
Building Evolvable Software Using Normalized Systems Theory:
A Case Study

Gilles Oorts
University of Antwerp

Normalized Systems Insitute
gilles.oorts@uantwerp.be

Herwig Mannaert

University of Antwerp
Normalized Systems Insitute

herwig.mannaert@uantwerp.be

Philip Huysmans
University of Antwerp

Normalized Systems Insitute
philip.huysmans@uantwerp.be

Jan Verelst

University of Antwerp
Normalized Systems Insitute

jan.verelst@uantwerp.be

Peter De Bruyn
University of Antwerp

Normalized Systems Insitute
peter.debruyn@uantwerp.be

Arco Oost

Normalized Systems eXpanders
factory

arco.oost@nsx.normalizedsyste
ms.org

Abstract
Normalized Systems (NS) theory has recently been

proposed as an approach to develop agile and
evolvable software by defining theorems and design
patterns for software architectures. In this paper we
discuss the NS development process, which is
illustrated by means of an elaborate description of a
case regarding a budget management application
developed according to the theory. Advantages of the
NS approach, such as swift application development
through code expansion and the transfer of additional
NS design knowledge to new applications, are equally
discussed.

1. Introduction

Over the last decade, an ever-increasing amount of
research conducted has been conducted on agile
software development [3]. Although the progress made
in this research domain has proven to be very valuable
in improving agile development processes (e.g. [9],
[4]), less attention has been paid to making the
software itself more agile. In this paper, we describe a
project in which the focus is on the evolvability of the
software architecture itself. If an organization is to be
competitive in current volatile and competitive
economic conditions, it needs to be agile across its
organizational structure, enterprise architecture and
information systems [1]. Therefore it is important for
organizations to focus on implementing software that
supports changes in the organization, as this can be
considered as an important step or precondition in
establishing an agile organization.

Recently Normalized Systems (NS) theory has been
proposed as a theory for making software more agile
[13]. Here the ability for software to be easily changed
is called software evolvability. This evolvability can be
achieved by adhering to a limited set of theorems that
result in a very specific and evolvable software
architecture. The NS theory has been extended for
several years now, up to a point that it has become
fully theoretically founded [8] and implemented in
several software projects. Although the theoretical
contributions of NS have been widely documented in
previous research (e.g., [11,12,13]), few reports are
available on real-life cases in which NS was employed.
Nevertheless, NS offers advantages in both theory and
practice. In this paper, we document such a
development project to (1) show the feasibility of the
NS approach for building evolvable software in
practice and (2) to highlight the benefits of a real-life
NS development project.

As the case description requires an understanding
of the NS theory, its foundations are discussed in
Section 2. The practical implications of these
foundations will be explained in Section 3, by
describing the NS conforming development of a budget
management application for a local Belgian
government. In Section 4, we will discuss one specific
advantage of NS development, which is the inclusion
of NS knowledge into new applications. In the next
Section we discuss some observations, contributions
and future research. We end the paper with a
conclusion in Section 6.

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.585

4760

2. Normalized Systems

The Normalized Systems theory postulates that
software architectures should exhibit evolvability due
to ever changing business requirements [8,11,12,13].
In the theory, evolvability is operationalized by the
absence of combinatorial effects. Such an effect is
defined as a change of which the impact is not solely
related to the kind of the change, but also to the size of
the system it is applied on. As the NS theory assumes
that over time software is subject to an unlimited
evolution (i.e., both additional and changing
requirements), combinatorial effects have a highly
undesirable effect on software evolvability. Indeed, if
changes to a system depend on the size of the ever-
growing system, these changes become ever more
difficult to cope with (i.e., requiring more effort) and
hence reduce the evolvability of the system.

The theoretical foundation of NS reasoning is the
concept of systems stability from systems theory [11],
which states that a bounded input (i.e., changing
requirements) should result in a bounded output (i.e.,
changes in the software). Additionally, significant
progress has recently been made in establishing the
theoretical concept of entropy as a second foundation
for the NS theory [10].

