
Evolving Secure Information Systems through Attack Simulation

Elmar Kiesling
Vienna University of Technology

elmar.kiesling@tuwien.ac.at

Andreas Ekelhart
Secure Business Austria

aekelhart@sba-research.org

Bernhard Grill
Secure Business Austria
bgrill@sba-research.org

Christian Stummer
Bielefeld University

christian.stummer@uni-bielefeld.de

Christine Strauss
University of Vienna

christine.strauss@univie.ac.at

Abstract

In this paper, we introduce a simulation-based,
evolutionary approach for analyzing and improving
the security of complex information systems. Rather
than following a purely technical approach, we bring
in a social and behavioral perspective through a
combination of conceptual security knowledge
modeling, behavioral modeling of threat agents,
simulation of attacks, and evolutionary optimization.

Based on results from numerous attack simulations
for various internal and external attackers, metrics
such as impact on confidentiality, availability, and
integrity of the simulated attacks are monitored and
efficient sets of security controls with respect to
multiple risk, cost and benefit objectives are
determined. We describe the developed approach as
well as a prototypical implementation and demonstrate
its applicability by means of an illustrative example.

1. Introduction

In the face of a rapidly evolving threat landscape,
assuring the security of complex information systems
is a major challenge. In recent years, the frequency and
sophistication of attacks by motivated adversaries have
increased dramatically. Unlike malware designed to
automatically and opportunistically exploit particular
technical weaknesses, these goal-driven attacks are
aimed at particular targets. They combine technical
and social attack techniques to exploit complex
interactions and leverage architectural weaknesses in
order to achieve particular objectives. Hence,
understanding adversaries' motivations, capabilities,
resources, available attack vectors, and objectives is
paramount, because these factors determine their
attack campaign and, ultimately, the risk attackers pose
to an information system.

Isolated technical measures, added on top of an
existing system, are typically insufficient to establish
an adequate defense and are hence inefficient from a
risk management perspective. Rather, an integrated
approach is needed in order to recognize that
adversaries may combine various technical and non-
technical means to achieve their goals (e.g., network,
software, physical, and social attacks). Decomposing a
security analysis problem and evaluating the security of
individual components or the effectiveness of particular
security controls is a myopic strategy in this context.
Our approach reflects this idea in that we evaluate the
security of complete systems by dynamically
simulating attacks. Hence, we conceive security as an
emergent property of complex information systems.

The main contributions of this paper are as follow:
We formally model abstract attack patterns and develop
mechanisms to link them to determine possible routes
of attacks. Whereas existing approaches typically aim
to build attack graphs by enumerating the entire set of
possible paths, we conceive the discovery of these
paths as a dynamic, adversary-driven process. We
model adversaries as agents that make deliberate
decisions in attacking a system while actively
exploiting dynamic interactions of vulnerabilities.
Finally, we develop a discrete event attack simulation
engine, and apply evolutionary algorithms to optimize
sets of security controls while trading off multiple
objectives.

2. Framework overview

Figure 1 provides a high-level architectural
overview of the simulation-optimization framework. It
consists of a knowledge base (Section 3) that formally
specifies attack mechanisms and security controls as
well as the system to be protected. A threat scenario
(Section 4) describes adversaries and their objectives.
Based on these inputs, our model can link attack

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.597

4868

patterns dynamically in order to simulate attacks
(Section 5). This simulation core facilitates evaluation
of system configurations with various sets of security
controls in place. Results can be analyzed with respect
to multiple risk, cost, and benefit criteria.

Automatically identifying efficient sets of security
controls is computationally difficult. To tackle this
challenge, we therefore resort to meta-heuristic
optimization techniques (Section 6). Optimization
results finally allow decision-makers to explore
efficient solutions, trade off conflicting objectives, and
choose a satisfying solution.

We illustrate the application of the methodology
with an example in Section 7.

3. Knowledge base

The knowledge base (KB) captures knowledge
required to simulate attacks in a well-structured and
reusable format. Our implementation uses the
declarative logic programming language Prolog to
model security and system knowledge and reason on
possible routes of attacks.

3.1. Security knowledge

The attack and control model formally specifies
how systems may be attacked and secured by means of
attack patterns. Each pattern is applicable in a
particular context under specific pre-conditions. We
take advantage of the existing, publicly available
CAPEC (Common attack pattern enumeration and
classification) repository [1], which currently contains
400 community-developed attack patterns for
exploiting software systems. These patterns derive
from the concept of design patterns, but are specified
in a destructive context with the intention to support
the community to understand the attacker’s perspective
[2],[3].

