ACM-IEEE international symposium on Empirical software
engineering and measurement, Lund, Sweden, 2012, pp.
115–118.

[12] ReleasePlanner [Online]. Available:
www.releaseplanner.com. [Last access: Sep-2013].

[13] V. Heikkilä, A. Jadallah, K. Rautiainen, and G. Ruhe,
“Rigorous Support for Flexible Planning of Product Releases
- A Stakeholder-Centric Approach and Its Initial Evaluation,”

in 2010 43rd Hawaii International Conference on System
Sciences (HICSS), 2010, pp. 1–10.

[14] S. Fricker and S. Schumacher, “Release Planning with
Feature Trees: Industrial Case,” in Requirements
Engineering: Foundation for Software Quality, vol. 7195, B.
Regnell and D. Damian, Eds. Springer Berlin / Heidelberg,
2012, pp. 288–305.

[15] S. Reddivari, Z. Chen, and N. Niu, “ReCVisu: A tool
for clustering-based visual exploration of requirements,” in
Requirements Engineering Conference (RE), 2012 20th IEEE
International, 2012, pp. 327–328.

[16] K. E. Wiegers, Software requirements. Microsoft
press, 2003.

[17] C. Biemann, “Chinese whispers: an efficient graph
clustering algorithm and its application to natural language
processing problems,” in Proceedings of the First Workshop
on Graph Based Methods for Natural Language Processing,
Stroudsburg, PA, USA, 2006, pp. 73–80.

[18] U. Brandes, M. Gaertler, and D. Wagner,
“Experiments on Graph Clustering Algorithms,” in
Algorithms - ESA 2003, G. D. Battista and U. Zwick, Eds.
Springer Berlin Heidelberg, 2003, pp. 568–579.

[19] F. A. Chowdhury, “Full Course Project - SENG 652,”
University of Calgary, Dep. of Computer Science, 29 pages.

[20] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An
open source software for exploring and manipulating
networks,” in International AAAI Conference on Weblogs
and Social Media, 2009, vol. 2.

4748