Normalized Systems theory proposes a set of four
theorems and five expandable elements that constitute
the foundation for developing evolvable software
through pattern expansion of the elements. The
theorems are formally proven principles (cf. [12])
which offer a set of necessary conditions that should be
strictly adhered to, in order to avoid combinatorial
effects. The NS theorems have been implemented in
NS elements. These elements provide a set of
predefined higher-level structures, patterns or
“building blocks” offering an unambiguous blueprint
for the implementation of the core functionalities of
realistic information systems, adhering to the four
stated theorems [13].

2.1 Theorems

NS theory proposes four theorems, which have
been proven to lead to combinatorial effects if not
adhered to [11]:

• Separation of Concerns (SoC), requiring that

every change driver (concern) is separated from
other concerns in its own module;

• Data Version Transparency (DvT), requiring that
data entities can be updated without impacting the
entities using it as an input or producing it as an
output;

• Action Version Transparency (AvT), requiring that
an action entity can be upgraded without
impacting its calling components;

• Separation of States (SoS), requiring that each step
in a work-flow is separated from the others in time
by keeping state after every step.

These theorems are not new in themselves but

relate to well-known and often tacit design heuristics
of software developers, as mentioned explicitly in [12].
For example, well-known concepts such as an
integration bus, a separated external workflow or the
use of multiple tiers can all be seen as manifestations
of the Separation of Concerns theorem [12]. The value
of the four NS theorems can however be found in the
fact that they (1) make certain aspects of that heuristic
design knowledge explicit, (2) offer this knowledge in
an unambiguous way (i.e., violations against the
theorems can be proven), (3) are unified based on one
single postulate (i.e., the need for evolvable software
architectures having no combinatorial effects) and (4)
have all been proven in a formal way in [11].

2.2 Normalized Systems Elements

Consistently adhering to the four NS theorems is
very challenging for developers due to two reasons.
First each violation of the NS theorems during any
stage of the development process results in a
combinatorial effect. Secondly, the systematic
application of these theorems results in very fine-
grained structures. Therefore five expandable elements
were proposed which make the realization of NS
applications more feasible. These elements are
encapsulated high-level patterns that comply with the
four NS theorems:

• data element, being the structured composition of

software constructs to encapsulate a data construct
into an isolated module (including get- and set-
methods, persistency, exhibiting version
transparency,...);

• action elements, being the structured composition
of software constructs to encapsulate an action
construct into an isolated module;

• workflow element, being the structured
composition of software constructs describing the
sequence in which a set of action elements should
be performed in order to fulfill a flow into an
isolated module;

• connector element, being the structured
composition of software constructs into an isolated
module allowing external systems to interact with

4761

the NS system without calling components in a
stateless way;

• trigger element, being the structured composition
of software constructs into an isolated module
which controls the states of the system and checks
whether any action element should be triggered
accordingly.

More extensive descriptions of these elements are

for example available in [11,12,13]. Each of the five
elements discussed are in fact design patterns, as they
represent a recurring set of constructs encapsulated in
the element. Each element contains the intended core
construct and a set of relevant cross-cutting concerns
(such as remote access, logging, access control, etc.).
This construction entails that the elements facilitate a
set of anticipated changes that ensure the elements are
evolvable, as more thoroughly described in [12]. As
discussed in [2], the definition and identification of the
NS elements is based on the implications of the set of
NS theorems. As an example we can quote how the
theorems Separation of Concerns (SoC) and Separation
of States (SoS) indicate the need to formulate a
workflow element. Such a workflow element allows
the stateful invocation of action elements in a
(workflow) construct. Indeed the SoS theorem requires
this kind of stateful invocation and the SoC theorem
demands that the concern of invocation is handled by a
separate construct.

The implementation of a data element in a Java
Enterprise Edition (JEE) implementation (a widely
used platform for the development of distributed
systems [14]) has also been described in previous
work. In [12] it is discussed how a data element Obj is
associated with a bean class ObjBean, interfaces
ObjLocal and ObjRemote, home interfaces
ObjHomeLocal and ObjHomeRemote, transport
classes ObjDetails and ObjInfo, deployment
descriptors and EJB-QL for finder methods.
Additionally, methods to manipulate a data element’s
bean class (create, delete, etc.) and to retrieve the two
serializable transport classes are incorporated. Finally,
an agent class ObjAgen provides the remote access.
Combined, these elements provide the main concerns
and cross-cutting concerns of the data element
instance. Similarly, the functionality of other NS
element instances is provided by about 10 classes per
instance. Comparing this to for example the observer
design pattern defined by [5], the complex architecture
of NS conforming applications becomes clear.
Whereas the observer pattern of Gamma requires two
classes and two interfaces, the NS implementations
requires seven NS elements and thus about 70 classes.
Consequently, it is clear that in order to prevent
combinatorial effects, a very fine-grained modular

structure needs to be adhered to. How the complexity
of the large amount of classes is coped with will be
discussed in the next section.

