
Towards Fully Declarative High-level Interaction Models:
An Approach Facilitating Automated GUI Generation

Filip Kis, Cristian Bogdan

Media Technology and Interaction Design
KTH Royal Institute of Technology, CSC

Stockholm, Sweden
{fkis, cristi}@kth.se

Hermann Kaindl, Jürgen Falb

Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
{kaindl, falb}@ict.tuwien.ac.at

Abstract—Models of high-level interaction design are usually
based on procedural representation. For knowledge repre-
sentation and reasoning, however, declarative representations
are preferred. In this paper, we define purely declarative
high-level interaction models based on theories of human
communication. In contrast, earlier attempts to define purely
declarative models resulted for pragmatic reasons in a mixed
representation including procedural constructs within the over-
all declarative model structure. We show how the declarative
models can be operationalized into behavioral (abstract) UI
models corresponding to those generated from the mixed
representation. Based on an implementation integrated with
an existing framework for GUI generation, we show that and
how it is possible to automatically generate GUIs from purely
declarative models as well.

Keywords-interaction design; discourse model; declarative
representation; GUI generation;

I. INTRODUCTION

High-level interaction models in the context of automated

generation of user interfaces, on the level of concepts and

tasks of Cameleon Reference Framework [1], are today

primarily procedural models. That is, they encode behavior

(e.g., a sequence of tasks) directly and explicitly.

In this paper, we propose declarative representation in-

stead. We take the definition of declarative from Knowledge

Representation and Reasoning (KR) in Artificial Intelligence

(AI) where it means to (only) represent what is needed, and

not an explicit control flow [2]. Mathematical logic is an

example of declarative representation.

The high-level interaction models employed in this paper

are discourse-based models [3], [4], [5]. In such models, the

high-level interaction between the user and the interactive

system is represented, according to certain principles of

human communication, as a discourse. For instance, the

system provides some information (presents data) to the

user and asks questions (asks for input). The user provides

answers (gives values for the input) and, depending on

the answers, the system provides some other information

or asks more questions. Discourse modeling applies such

concepts (informing, questions, answers, etc.) for specifying

Discourse Models. From such models, automated generation

of (G)UIs is already possible.

In the area of discourse-based models there was an attempt

to come up with declarative models, but after a while certain

constructs were needed in order to achieve a complete

operationalization of the model that turned out to be Pro-

cedural Constructs [4]. In effect, discourse-based models

are currently a combination of procedural and declarative

constructs (a bit like the programming language PROLOG).

In the context of interaction modeling, the following

example should motivate a certain advantage of a declarative

representation. Assume a sequence of interactions, where a

product category needs to be selected before a product can

even be chosen (using a GUI). Of course, any task-based

approach and the current discourse-based approach with Pro-

cedural Constructs can represent such a sequence explicitly.

However, it is hard to automatically check whether such

a sequence is correctly specified. Our proposal for a fully

declarative approach determines the sequence automatically

if and only if the variable of product category is bound. In

this sense, the sequence is also automatically correct.

So, there was a challenge to devise a purely declarative

approach to discourse-based modeling. This meant to ex-

plore discarding the Procedural Constructs for this endeavor,

and to be complete and precise in terms of logic conditions

assigned to the Discourse Model. This is necessary for

enabling operationalization of such models in the course of

generating user interfaces from them.

This paper presents the declarative models, inspired by

human communication, and an algorithm for their opera-

tionalization that results in the same finite-state machinery

as the one operationalized from models that include Proce-

dural Constructs. Furthermore, we use the existing tools to

generate the same graphical user interfaces (GUIs) based on

these finite-state machines.

The remainder of this paper is organized in the following

manner. First we provide some background material on

discourse modeling for GUI generation. Next, we sketch

the essence of declarative vs. procedural Discourse Models.

After that, we define the purely declarative models and

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.59

412

demonstrate, on an example, how they can be operational-

ized. Based on that, we formalize the algorithm used for

the operationalization. Next, we present how these opera-

tionalized models can be used to generate GUIs. Finally, we

reflect on our results and compare them with related work.