The information is mostly semi-structured and
hence needs to be translated into a more formal
representation to be useful for attack simulations. To
this end, we add formal descriptions and define
properties that are used to link attack patterns based on
the CAPEC sections Summary, Experiments (attack
steps), Outcomes (success and failure results), and
Attack Prerequisites. Another attribute obtained from
CAPEC is the base success probabilities of each action,
which we derived from Typical Likelihood of Exploit.
Based on this information, we formulate actions as
clauses with a set of pre-conditions in the body:

action_sqlInjection(Attacker, DbServer) :-

technicalSkillLevel(Attacker, TechnicalSkillLevel),
TechnicalSkillLevel >= 1,
owned(Attacker, AttackHost),
connected(AttackHost, WebServer, httpProtocol,
httpPort),

 connected(WebServer, DbServer, dbProtocol, dbPort),
 usesDbSoftware(WebServer, DbServer),
 not(owned(Attacker, DbServer)).

This example predicate defines an SQL injection

attack and specifies its pre-conditions. It matches all
variable bindings for Attacker and DbServer that satisfy
the pattern, based on the current facts in the KB.

To define possible outcomes of an attack action, we
define post-conditions, i.e., state transitions that occur
when the simulation is executed. Basic outcome types
are successful and failed attack actions. Successful
execution of an attack action can, for example, allow
the attacker to gain root access to the target computer,
while a failed attempt could take the target computer
offline. Formally, we define both types as rules that
assert a change in the KB:

exec_success_action_sqlInjection(Attacker, DbServer) :-

 assert(owned(Attacker, DBServer)).

Figure 1. Framework overview

4869

Invoking this rule with valid bindings from the
previous query asserts the fact that the attacker now
has access to the DB server, which in turn affects the
results of subsequent queries.

CAPEC also includes a section CIA Impact, which
specifies the impact of an attack action in terms of loss
or degradation of confidentiality, integrity, and
availability on a scale of high, medium, and low. This
is valuable general information, but it does not
consider the context in which the impact occurs.
Because we explicitly simulate attacks on a particular
system, we determine impact not on an attack pattern
level, but rather based on the affected asset at
simulation runtime (cf. Section 5.3). The attack KB
only specifies the security attributes affected by attack
actions and the rule that determines how the impact
level will be queried:

action_impact(action_sqlInjection, confidentiality).
impact_success_sqlInjection(Attacker, TargetHost,
Impact):-

importance(TargetHost, confidentiality, Impact).

This example specifies that SQL injection affects
the security attribute confidentiality. When an attacker
successfully carries out this action, the confidentiality
criticality rating of the attacked TargetHost will
determine the impact rating.

We further enrich the security knowledge with
control definitions derived from CAPEC. The sections
Solutions, Mitigations and Relevant Security
Requirements provide the necessary information. We
distinguish preventive and detective controls that can
be applied to particular system elements to increase the
difficulty of attacks or facilitate the detection of
ongoing attacks, respectively. Formally, we add
controls to the KB as predefined facts. The associated
properties determine (i) if the control type is detective
or preventive, (ii) whether the control is visible to an
attacker, (iii) the outcome of the control (stop or null),
(iv) the aggregation type that determines the effect of
multiple controls on an asset (min, max, cumulate), (v)
the control response type (immediate or delayed), (vi)
the detection delay, (vii) the type of assets that
implement this control, and (viii) the type of assets that
this control can be applied to. For example, an
intrusion detection system’s basic properties are
defined as follows:

control_properties(control_ids, detective, false, null, max,
delayed, 1000, ids, hostGroup).

Finally, particular control instances and their cost

and effectiveness in the context of an action can be
specified as follows:

control_effectiveness(ids1, action_sqlInjection, 0.8).
ids(ids1, 7500).

3.2. System knowledge

To reason about the security of a particular
information system, it is necessary to model its
constituent components and establish relations between
them. To this end, we model specific knowledge about
the system to be protected, but separate it from the
abstract attack knowledge. This approach facilitates
sharing and reuse of domain-specific attack knowledge
by multiple organizations facing similar threats. The
system knowledge is organization-specific, and hence,
kept in a separate file.