Moreover, the complete set of elements covers the
core functionality of an information system.
Consequently, as such detailed description is provided
for each of the five elements, an NS application can be
considered as an aggregation of a set of instantiations
of the NS elements. This is shown in Figure 1. The top
level of this figure shows the five NS elements. Based
on these elements, the functional analyst will formulate
instantiations that are the foundations of a NS
application. Figure 1 shows how the application
discussed in this paper includes amongst others
Budget, Budget change and Product instances of the
NS data element. At run time, these instances are
instantiated once more (i.e., form a double
instantiation) to form specific occurrences of, for
example, a budget.

Figure 1. Principle of double instantiation in
Normalized Systems

2.3 Pattern expansion

In practice it seems very unlikely to arrive at the
very fine-grained modular structure implied by the NS
theorems without the use of higher-level primitives or
patterns. The process of defining these patterns and
transforming them into code is shown in Figure 2,
which will be discussed in Section 3. As NS proposes a
set of five elements that serve as patterns, this figure
shows how the actual software architecture of NS
conforming software applications can be generated in a
relatively straightforward way by the use of NS
expansion. This expansion mechanism is an essential
part of making the NS theory applicable in practice.

4762

3. The NS Budget Application Case

Because of the fundamental new insights the
discussed Normalized Systems theory offers in the
development of evolvable software, there was a need
for a new software development process that supports
the NS theorems. In this section we will explain and
discuss this development process by using a completed
real-life case as an exemplar.

Over the last few years, several evolvable software
applications have been built according to the NS
theory. Although these applications have been quoted
as examples of the feasibility [12] and theoretical
soundness [8] of NS theory, none of them have been
extensively elaborated on in academic literature. In this
paper we will therefore discuss one of the finished NS
projects at length. As this is the first time we describe a
NS case in this way, we have specifically chosen a
project with limited complexity. This allows us to fully
explain the application at hand while also explaining
the development process and discussing some
interesting observations.

The case we have chosen is the development of an
application to manage the budgets of a local Belgian
government. The administration of this government
does intensive tracking of its budgets. The overall
available budget is divided into very fine-grained sub-
budgets, complicating the budget assignment,
reservation, fixations, changes, etc. This was
traditionally done using the flexibility offered by pivot
tables within Microsoft Excel. These tables allowed for
the selection of subsets of a specific budget and for
quick calculation of the available budget for a
department, activity, etc. In an effort to enable the
integration of these budget management functionalities
with project management, budget reporting and budget
simulations functionalities, a project was initiated to
capture the budget management functionalities in a
stand-alone application.

However, the development of this application
presented some challenges. The first one was that the
new application needed to satisfy the flexibility and
versatility the users got used to in managing the
budgets in Microsoft Excel pivot tables. To cope with
this challenge, it was decided to focus the initial
application solely on budget management and its user-
friendliness. This application would then be a sound
basis for further extending the application to include
the other requirements of budget reporting, simulation
and project management. These incremental
expansions of the application will be supported by the
fact that NS applications can be changed and expanded
without the needed effort increasing due to the size of
the application.

 Another challenge was that the budget
management tool is very context-specific. Budgets are
defined at different levels of the specific government.
Therefore budgets can be managed on both very
general and very fine-grained levels, but the
application needs to include the composition of
budgets at all levels. More specifically, budgets are
defined by a combination of the following six
parameters: department, activity, article, domain,
product and budget year. The unique combination of
these six parameters is the key of a budget in its most
specific manifestation. However, budgets also need to
be consulted as combinations of these parameters. For
instance, the aggregated budget of a specific
department or the combined budget of a product in a
specific department also need to be retrieved. This
specific composition of budgets could not be realized
in common ERP-systems and therefore a custom
application had to be built.