II. DISCOURSE MODELING FOR UI GENERATION

In discourse modeling the fundamental unit of communi-

cation (information, question, answer, etc.) is a Communica-
tive Act, derived from Speech Act Theory [6]. The Commu-

nicative Acts are represented as leafs in the model trees of

Figures 1 and 2. They are hierarchically organized according

to Rhetorical Structure Theory (RST) [3], [7]. RST proposes

a way to structure the parts of a discourse, with a focus

on the rhetorical value of these parts. For example one

sentence in the discourse can be an Elaboration of another,

and a third question can be an Elaboration of the first

Elaboration, thereby forming a hierarchical tree structure

(RST relations represented as rectangles in Figures 1 and

2). Other such RST Relations are: Background (a sort of

reversed Elaboration), Alternative, Joint etc. In addition

to RST Relations, the approach presented in [4] introduces

Procedural Constructs such as the IfUntil shown in Fig-

ure 1. Figure 2 shows a similar model with only standard

RST Relations, as the declarative approach presented here

does not need to extend RST.

Along with RST, several other theories of human com-

munication are at the foundation of UI generation based on

discourse modeling. RST defines the relations between Ad-
jacency Pairs derived from Conversation Analysis [8]. This

research field proposes ways of conceptualizing naturally-

occurring human communication. For example, answers are

usually adjacent to questions that were posed. In discourse

modeling, Adjacency Pairs are represented as diamonds, as

illustrated in Figures 1 and 2. In other cases, a question

may be followed by a whole conversation, before it is fi-

nally answered, and Conversation Analysis calls that interim

conversation an Inserted Sequence which was adopted in

the discourse modeling approach to UI generation. Inserted

Sequences can be used to split bigger models (of complex

UIs) into smaller, more manageable elements.

We illustrate how Communicative Acts are used by way

of an example, shown in two versions in Figure 1 (with

Procedural Constructs) and Figure 2 (only standard RST Re-

lations), where a dialog between a user (Customer) and an

interactive system (OnlineShop) is modeled. Communica-

tive Acts shown in green can be uttered by the OnlineShop
system. In yellow we show the Communicative Acts that can

be uttered by the Customer. The types of Communicative

Acts used in the example are OpenQuestion (a question

accepting many kinds of answers), ClosedQuestion (a

question that requires the answer to be part of a known set),

Answer (to an open or closed question), etc.

Annotations of the RST tree in the Discourse Model

represent constraints under which certain communi-

cation takes place. For example, in Figure 1 the

right branch of the Elaboration node (annotated with

productCategory.products > 0) in the product category

selection takes effect only if the selected category contains

at least one product.

Using these modeling elements, the discourse modeling

approach can generate GUIs including their behavior [5], [9].

To achieve that, a number of pragmatic decisions have been

made, including the introduction of Procedural Constructs.

We propose an alternative approach below.

III. DECLARATIVE VS. PROCEDURAL DISCOURSE

MODELING

Generating behavior from the model representation (op-
erationalization) is an important aspect for most UI mod-

eling approaches. Operationalization of Discourse Models

involves determining a state machine from the Discourse

Model. A first attempt to build such a state machine was

proposed in [10]. Authors of [4] found that this approach

poses challenges in modeling certain behaviors like specific

sequences and repetitions. To address this issue they intro-

duced Procedural Constructs.

The introduction of the Procedural Constructs was a

matter of discussion because it added procedural elements

to an essentially declarative model, and mixing discursive

with behavioral elements may be viewed as a non-coherent

design. On the other side, the Procedural Constructs are

easily recognizable by the users of the modeling approach

(designers) who are trained, like many people are nowadays,

in procedural programming. Since this discussion is not

unusual in research or in design (of user interface modeling

languages in this case), both sides agreed to aim for testing

their approaches with modelers and comparing the results.

For that, the first step was to devise a working operational-

ization of purely declarative Discourse Models, thus showing

that it is possible to generate behavior (state machine) from

Discourse Models without involving procedural constructs.

The declarative model operationalization, proposed in this

paper, makes use of logical constraints that annotate the tree

edges. These constraints are used as logical pre-conditions

for enabling the respective parts of the communication.

Therefore, besides focusing on the declarative nature of RST,

the logical constraints are also used in a declarative manner.