This model stores a set of tangible and intangible
assets, including hardware components, networks, data,
employees, policies etc. To illustrate how an asset is
modeled and controls are associated, consider the
example of an intrusion detection control. First, an
instance of host is added to the system model. Second,
the installed relation is used to link a candidate
intrusion detection software asset to the host. Third, we
can state that dbServers_host_1 stores the project
database projectDb1, and that the server is part of the
host group dbServerHosts. workstationHosts can access
the dbServerHosts via HTTP.

host(dbServers_host_1).
installed(dbServers_host_1, ids1).
stores(dbServers_host_1, projectDb1).
inHostGroup(dbServers_host_1, dbServerHosts).
hacl(workstationHosts, dbServerHosts, httpProtocol,
httpPort).

To rate the impact of threats, modeled assets can be

assigned criticality values for multiple security
attributes. The values can be obtained from existing
impact analyses or asset criticality assessment reports.
If this documentation does not exist or such
assessments have not been performed yet, the system
owners are responsible for determining the ratings for
their own systems and information [4].

Criticality values can, for example, represent
monetary values as well as categories of a qualitative or
continuous scale (e.g., a three-point Likert scale, 1 =
low, 2 = medium, 3 = high).

To complete the previous example, we define
criticality values for the projectDb1.

criticality(projectDb1, confidentiality,2).
criticality(projectDb1, integrity, 3).
criticality(projectDb1, availability, 2).

4870

4. Threat scenario

An appropriate adversary model is required to
understand risks and identify effective controls.
Whereas adversaries are typically classified based on a
natural language description in the existing literature
[5], we take advantage of our formal model to define
more specific attacker profiles that include capabilities,
resources (e.g., time), risk preferences, and other
behavioral attributes (risk aversion, propensity to
alternate between different attack strategies etc.).
These attributes determine whether particular
advanced attack patterns are available, affect the
choice of attack paths, and determine success
probabilities in the simulation. We also specify initial
access where appropriate (an employee may, for
example, have access privileges on workstationHosts
and be a member of the workstationUserGroup).

A complete threat scenario consists of an adversary
model and an objective specification, stated as a target
condition that describes a desired system state (e.g.,
attacker has access to db2).

5. Attack simulation

The attack simulation leverages and combines the
knowledge embodied in the security and system KB by
executing attacks for given threat scenarios.

Adversaries' choices regarding their course of
action, the outcome of individual attack actions, and
the detection of attacks are determined
probabilistically in the simulation. It is hence
necessary to perform multiple replications with
varying sets of random seeds for each attack scenario
to capture variability and uncertainty. For each
replication, the simulation executes a schedule of
discrete events and records outcome variables that can
be analyzed and aggregated. This flexible framework
can capture complex causal relations and timing
interactions. The types of events used in the simulation
are illustrated in Figure 2. Action Selection events
schedule Action Start events based on available actions
determined through pattern linking as wells as the
adversary's behavioral model. Upon execution, these
events determine the effective duration of the action
(which is influenced by factors such as difficulty,
adversary skills, and preventive controls etc.) and
schedule an Action End event.

Detection events may be triggered when assets
associated with a detective control are being attacked;
an Attacker Stopped event may be scheduled by
terminating detective controls. Finally, a Target
Condition Reached event is scheduled in case the
attacker has reached the target condition.

The mechanisms invoked through these events, i.e.,
pattern linking, action selection, action execution, and
detective control response, are explained in the
following sections.

5.1. Attack pattern linking

Attack patterns are linked automatically based on
shared pre- and post-condition properties. This
approach is related to the attack graph concept
introduced in [6], particularly to advanced formalisms
and methods to construct large trees [7],[8],[9], as well
as extensions that incorporate security controls to
obtain defense and protection trees [10],[11]. However,
these existing approaches typically enumerate the
entire set of possible paths to build a complete attack
graph, which is problematic due to the exponential size
of the search space. Advanced formalisms for dynamic
security simulations, such as Generalized Stochastic
Petri Nets [12] and Boolean Logic Driven Markov
Processes (BDMP) [13] aim to alleviate this problem.
Our approach conceives the discovery of attack paths
as a dynamic process and is therefore more general and
flexible in several respects (e.g., it is not necessary to
assume “monotonicity”, i.e., that the attacker can never
loose previously gained privileges or that the negation
operator cannot be used to express pre-conditions). In
this respect, we follow some ideas for state-space
modeling and simulation from the literature [14].