These challenges were however all successfully
coped with in the development process, and this in no
small part due to the NS development process. Five
sequential steps, which are shown in Figure 2,
characterize this development process. These steps will
be discussed in-depth in the following sections,
together with their interpretation in the budget
application development process.

3.1. Functional analysis

As in most software projects, the first stage of the
budget application development process is the
functional analysis. Similar to other development
methodologies (such as the object-oriented approach),
this analysis is advised to be done in terms of the
constructs defined by the approach itself. In NS
development, this means that real-world requirements
in any form (e.g., use cases, natural language
description, domain class diagrams, Business Process
Modeling Notation (BPMN)-diagrams, etc.) are
translated into instantiations of the five NS elements
discussed earlier.

For the budget application, a manageable set of
requirements was extracted together with end users.
System analysis happened in two sessions in which an
Entity Relationship Diagram (ERD) and a table with
data elements were drawn up. The ERD diagram that
resulted from these sessions is shown in Figure 3. This
figure shows the identified NS element instantiations
of the application. As the application is very data-
intensive, the application could be built only using NS
data element instantiations.

4763

Figure 2. The NS development process
(adapted from [2])

The functional requirements can be easily

explained using the ERD. As visually represented in
the ERD, the Budget is the central data element
instance of the application. The current budget is
defined by the aggregation of changes to that budget
over time. The consultation of the current budget is
therefore done in real-time, meaning that the
application calculates the current budget based on all
previous Budget changes. This is done for data
integrity reasons, as one single error in the calculation
can lead to erroneous data stored in a database. By
calculating all current budgets in real-time, no budgets
are saved to a database and errors cannot get stored
permanently. The Department, Activity, Article,
Domain, Product and Budget year instances on the left
of the figure are used to define the most granular
budgets. A combination of these instances can be used
as a key for defining a budget, as a specific budget
belongs to a single department, activity, etc.
Furthermore the application allows for the grouping of
articles in Economic groups, which in turn make up a
Budget estimate. This estimate is used to draw up a
target budget at the beginning of a budget year. The
management of budgets is controlled by the data
element instances on the right side of the ERD.

Fragments of a budget can be reserved (i.e., a Budget
fixation) for a specific cause and the fixations are
allocated to a specific supplier. Over time, these
fixations can be called in Budget calls, so the budgets
can be partially spent when needed. For these budget
calls, Invoices and Work orders need to be made so the
calls can be successfully supported with the necessary
paperwork.

3.2. Descriptor files

Once the requirements have been formulated as NS
element instances, the instantiations need to be coded.
This is done in descriptor files, which are text- or
XML-based files describing the inputs for the
expanders. For example, in case of a data element
instance, the pattern expansion mechanism would need
a set of parameters including the basic name of the data
element instance (e.g., Budget), context information
(e.g., component and package name), data field
information (e.g., data type) and its relationships with
other element instances. This shows that with a
minimum of input, descriptor files can be used to
expand code into large applications. Through the
process of expansion, this minimum of information can
be transformed in a full application, as discussed in the
next section. For the budget application, all 15 element
instances were defined in descriptor files.

3.3. Code expansion

In the next phase, the descriptor files get expanded
into the code of a functional application. This is done
by software (called NS expanders) developed
especially for this purpose by the Normalized Systems
eXpanders factory (NSX). The NS expanders expand
the descriptor files into skeleton source code for all the
identified instantiations, together with all deployment
and configuration files required to construct a working
application on one of several supported technology
stacks. The classes of the skeleton code represent the
modular structure of the defined NS elements.
Moreover, the required boilerplate code is included as
well. For the budget example, this would be the set of
classes and data fields: the bean class BudgetBean,
interfaces BudgetLocal and BudgetRemote, etc..
Because the code expansion process is typically very
fast, the NS development process allows for iterative
and interactive sessions with end users. In these
sessions, changes to functional requirements and data
models can immediately be made in the descriptor
files, followed by a re-expansion into a new version of
the application.

4764

Figure 3. Entity Relationship Diagram of Budget application

Therefore, the correctness of requirements, data
model and descriptor files can be validated within a
single or very few sessions. This way, the first three
steps on the NS development process -analysis,
creation of descriptor files and expansion- are in fact
an iterative loop that is repeated as long as needed.
Because the descriptor files can be easily changed and
re-expanded, this loop can be gone through very fast,
leading to short development cycles. Once the end user
expectations have been fully verified by the iterative
development cycles, the basic functionalities of the
application are fixed, which significantly reduces the
risk of scope creep in the remainder of the project.