Below we demonstrate by example an operationalization

of a declarative Discourse Model and present an algorithm

for operationalization of such models. The resulting state

machine from the example model presented is compared

to the results of the operationalization according to the

approach described in [4]. We show that the state machines

resulting from the two approaches (and therefore also as the

GUIs generated based on them) are the same.

413

Figure 1. Online shop Discourse Model, procedural version

414

Figure 2. Online shop Discourse Model, declarative version

415

IV. DECLARATIVE MODEL OPERATIONALIZATION

Now let us explain how it is possible to automatically

generate a state machine, representing the GUI behavior,

based on a purely declarative model. A Partitioning State
Machine (PSTM), used to represent the behavior in discourse

modeling, comprises various states that the communication

can be in. In principle, each state in the PSTM corresponds

to a screen (or dialog box) in the GUI runtime of the

Discourse Model. This screen is rendered from a subtree

(partition) of the Discourse Model tree that contains only

the communication elements present in the respective state.

Note that these screens can, in principle, be of potentially

unlimited size. Breaking down screens to the size of device

displays is explained in [9].
The declarative Discourse Model of the online shop

example is shown in Figure 2 and it can be compared with

the version of the model in Figure 1 that uses Procedural

Constructs. The left part of the dialog models the com-

munication that represents the actual shopping, before the

user proceeds to checkout. Since the dialog can either take

place before checkout or at checkout, an Alternative RST

relation is used to model that.
In the left subtree, a product category selection is made

and, when the discourse of product category choice is

modeled, an Elaboration of the category takes place, by

a discourse allowing the user to choose a product. As an

Alternative, a checkout option is presented (left most). In

the right subtree, a discourse represents the situation when

checkout was chosen, providing overview of the selected

products and entering the billing information.
Comparing this to the model in Figure 1, we can see that

the main difference relation-wise is the lack of the Proce-

dural Construct IfUntil on top, replaced by a declarative

(and standard RST) Alternative construct. Also, to model

the replacement of IfUntil both edges of the replacing

Alternative node need to be annotated with constraints.

One keeps the annotation of the then edge of the original

node, while the other gets its negated form.
To simplify the description of the declarative approach

introduced here, a shorthand notation is used for each

constraint (Boolean expression) as follows:

A ← checkout = true (1)

B ← productCategory.products > 0 (2)

The corresponding constraints, with shorthand names, are

also shown on top of the original expression in Figure 2.

Based on these constraints and the declarative Discourse

Model, we will show how the PSTM can be generated, by

first determining the possible states and then the transitions

between the states and the events that trigger the transitions.

A. Determining the states
In the proposed declarative approach, the states can be

derived by first computing all the constraint combinations

present in the Discourse Model tree. In our example (see

Figure 2), there are 2 constraints (A,B) which can have

one of 2 values (true or false) and, therefore, we have

22 = 4 combinations:

c1 ← ¬A ∧ ¬B (3)

c2 ← ¬A ∧B (4)

c3 ← A ∧ ¬B (5)

c4 ← A ∧B (6)

From here the viable states are computed by applying

the constraint values and tree hierarchy. For instance, in

the example tree (Figure 2), for constraint combination c1
(¬A ∧ ¬B) the right branch of the topmost Alternative is

pruned (since it is annotated with A which is false) and the

right branch of Elaboration (since B is false as well). This

leaves a subtree with only leftmost Communicative Acts,

which corresponds to the first state, before the Customer
made any category selection. Similarly, c2 results in a

subtree that includes also the Background relation (since

now B is true), which is the second state. Thus we derived

the following two states:

S1 : ¬A ∧ ¬B (7)

S2 : ¬A ∧B (8)

Several constraint combinations can result in the same

subtree. For example, for the constraint combinations c3 and

c4 the whole left branch (annotated with ¬A) of the topmost

Alternative is pruned because A is true. The remaining

subtree (right branch) has no occurrence of constraint B.