5.2. Attack action selection

We associate adversaries with a behavioral model
that iteratively selects attack actions based on (i)
individual adversary characteristics, (ii) the attacker's
general knowledge about possible routes of attack, and
(iii) the outcomes of prior attack actions. In our
illustrative application example discussed in Section 7,
we model five types of internal and external
adversaries that differ in their characteristics.

Our behavioral model is based on the idea that
adversaries possess general security knowledge (to
varying degree), but typically do not have complete a-
priori information about the system they attack. The
general knowledge about possible routes of attack is
represented via an abstract attack graph that can be
queried from the KB for a particular attacker and target
condition. This graph may be interpreted as an
adversary's mental map of how actions can be
combined to achieve a particular outcome.

The simulation applies this abstract knowledge by
querying the KB for valid asset assignments for all pre-
conditions of an abstract action in the context of the
modeled system. This yields a set of action instances

4871

(i.e., abstract actions with assigned variables) that can
be executed against particular assets.

We denote abstract actions by � and concrete
action instances by �. The behavioral model specified
in Algorithm 1 stipulates that adversaries alternate
between following a chosen attack path (i.e., a
sequence of abstract attack actions) and trying new
approaches (i.e., choosing new entry points and attack
paths). We assume that adversaries minimize expected
effort, i.e., they tend to launch attacks “close” to the
target if possible. This idea is implemented in the
��������� procedure, which chooses among pre-
selected sets of action instances. It calculates the
shortest path distances ���� �� in terms of cumulative
effort required between each abstract attack action �
and the target condition � using Dijkstra's algorithm
[15]. Using the longest abstract distance found as a
reference, it calculates the relative distance for all
candidate actions based on their position in the abstract
graph.

The procedure then calculates individual weights
�� for each action instance � based on �'s success and
detection probabilities ���� �� and ���� �� , the
relative distance ���� � � to the target condition, and
the attacker’s preferences ����, ����, and �����.

Procedure ������������������� then
determines the final choice from the candidate action
instances with probabilities proportional to the
calculated weights �.

After the initial action has been selected,
subsequent choices are dependent upon results of the
previously executed action �. If the previous action
was successful and new action instances � have
become available as a consequence, the adversary will
choose among them with probability �������	���
 and
choose among all available actions otherwise. If the
previous action was successful, but did not yield any
new action instances, then there are two options. With
probability�������������	�
��, the adversary will
choose among action instances that have become
available as a consequence of the same action as �,
i.e., those returned by �����������	��
���.
Otherwise, the adversary will search for a new entry

point by selecting from all available actions
In case the previous action � was not successful, the

adversary will retry with probability �
�����. Otherwise,

it will either choose a “neighboring” action instance
(with probability ������������	������) or search for a new
entry point among all available actions.

At each step during an attack, the adversary will
chose available action instances directly if their
outcome fulfills the target condition.

Input: previous action � �,
 available actions ���

new actions ��
Output: selected action

����������	
����� ������
 for �� � �� ��
 if �������������	
��������� then�
 return ���
 endif�
 endfor�

 if �� � ����� then
 return �������� ���
 else if ������������������
 if ���� �� �� then�
 if �������	���
 �� ��������� then�
 ����������
 else
 return �������� ���
 endif
 else if ��������� �� ��������� then
 �� �� ������������	
�����
 return �������� ��
 else
 return �������� ���
 endif
 else if ������� � ���������
 return �
 else if ������������ � ��������� then
 � � � ��������	
���������
 return �������� ���
 else
 return �������� ��
 endif

�������� ��
for �� do
 ���

��	
��

������

�������������

 ��� � ��������
���� ��� � ����������

����
��� � ���

����
�����

end for

return ���������������� ����

Algorithm 1. Attacker behavior Figure 2. Event types and scheduling

4872

5.3. Attack action execution

Upon execution, we determine (i) whether the
attack action was successful, (ii) whether the attack
target has been reached, (iii) what actions become
unavailable as a consequence, (iv) what new actions
are available, and (v) the impact on security attributes
(e.g., confidentiality, integrity, availability). The
impact severity of an executed action is dependent
upon the execution context. The attack patterns stored
in the security KB specify the attributes affected by an
action (e.g., action_sqlInjection affects
confidentiality), but not the severity of an impact. The
latter is obtained by querying asset valuation with
respect to the security attribute from the system KB.
The impacts on security attributes are registered and
can be analyzed and used for optimization purposes.
The result of an action then drives the selection of
subsequent actions.