For the budget application, the expanded code base
consisted of 379 Java files and 586 Strut files. The fact
that these files are all part of the 15 NS elements
defined in the functional analysis, shows how the
meticulous adherence to the theorem of Separation of
Concerns impacts the granularity of modules in the
codebase.

3.4. Extensions

Although the process of expansion delivers a fully
working application that includes all defined NS
element instances, the functionalities of the application
most likely still need to be extended in the fourth phase
of the development cycle. This is because the NS

expanders are carefully designed to only expand code
that fully complies to the NS theory. However, not all
code can already be expanded in this way, implying
that two types of requirements may still need to be
added to the code of an expanded application: (1)
requirements that are very specific to the application
and (2) generic requirements that have not yet been
“Normalized” and therefore not have been included in
the NS expanders. The first type of requirements will
always have to be implemented by developers, as it
concerns extensions for specific customer requests.
These context-specific extensions are kept out of the
NS expanders, as these should only contain (general)
architectural deductions from the four NS theorems.
The latter manual additions are due to the fact that
extending the NS expanders to include new features in
a normalized way is a difficult process: any addition to
the expanders needs to be in full accordance with the
NS theory. Therefore, not every feature of NS
applications can yet be expanded and manually coded
extensions are needed to enhance the functionalities of
the expanded application. When building applications,
the developers however constantly look for
possibilities to include extended features in the NS
elements, as has been done with some features of the
budget application.

Adding extensions to the expanded code needs to
happen in a controlled way, as experience shows that
combinatorial effects can be injected in software when

4765

they are not included in the right way. This has
however been resolved by only allowing extensions to
be added in two controlled ways: (1) by adding it in a
separate class or (2) by adding extensions within pre-
specified anchors in the expanded code. An automated
harvesting mechanism then allows for the extensions to
be extracted from the expanded code and stored
separately. After a re-expansion, the extensions can
then be re-injected in the expanded code without any
impact on the process of expansion. When a new
version of the expanders is built (for example with new
frameworks in the web tier or in the persistence tier, or
with minor upgrades), the application is re-generated
by first expanding the skeleton code and then injecting
the extensions. This re-expansion process is highly
automated and can be performed quickly, but can still
result in conflicts between the extensions and the
skeleton code. That is one reason why NS applications
should regularly be regenerated; another reason is that
with this minimal regeneration effort, all new features
in the expander code (for example, new user interface
widgets, value types or validation rules) are made
available in all regenerated applications.

As the functional analysis and code expansion can
be done fast, most of the effort in building the budget
application was invested in programming the
extensions. Of the total development time of 30 man-
days, about 90% of the effort was spent on developing
the extensions. Of these 27 man-days of development
time, approximately 60% of the effort was spent on
actually incorporating the extensions and the other
40% was spent on incorporating the extensions of the
budget case into the NS elements in a way that the
same extensions can be expanded in a fully evolvable
way in future NS applications.

For the budget application, two types of extensions
were needed to satisfy the user’s requirements: logic
extensions and graphical extensions. The logic
extensions included operations that are not included in
the NS expanders because of their context-specific
nature, such as the on-the-fly calculation of the current
budget based on all previous budget changes,
validation of uniqueness of budgets, validation of
budgets calls not exceeding available budget, etc.
These extensions only account for about 30% of the
effort spent on extensions. The second type of
extensions was responsible for much larger
development efforts, amounting to 70% of the
extension development time and therefore about 60%
of the total development time of the application. The
high costs of the graphical extensions were caused by
the impossibility of expanding advanced graphical
screens at the time of the start of the development of
the budget case. As the application contains data
regarding budgets at several different levels, the end

users required different overviews of budgets (e.g., by
department, activity, etc.) which were not included in
the standard screens the NS. Therefore, a great deal of
extensions was needed to provide this advanced screen
functionality. In this way, these advanced screens
incorporate a similar functionality as the Excel pivot
tables that were used before. These advanced screens
also allow the presentation of several NS data element
instances within the same screen, so-called “composite
screens”.