Therefore, the value of B does not matter and the combina-

tions c3 and c4 result in just one state:

S3 : A (9)

Once we have determined which branches remain (af-

ter the pruning described above) in each state, the next

step is to specify which Communicative Acts are part

of the respective state (can be uttered in that state), and

therefore can be represented on the GUI screen created

from the respective state. For our online shop example, in

state S1, the Communicative Acts that can be uttered are

ProductCategory ClosedQuestion (CQ) followed by its

Answer (A), together forming an Adjacency Pair denoted

CQ−A(ProductCategory), and Informing checkout
(I). This corresponds to the leftmost Adjacency Pair in the

tree and the single communicative act above it.

CA(S1) = {CQ−A(ProductCategory), I(checkout)} (10)

In state S2, after the category has been selected, the op-

erationalization engine will show extra options for adding

a product to the shopping cart (CQ − A(SelectProduct))
and provide the information about the selected category

(I(Category)).

416

CA(S2) = {CQ−A(ProductCategory), I(checkout)

CQ−A(Product), I(ProductCategory)} (11)

In state S3, the generated GUI will not contain anything

shown previously and only present the Communicative Acts

as rendered for entering the credit card information (OQ−
A(CreditCardInfo)) and the products in the shopping cart

(I(ShoppingCart)).

CA(S3) = {OQ−A(CrediCardInfo), I(ShoppingCart)} (12)

B. Determining transitions

To determine the transitions between the states, the events

that can change the values of the constraints need to be iden-

tified. Events can either be the utterance of Communicative

Acts or they can be external events (e.g., events like “the

robot arrived at place X”, from the robot communication

model shown in [11], or timer events). In the online shop

example, all constraints depend only on the utterances

of Communicative Acts and are not modified by external

events. The values of the constraints A,B can change based

on the following Communicative Acts (noted as CA(x)
where x is the constraint):

CA(A) = {I(checkout)} (13)

CA(B) = {CQ−A(ProductCategory)} (14)

That is, constraint A, which is checkout = true,

can only be changed by the leftmost Informing
Communicative Act (marked with set checkout). The

productCategory.products > 0 constraint, noted B, can

be changed by the Answer to the ClosedQuestion with

annotation ending in set productCategory.

After concluding which events (Communicative Act ut-

terances in our case) a given constraint depends on, we

can find out in which states these events can occur. This is

achieved by checking which state a respective event-firing

Communicative Act is part of (10 – 12) . Some of these

Communicative Acts can be part of more than one state.

This gives us the associations between the states and the

constraints. In the online shop example, these associations

are as follows (noted as S(x) where x is the constraint):

S(A) = {S1, S2} (15)

S(B) = {S1, S2} (16)

In this example, A can be changed in S1 because the

Informing Communicative Act that can change A (13)

is part of S1 and S2 (10, 11). B can be changed by

the Answer to ProductCategory ClosedQuestion (14),

which is also part of S1 (10) and S2 (11).

We now know in which states each constraint condition

can change. This information tells us whether transitions

S1 S2

B

S3

¬B

A A

¬A �¬B ¬A �B

A

Figure 3. State machine for the online shop discourse.

between various states exist. For example, the transitions

between S1 (¬A∧¬B) and S3 (A) are obtained by changing

the constraint value of A. Since A can change in S1 (see

(15)), the S1 → S3 transition exists. Furthermore, since A
cannot be changed in S3, S3→ S1 does not exist. The sole

transition between S1 and S3 is visible at the left part of

Figure 3. Similarly, there is a single transition from S2 to

S3, which is visible on the right side of Figure 3.

The transitions between S1 (¬A∧¬B) and S2 (¬A∧B)

are obtained by changing the constraint value of B. In this

case transitions exist in both directions because B can be

changed in both states (16). These transitions are shown on

the top of Figure 3.

C. Determining events that lead to transitions

In the PSTM the state transitions are triggered by the

events (Communicative Act utterances in our example). The

next step in the declarative Discourse Model operational-

ization is to refine the state machine by showing which

Communicative Acts need to be uttered for a certain tran-

sition to take place. Such a state machine is also produced

by the approach using Procedural Constructs described in

[4], therefore we aim to generate this state machine to be

able to compare results. To generate such a PSTM, we

need to transform our abstract state change transitions from

Figure 3 to Communicative Act utterances. Each transition is

replaced by a number of transitions, one for each Customer
Communicative Act utterance (yellow in Figure 2) of the

originating state. For example, transition S1→ S3 denoted

as A is transformed to transitions triggered by the utterance

of A(ProductCategory) and I(checkout) (see Figure 4),

since these are the Communicative Acts that can be uttered

by the Customer in state S1 as seen in (10).