5.4. Detective control response

Detective controls define two possible outcomes:
(i) Stop, i.e., the simulation run terminates, or (ii) a
defined path to a post-condition (modeled in the
abstract attack graph) to execute. These post-
conditions can change property values in the system
model. For example, when an intrusion detection
system blocks the adversary's source IP address it
inhibits certain attacks but potentially also facilitates
new attack patterns (e.g., IPS reaction leads to service
disruption and causes an availability impact).

6. Meta-heuristic optimization

Decision-makers can obtain valuable insights by
iteratively modeling a system with a particular set of
security controls in place and running the simulation to
assess their joint effectiveness. Discovering
interactions between individual security controls and
optimizing the overall configuration by altering the
system manually until satisfactory results can be
achieved is, however, a tedious and difficult process
and infeasible for larger problem sizes.

We therefore introduce biologically inspired
optimization techniques and the concept of a control
portfolio characterized by a genotype string of binary
indicator variables. Each of these variables represents
a control-asset pairing (e.g., logPolicy1 implemented
on dbServerHosts) that takes the value 1 if the
respective control is applied to the asset and 0
otherwise.

To evaluate a control portfolio, we initialize the
system by applying controls to assets according to its

genotype. We then simulate a number of attacks with
varying random seeds and record outcome metrics.
These metrics can be aggregated across simulation runs
(e.g., sum, min, max, average, median) and selected as
optimization objectives.

Because we consider several objectives
simultaneously, the optimization does not generally
result in a single “best” control portfolio, but typically
in a set of (Pareto-) efficient portfolios. Each proposed
efficient portfolio is non-dominated, i.e., there is no
other portfolio with equal or better values for all
objectives and a strictly better value for one of the
objectives.

Due the huge combinatorial decision space (with ��
potential portfolios, where � is the number of control-
asset combinations), the expensive simulation-based
evaluation procedure, and the need to account for
multiple optimization objectives, this simulation-
optimization problem is highly challenging
computation-wise. Exact solutions (i.e., complete sets
of all efficient portfolios for a given number of
simulation replications) can only be determined
through complete enumeration for rather small problem
instances. In order to tackle larger problem instances
we resort to meta-heuristic solution procedures.

In particular, we experimented with genetic
algorithms, i.e., population-based approaches that are
inspired by nature and optimize problems implicitly.
These algorithms evolve a population of individuals
(control portfolios) iteratively by evaluating their
fitness (assessing objectives), selecting fit individuals
(control portfolios), and performing crossover and
mutation operations on the selected individuals to
generate offspring. The binary genotype strings
generated in this process are evaluated by means of a
number of simulation replications, which yield
aggregate objective values used for assessing the
“fitness” of the respective control portfolio.

We conducted experiments with the NSGA-II [16]
and SPEA-II [17] genetic algorithms and evaluated
solution quality and convergence characteristics for
small problem instances (search space ���) with respect
to results obtained by complete enumeration. We found
that both algorithms performed reasonably well. Using
default parameters, NSGA-II performed slightly better
and on average identified approximately 65% of all
efficient solutions within covering the first 20% of the
search space. By adding the all-zero and all-one
genotype strings to the otherwise randomly generated
initial population, applying a two-point rather than the
single-point crossover operator, and using an adaptive
mixed mutation strategy that randomly selects between
insert/revert/swap operations, we could improve
NSGA-II performance for the given problem
significantly. For our illustrative application discussed

4873

in the following section, we observed a convergence
toward the full set of efficient solutions typically
within the first 250 generations.

7. Application example

7.1. Implementation

The attack simulation and optimization
components are implemented in Java. We use the
scheduling mechanisms provided by MASON [18], a
fast discrete-event simulation core which also provides
the pseudo-random numbers used in the simulation.
The underlying knowledge base is implemented in
SWI-Prolog [19] and accessed in Java via JPL [20].
The genetic algorithm-based optimization is
implemented using the meta-heuristics framework
Opt4J [21].

7.2. Knowledge modeling

For our sample application, we mapped 10 CAPEC
attack patterns and added additional required actions,
such as accessing data after the required permissions
have been obtained. To account for attacks that exploit
previously unknown vulnerabilities, we added a zero-
day attack action. Successful execution of this action
will give the adversary access to the attacked host.
Existing controls such as antivirus software are largely
ineffective against these kinds of attacks. The attack
patterns used, including their CAPEC reference
numbers and modeled security controls, are listed in
Table 1.