Although developing these advanced screens was a
time-intensive task, we need to stress that the effort to
produce an important part of these composite screens
can be re-used in future applications as well. Therefore
approximately 40% of development time spent on the
advanced screens is estimated to be in other
applications. Additionally, while the initial attempts
required 600 lines of code to correctly show a
composite screen, it only takes approximately 60 lines
of code in newer applications.

3.5. Launch and Use of application

Once the extensions have been added to the
expanded application, an NS application needs to go
through testing, verification and data input phases
before it can be deployed. Because of the rapid
expansions of applications, issues that are otherwise
proportionally irrelevant, become some of the biggest
issues during an NS project. This is the case since the
resolution time of these issues cannot be shortened,
even though the overall development time of NS
applications is drastically shortened. Some of these
issues are for example technical challenges such as
data conversion and input. In the budget case, data
from the replaced application and spreadsheets was
fragmented and in different data standards. Therefore,
data conversion and input were labor-intensive and
provided one of the biggest challenges of the project.
To handle these issues, import mechanisms have been
developed to import existing data in new NS
applications. This import is managed through either
manual input screens or automatically generated
import clients. The chosen method depends on the
amount of instances that need to be imported. When
there are a lot of instances to be imported, this is done
by automated import clients. Sometimes these import
clients need to be extended depending on the (type of)
data to be imported, which means this will only be
done if manual input is too cumbersome because of a
large amount of instances.

The 500 existing budgets of the previous budget
application were imported using clients. First, 500
instantiations of the budget element were created and
their value was set by an initial budget change for

4766

every budget. Therefore this import process also
included a verification whether each budget was
unique (i.e., each budget should have its own unique
key) and whether data for every empty budget field
were present.

4. Transferring knowledge to new
applications

An important aspect of the development of NS
applications is that new insights obtained from
practical application of the theory are constantly being
added to the NS knowledge base. These insights range
from newly normalized features in the NS elements
that can be re-used in future applications to new
general reflections on building Normalized software.
The knowledge management processes that support
capturing, storing, transferring and applying these
knowledge have been discussed in previous work [2].

During the development of the budget application,
several of such new insights have been gained which,
since then, have been applied to other applications.
Although there plenty examples of new knowledge and
additions amassed from the budget case, we will
discuss three of the most important types in the next
paragraphs.

Through the repeated application of the NS
theorems, software modules become more and more
granular. This is mainly because of the Separation of
Concerns theorem that requires concerns to be
separated. For software to become truly evolvable, this
separation should be applied very thoroughly. For the
graphical screens, this for example means that an
empty page is generated and all graphical items such as
tables, figures, buttons, etc. are included as separate
elements. This far-reaching separation of elements
allows these elements to be changed without affecting
other parts of the page (i.e., being evolvable) and it
allows for the re-use of these elements (e.g., a table) in
other pages. Another example of concerns that have
been separated in the budget application is the
presentation of a clickable button and the logic that
determines what needs to happen when the button is
clicked. Clicking the “view” button, for example,
needs to trigger a selection model to determine which
type of presentation will be used to present the
requested data. Normally these selections are hard-
coded in JavaScript for each button, meaning the
selection model for the type of graphical representation
for several pages cannot be changed in one single
location in the code. However, by separating these
concerns it becomes possible to change both concerns
(i.e., the button click and graphic selection model)
independently and at their own single location. But

decoupling the code according to the NS theorems
requires insight and well thought-out planning. For
example, where does the graphic selection model
belong: it is not related to the included table or the
pagination, so where does it belong?

The second addition to the NS knowledge base
gained from the development of the budget application
is the advanced GUI screens (i.e., composite screens).
Although these cannot yet be directly expanded
(extensions are still necessary), the goal is to make this
possible one day. However, thanks to the efforts made
during the budget application development, some
components of the composite GUI screens will be
readily available to be (re-)used. To make complete
GUI screens available out-of-the-box, some
complexities needed to be overcome. According to the
developers, the complexity resides in the fact that end
users have different perspectives on a specific data
element. Consider for example the data element
“Contract”. Some users are interested in the legal
aspects of a contract, while others are interested in the
financial aspects. These different interpretations of the
same element should be translated in the presentation
of the data element instances to the users, so that
different data related to the same data element can be
shown to users (i.e. different views/projections). For
example, some possible views for the budget
application are (1) which budget is available, (2) which
budget is billed and (3) which budget is fixed. These
distinctions are however not yet fully understood and
implemented. But once they are, the more complex
GUI screens can also be included in the expansion
mechanism.