An utterance of a Communicative Act (for

example changing a product category with

Answer(ProductCategory)) does not imply that a

dependent constraint value has changed. For example,

constraint B (productCategory.products > 0) can stay

true between the product category changes. For this reason,

417

S1 S2A(ProductCategory)
I(checkout)

S3

A(ProductCategory)
I(checkout)
A(Product)

A(ProductCategory)
I(checkout)

A(ProductCategory)
I(checkout)
A(Product)

OQ(CreditCardInfo)

CQ(ProductCategory)
CQ(Product)

I(ProductCategory)
CQ(ProductCategory)

A(ProductCategory)
I(checkout)

A(ProductCategory)
I(checkout)
A(Product)

Figure 4. PSTM for the online shop discourse with events that lead to
transitions.

the states that have outgoing transitions need to be extended

with transitions from themselves to themselves. One such

transition is needed for each Communicative Act that can be

uttered by the Customer in the given state (see Figure 4).

For example, S1 has outgoing transitions, thus it is extended

with two new transitions to itself corresponding to the

A(ProductCategory) and I(checkout) Communicative

Acts.

To give a complete picture, Figure 4 also shows, next

to each state, the Communicative Acts uttered by the

OnlineShop (green in Figure 2). For example, for S1 this

is only CQ(ProductCategory).

D. Partitioning state machine comparison

Together with the authors of the approach described in

[4] we have determined that their approach generates the

same state machine, from the Discourse Model in Figure 1,

as the state machine shown in Figure 4. Since the two

state machines are represented internally in the same data

format, it was possible for us to empirically confirm that

for the online shop models (Figures 1 and 2) the declarative

approach produces the same results (in terms of PSTM) as

the approach with Procedural Constructs.

We have performed several comparisons on the PSTMs

for several other models as well, and we were able to confirm

that the state machines are the same for these cases, too.

However, since the construction of a declarative model for

a given model with Procedural Constructs is currently done

manually, we still lack a formal proof of equivalence of the

two methods. This is subject to further research.

V. AN OPERATIONALIZATION ALGORITHM

Let us now give a general description of the declarative

model operationalization algorithm, to show how it can be

applied on any declarative Discourse Model.

In its first step, the algorithm traverses the Discourse

Model and finds all the constraints present in the tree.

It does a symbolic analysis to only get unique absolute

constraints, i.e. if a negated version of a constraint was

already found, it is ignored. For example, in Figure 2 the

annotations NOTcheckout = true and checkout = true
represent different occurrences of the same constraint (noted

as A← checkout = true).
Next, the states are determined according to Algorithm

1. In particular, all the combinations of constraint truth

values (C) are generated. Each constraint combination (c) is

checked against the Discourse Model (T). If any constraint

in the combination (k ∈ c) appears on the tree edge in non-

negated or negated value (| getConstraint(edge) |≡| k |),
it is added to the set of used (appearing) constraints (U ←
U∪ k). The branches of the tree that are annotated with the

negated version of the constraint (getConstraint(edge) ≡
¬k) are removed (t ← t − edge). If the remaining subtree

is not empty (t �= ∅) and a state with the same constraints

combination does not already exist (state(U) �∈ S), the new

state (state(U)) is added to the set of all states, and the

Communicative Acts present in the subtree are associated

with the newly found state (CA(state(U)), e.g., 10–12).