A third addition to the NS knowledge base was the
use of an improved extension harvesting mechanism.
As discussed earlier, extensions can be added either in
separate classes or between pre-specified anchors in
the implementation code. An automated harvesting
mechanism can then harvest all extensions and re-
inject them after the application has been expanded
again. This process makes the extensions and expanded
code independent. This mechanism has been developed
during the budget case project. Before that, extensions
were added by replacing existing implementation
classes. This however led to duplicated code when
these extensions needed to be applied in several double
element instances. Additionally, the code extensions
were not clearly identifiable which resulted in a loss of
code (or manual retrieval) when a re-expansion was
performed. Therefore the new harvesting mechanism
was devised and has been used in the development of
all NS applications since the budget application.

4767

5. Discussion

Some interesting observations can be made from
the description of the case in the previous section.

First, we can notice that -although both their
discussion in this paper as the period of time spent on
them in the project are rather lengthy- the NS
extensions are anything but limitations of NS
development projects. As the NS approach allows for a
very fast way of developing the basic application (i.e.,
by descriptor files and expansion), the time spent on
developing extensions becomes the only significant
component of the complete development process, as
shown by the 90% effort spent on the extensions (i.e.,
27 man-days). Because of the expansion mechanism,
time spent on programming skeleton code and
“boilerplate code” is minimized. The overall effect of
the expansion on the total development time is
therefore positive, as the extensions would take up the
same time when building an application according to a
non-NS approach. This is shown by the equal
development times (of 16 man-days) for application-
specific requirements in both development processes in
Figure 4. Furthermore, an audit shows that only 5% of
the total code of the budget application was “touched”
after expansion. That is, only 5% of the total
application code is made up of extensions. However,
the actual implementation of these extensions
accounted for 54% (or 16 man-days) of the total
development effort of the application (i.e. 90% of total
development time was spent on extensions, of which
only 60% was used for actually implementing them).
As manually programming extensions is far more labor
and cost-intensive than using automated code
expansion, we can state that the NS development
provides a great advantage over traditional
development of software. This advantage is also shown
in Figure 4. The time needed to program the skeleton
code (including boilerplate code) is significantly
reduced from approximately 30 man-days to only 3
man-days due to the expansion of NS elements. To
make this reduction possible, the NS development
process however requires an investment of
development time in order to incorporate NS
extensions of the application into the NS elements. For
the budget management application 11 man-days
needed to be invested in this phase. This additional
effort is however needed to further extend the
advantages of NS expansion so these extensions (e.g.
advanced GUI items, logic extensions) can be rapidly
expanded into future applications without the need for
manual programming (as discussed in Section 4).

Second, we already mentioned that the functional
analysis in the NS development process is done in
terms of the constructs of the approach (i.e., instances

Figure 4. Comparison of estimated
development times

of the 5 NS elements). We believe the NS

development approach can actually completely fulfill
this promise, which could be criticized for Object-
Oriented (OO) analysis and design methods. In NS,
contrary to “objects”, the elements can truly be
considered anthropomorphic. This is because the NS
elements also include cross-cutting concerns such as
persistency, security, etc. Therefore one can portray a
complete application by only needing to describe its
NS element instances. For the NS budget application
presented in Figure 3, this means the presented ERD
shows all aspects of the application, as all cross-cutting
concerns are automatically included in the shown
element instances. In contrast, a description of the
anthropomorphic objects in object-oriented
programming does not suffice for such a complete
application description. Indeed, additional classes to
provide persistency, security etc. need to be added
manually to the model later on, thereby weakening the
anthropomorphic character of the implemented class
diagram.

A final observation that can be made from the case
is that the development of evolvable software does not
need to entail exorbitant costs. Although building
evolvable software is shown to be very complex, the
NS expansion mechanism and the transfer of
knowledge to new applications help to streamline this
apparent impossible development. Moreover, the
evolvable structure of an application will result in far
lower adaptation and integration costs during later
phases of the life cycle of the IT application. This is
because new functional requirements can be
implemented without the effort needed for a specific
change to the system growing over time (i.e., when the
application becomes larger and more complex).
Presuming volatile environments that require regular
changes to the organization and its information
systems, this leads to an overall lower Total Cost of
Ownership of the IT application.

4768

This paper also has a number of contributions.
First, the description of the development of an NS
application shows the practical feasibility of the NS
design theory [8]. In doing so, it addresses the requisite
relevance cycle in design science research [7] and
fulfills the “expository instantiation” component of the
design theory anatomy defined by Gregor and Jones
[6]. Therefore this paper has a theoretical contribution
as well, as we once more demonstrated the
completeness of the NS theory as a design science
theory. Third, the case description shows the
complexity involved with developing evolvable
software. Considering the described application is
rather small, the issues and difficulties cited in this
paper show that developing evolvable software is
surprisingly challenging. This paper however
demonstrates how these challenges can be overcome
thanks to the NS theorems, NS development process,
pattern expansion, etc.

Several possibilities for future research can also be
defined. As discussed in this paper, the included
budget application is rather small and only includes
data element instances. Therefore an evident first
extension would be the discussion of more complex
cases performed according to the NS theory and its
development process. In such research, one could study
whether additional challenges and problems arise
because of the larger or more complex nature of the
developed applications. A second possible route for
future research is to do a quantitative study comparing
the lead time and Total Cost of Ownership of NS
applications to non NS-compliant software. However,
it should be noted that such a study is very challenging
and resource-intensive.

6. Conclusion

In this paper we discussed how the NS theory can

be applied to develop evolvable software. This was
shown by means of the extensive description of a
budget management application developed according
to the NS theory and its development process.

7. Acknowledgment

P.D.B. is supported by a Research Grant of the
Agency for Innovation by Science and Technology in
Flanders (IWT).

8. References
[1] Bieberstein, N., Bose, S., Walker, L., and Lynch, A.
Impact of service-oriented architecture on enterprise systems,
organizational structures, and individuals. IBM systems
journal 44, 4 (2005), 691–708.

[2] De Bruyn, P., Huysmans, P., Oorts, G., et al.
Incorporating Design Knowledge into Software development
using Normalized Systems. International Journal On
Advances in Software 6, 1 (2013).

[3] Dyba, T. and Dingsøyr, T. Empirical studies of agile
software development: A systematic review. Information and
Software Technology 50, 9-10 (2008), 833–859.

[4] Fitzgerald, B., Hartnett, G., and Conboy, K. Customising
agile methods to software practices at Intel Shannon.
European Journal of Information Systems 15, 2 (2006), 200–
213.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley Professional, 1994.

[6] Gregor, S. and Jones, D. The anatomy of a design theory.
Journal of the Association for Information systems 8, 5
(2007), 312–335.

[7] Hevner, A.R., March, S.T., Park, J., and Ram, S. Design
Science in Information Systems Research. MIS Quarterly 28,
1 (2004), 75–105.

[8] Huysmans, P., Oorts, G., De Bruyn, P., Mannaert, H., and
Verelst, J. Positioning the normalized systems theory in a
design theory framework. Lecture Notes in Business
Information Processing 142, (2013), 43–63.

[9] Layman, L., Williams, L., and Cunningham, L.
Motivations and measurements in an agile case study.
Journal of Systems Architecture 52, 1 (2006), 654–667.

[10] Mannaert, H., De Bruyn, P., and Verelst, J. Exploring
entropy in software systems : towards a precise definition and
design rules. (2012), 93–99.

[11] Mannaert, H., Verelst, J., and Ven, K. The
transformation of requirements into software primitives:
Studying evolvability based on systems theoretic stability.
Science of Computer Programming 76, 12 (2011), 1210–
1222.

[12] Mannaert, H., Verelst, J., and Ven, K. Towards
evolvable software architectures based on systems theoretic
stability. Software: Practice and Experience 42, (2011), 89–
116.

[13] Mannaert, H. and Verelst, J. Normalized systems: re-
creating information technology based on laws for software
evolvability. Koppa, 2009.

[14] Oracle. Java platform, enterprise edition.
http://www.oracle.
com/technetwork/java/javaee/overview/index.html.

4769