Algorithm 1 Determining the states

S← ∅
for all c ∈ C do

t← T

U← ∅
for all edge ∈ t do

for all k ∈ c do
if | getConstraint(edge) |≡| k | then

U← U ∪ k
end if
if getConstraint(edge) ≡ ¬k then

t← t− edge
end if

end for
end for
if t �= ∅ & state(U) �∈ S then

S← S ∪ state(U)
CA(state(U))← getCommActs(t)

end if
end for

Next, for each constraint, the algorithm checks which

Communicative Acts can change its value (CA(k), e.g.,

13,14) and then goes through each state and checks whether

these Communicative Acts are part of it. If so, the state is

added to the constraint list of dependent states (S(k), e.g.,

15,16).
Finally, Algorithm 2 goes through each state (si ∈ S)

to generate the state transitions. For each of the state’s

dependent constraints (k : si ∈ S(k)) the algorithm

checks whether a change of that constraint (while keep-

ing unchanged the values of other constraints in the state

si ∧ ¬k) would result in any of the existing states (⇒ sj),

including itself. If such a state is found (sj), the transitions

from si to sj are generated. A transition is generated

(createTransition(si, sj , ca)) for each Communicative Act

418

Figure 5. The generated screen

(ca ∈ CA(si)) in the originating state (si) that can be uttered

by the user (utteredByUser(ca)).

Algorithm 2 Determining the transitions

for all si, sj ∈ S do
for all k : si ∈ S(k) do

if (si ∧ ¬k)⇒ sj then
for all ca ∈ CA(si) do

if utteredByUser(ca) then
createTransition(si, sj , ca)

end if
end for

end if
end for

end for

Having determined states and transitions, the algorithm

thus completes the Partitioning State Machine.

VI. GENERATION OF A GUI

The PSTM generated from the Discourse Model is part

of the GUI behavior model that takes part in the full

process of generation of GUIs described in [9]. As shown in

that paper, several other models are required, including the

device-specific Structural UI Model that is also generated

from the Discourse Model. The changes we have done

to the model in Figure 1 to obtain the purely declarative

model in Figure 2 have no effect on the generation of the

Structural UI Model. For this reason, we were able to run

the GUI generation process, in cooperation with the authors

of [9], using our declarative model and the state machine

operationalized from it, and we were able to generate the

same GUI as the original approach from the model with

Procedural Constructs. The GUI is illustrated with screen

shots in Figure 5.

This result further motivates our claim that the discourse

modeling for the generation of GUIs can be achieved by

using purely declarative models.

VII. DISCUSSION

Having described how a partitioning state machine can

be devised based on a purely declarative model, let us make

some reflective remarks. The declarative approach is based

on the constraint annotations of the Discourse Model tree.

In order to supply for the lack of Procedural Constructs used

to generate behavior in the other approach, the declarative

approach makes symbolic and algebraic analysis, in order

to determine states and transitions.

We have shown that our approach can produce the same

partitioning state machine for discourse model operational-

ization as the approach based on procedural concepts, but

using a purely declarative model instead. The state machine

comparison that we have illustrated represents empirical

evidence that the declarative approach can model the same

behavior and GUI as the other approach.

To be able to demonstrate the approach in this paper, we

needed to limit the example to small amount of constraints

and Communicative Acts. The algorithm has been tested

on larger models and the size of the models has not had a

significant impact its performance. An interesting question

could be potential state-explosion. Since the number of states

are the same as with the approach that uses procedural

constructs, this problem should be addressed on the general

discourse-based modeling level, and is out of the scope of

this paper.

Determining the state transitions is a complex operation,

as illustrated. As a potential simplification, we have come

to realize that the states are more important to determine

than the transitions, because the states are tree partitions that

play an important role in rendering [10]. The states often

419

need to be inspected by the modeler, since the layout of

the generated interface is usually a delicate matter for, e.g.,

interaction designers and other stakeholders. Once states are

determined, it should be possible to render the GUI dialog

corresponding to the initial state (which can be obtained

from the initial values of the involved conditions) and re-

evaluate all constraints after each event to determine the next

state. We could call this approach to model operationaliza-

tion a pseudo state machine. Still, determining transitions

as we did in this paper (through symbolic and algebraic

analysis of the Discourse Model tree) has both theoretical

significance and practical, implementation importance. The

theoretical significance is that it helped us empirically show

that the results (in the terms of the partitioning state machine

and generated GUIs) are the same as from the procedural

approach. The practical importance is that it enabled us

to integrate with code from the existing operationalization

implementation [5], which is not easily possible with the

pseudo state machine sketched.

Even with the current approach, there is a potential to

simplify the state machine by analyzing the PSTM further

and removing certain transitions that may never occur. The

presentation of these simplifications as well as analysis of

their implications are left for future work.

VIII. RELATED WORK

The declarative vs. procedural discussion in AI Knowl-

edge Representation has been influential to us. The declar-

ative side is represented by, e.g., [12] and the procedural

side by, e.g., [13].There are also attempts to devise mixed

declarative-procedural approaches [14].

In the context of user interface modeling, from early

works [15], [16] to modern approaches [17], the term

declarative has been associated to related models. However,

the definition of this term in such cases has been taken

loosely and not according to AI Knowledge Representation.

Their usage of declarative can be understood as ”higher-

level” as compared to procedural programming code.

Mainstream user interface modeling, which is mainly

centered around task models [18], [19], [17], [20], specifies,

e.g., sequence and iteration by defining temporal operators

based on process algebra. However, these concepts are

procedural as they define the order of execution directly and

explicitly in the models. As stated in [21], models should

be declarative rather than procedural in order to support

successive transforms and to be suitable for the use of

computer tools.

A low-level declarative UI modeling approach is described

in [22]. This approach uses declarative queries to annotate

the concrete UI model and generate the controller code of

the application. Such an approach has been shown to be well

understood and adopted by modelers without programming

knowledge [23].

IX. CONCLUSION

In this paper, we present a purely declarative approach to

high-level interaction models for GUI generation in the sense

that they do not include any procedural construct that would

directly define sequences, iterations etc. These models are

inspired by and based on theories of human communication,

but they have to be precise and complete with regard to logic

constraints. We also show, in this paper, that and how such

models can be operationalized in the sense that behavioral

GUI models can be generated from them, which are then

used for automated generation of GUIs.

Certain stakeholders in the interaction design process may

benefit from purely declarative interaction models especially

if they are not trained in procedural programming (or

similar engineering skills). In addition, since declarative

representations are better suited for formal verification and

automated reasoning than procedural representations, our

contribution facilitates the application of such advanced

techniques for interaction designs. Therefore, we propose to

use our declarative models, or ones yet to be defined along

these lines, in interaction design.

To the best of our knowledge, this is the first approach

to define and operationalize high-level purely declarative

interaction models. Future work will investigate whether

the advantages of declarative knowledge representation will

carry over to this domain. In addition, comparisons of the

use of such models by human interaction designers with the

use of previously defined ones will be performed.

ACKNOWLEDGMENT

We would like to thank David Raneburger and Roman

Popp from Vienna University of Technology for their support

with using the Unified Communication Platform tools and

source code.

REFERENCES

[1] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon,
and J. Vanderdonckt, “A Unifying Reference Framework
for multi-target user interfaces,” Interacting with Computers,
vol. 15, no. 3, pp. 289–308, 2003.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Prentice Hall, 2003.

[3] J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and
E. Arnautovic, “A discourse model for interaction design
based on theories of human communication,” in CHI ’06
Extended Abstracts on Human Factors in Computing Systems.
New York, NY, USA: ACM Press, 2006, pp. 754–759.

[4] R. Popp, J. Falb, E. Arnautovic, H. Kaindl, S. Kavaldjian,
D. Ertl, H. Horacek, and C. Bogdan, “Automatic generation
of the behavior of a user interface from a high-level discourse
model,” in Proceedings of the 42nd Annual Hawaii Interna-
tional Conference on System Sciences (HICSS-42), 2009.

420

[5] R. Popp, D. Raneburger, and H. Kaindl, “Tool support for
automated multi-device GUI generation from discourse-based
communication models,” in Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive computing
systems, ser. EICS ’13. New York, NY, USA: ACM, 2013.

[6] J. R. Searle, Speech Acts: An Essay in the Philosophy of
Language. Cambridge, England: Cambridge University
Press, 1969.

[7] W. C. Mann and S. Thompson, “Rhetorical Structure Theory:
Toward a functional theory of text organization,” in Text,
1988, pp. 243–281.

[8] P. Luff, N. Gilbert, and D. Frohlich, Computers and Conver-
sation. Academic Press, 1990.

[9] D. Raneburger, R. Popp, H. Kaindl, J. Falb, and D. Ertl, “Au-
tomated generation of device-specific WIMP UIs: weaving of
structural and behavioral models,” in EICS, 2011, pp. 41–46.

[10] C. Bogdan, J. Falb, H. Kaindl, S. Kavaldjian, R. Popp,
H. Horacek, E. Arnautovic, and A. Szep, “Generating an
abstract user interface from a discourse model inspired by
human communication,” in Proceedings of the 41th Annual
Hawaii International Conference on System Sciences (HICSS-
41). Piscataway, NJ, USA: IEEE Computer Society Press,
January 2008.

[11] H. Kaindl, R. Popp, D. Raneburger, D. Ertl, J. Falb,
A. Szep, and C. Bogdan, “Robot-supported cooperative
work: A shared-shopping scenario,” in Proceedings of the
2011 44th Hawaii International Conference on System
Sciences, ser. HICSS ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/HICSS.2011.366

[12] B. Hayes-Roth, “An architecture for adaptive intelligent
systems,” Artif. Intell., vol. 72, no. 1-2, pp. 329–365, Jan.
1995. [Online]. Available: http://dx.doi.org/10.1016/0004-
3702(94)00004-K

[13] J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR:
an architecture for general intelligence,” Artif. Intell.,
vol. 33, no. 1, pp. 1–64, Sep. 1987. [Online]. Available:
http://dx.doi.org/10.1016/0004-3702(87)90050-6

[14] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah,
“Declarative and procedural goals in intelligent agent sys-
tems,” in Proceedings of the 8th International Conference
on Principles of Knowledge Representation and Reasoning.
Morgan Kaufmann Publishers, 2002, Conference Proceed-
ings.

[15] P. P. da Silva, “User interface declarative models and
development environments: A survey,” in Proceedings of
the 7th international conference on Design, specification,
and verification of interactive systems, ser. DSV-IS’00.
Springer-Verlag, 2001, pp. 207–226. [Online]. Available:
http://www.springerlink.com/index/6q0n3xw31deutjac.pdf

[16] P. A. Szekely, P. N. Sukaviriya, P. Castells,
J. Muthukumarasamy, and E. Salcher, “Declarative
interface models for user interface construction tools:
the mastermind approach,” in Proceedings of the IFIP
TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction. London, UK, UK: Chapman
& Hall, Ltd., 1996, pp. 120–150. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645348.650690

[17] F. Paternò, C. Santoro, and L. D. Spano, “MARIA: A
Universal, Declarative, Multiple Abstraction-Level Language
for Service-Oriented Applications in Ubiquitous Environ-
ments,” ACM Transactions on Computer-Human Interaction,
vol. 16, no. 4, pp. 1–30, Nov. 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1614390.1614394

[18] G. Meixner, M. Seissler, and K. Breiner, “Model-Driven
Useware Engineering,” Model-Driven Development of Ad-
vanced User Interfaces, pp. 1–26, 2011. [Online]. Available:
http://www.springerlink.com/index/87458MK25324Q320.pdf

[19] G. Mori, F. Paterno, and C. Santoro, “Design and develop-
ment of multidevice user interfaces through multiple logical
descriptions,” IEEE Transactions on Software Engineering,
vol. 30, no. 8, pp. 507–520, 8 2004.

[20] F. Paterno and E. Zini, “Applying information visualization
techniques to visual representations of task models,” in TA-
MODIA 04, 2004.

[21] Q. Limbourg and J. Vanderdonckt, “Comparing task models
for user interface design,” The handbook of task analysis for
human-computer interaction, vol. 6, pp. 135–154, 2004.

[22] F. Kis and C. Bogdan, “Lightweight low-level query-centric
user interface modeling,” in Proceedings of the 2013 46th
Hawaii International Conference on System Sciences, ser.
HICSS ’13. Washington, DC, USA: IEEE Computer Society,
2013.

[23] C. Bogdan and R. Mayer, “Makumba: the Role of
Technology for the Sustainability of Amateur Programming
Practice and Community,” in Proceedings of the fourth
international conference on Communities and technologies
- C&T ’09. New York, New York, USA: ACM
Press, Jun. 2009, pp. 205–214. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1556460.1556490

421