Next, we enriched the model with security control
definitions from the corresponding CAPEC patterns.
Controls include, for example, antivirus software,
patches for specific software, intrusion detection
systems, log policies, and security training.

Finally, the organization and its IT infrastructure is
represented by creating instances of concepts such as

Host, Subnet, Data, and User, as well as relations
between these concepts (e.g., Host stores Data, Host
uses Software, User in UserGroup). The synthetic
example system model used in this illustrative scenario
was generated automatically. It contains 30 hosts, 5
web servers, 5 database servers, 30 employees, and 3
administrators (cf. Figure 3 for an overview; details
such as connections between systems, and installed
software have been omitted for sake of clarity of
exposition).

7.3. Experimental Setup

We define five external and internal adversaries, all
of them with the objective of gaining access to data set
db2. Internal adversaries already have certain levels of
access to the system (e.g., shoulder surfing requires
physical access to the environment). For external
attackers, the demilitarized zone (DMZ) is the main
entry point to the company's internal network. We
assign varying preference weights, time budgets and
other parameters that shape adversaries' simulated
behavior as summarized in Table 2. An advanced
persistent threat (APT), for example, has a large time
budget, the highest technical skill level (and therefore a
wide range of sophisticated attack actions), and is
highly risk-averse (i.e., has a strong preference for
avoiding detection).

An unskilled external attacker, on the other hand, is
less patient and hence has a low time budget, a low
technical skill level, and primarily aims at successfully
executing attack actions without caring much about
detection.

For other behavioral parameters, we set uniform
values for all adversary types (�������	���
 � ���,
������� � ���, ������������	�
�� � ���, and
������������	�����
 � ���).

We used six optimization objectives in our
experiments: minimize costs, minimize successful
attacks, maximize detection of attacks, minimize total
confidentiality impact, minimize total integrity impact,
and minimize total availability impact.

To map the impact category valuations low,
medium, and high to a scalar objective value, we used a
lexicographic mapping, i.e., only the highest impact
category is relevant for the optimization. We performed
30 simulation replications for each portfolio and
evolved the system model for 500 generations using
recommended NSGA-II standard parameters (cf. [16]).

7.4. Results

All optimization experiments were executed on a
2x3Ghz Xeon machine and required a runtime between

Attack action CAPEC (ID)
sql injection SQL Injection (66)
social attack Information Elicitation via Social

Engineering (410)
brute force Password Brute Forcing (49)
spearfish attack Social Information Gathering via

Pretexting - (407)
buffer overflow Buffer overflow in an API call (8)
email keylogger Email Injection (134)
email backdoor Email Injection (134)
zero day Privilege Escalation (233)
directory traversal Directory Traversal (213)
shoulder surfing Social Information Gathering (404)
access data Legitimate Action
access host Legitimate Action

Table1. Example attack patterns used

4874

approximately 90 minutes (Admin scenario) and 50
hours (APT scenario). However, the optimization
typically converged well before 500 generations. The
genetic algorithm identified 251 efficient portfolios for
the advanced persistent threat scenario, 306 for the
skilled external attacker and 104 for the unskilled
external attacker. Compared to these external threat
sources, the number of efficient solutions was much
lower for internal attackers, namely just 2 for the
administrator scenario and 58 for the employee
scenario. Figure 4 illustrates the objective values of
efficient portfolios in a parallel coordinate plot. The
impact objective axes (CIA) are visually separated into
high (above the red mark), medium (above the orange
mark), and low (above the green mark) impact
categories. Only the impact from the highest category
is visualized for each portfolio.

Figure 5 illustrates the set of solutions obtained for
the different attacker types in a heatmap
representation. For the admin attacker, there are only
two efficient portfolios not depicted in this
representation. For all other types, the labels on the
right hand side indicate the proposed efficient
portfolios identified in the optimization. Each
individual line represents a portfolio and contains its
genotype string on the left hand side (blue) and the
optimization objective values obtained for the
portfolios on the right hand side (red). Control
columns are arranged by control type and each
individual field represents an assignment of a control

to a particular asset (i.e., blue if the control is included
in the portfolio, and white otherwise). Result columns
for impact metrics consist of high, medium, and low
impact categories grouped by attributes.

This rather dense representation is not suitable for
in-depth analysis, but it provides an overview of which
control types tend to be more or less efficient for
particular attacker types. It also facilitates a rough
comparison of the relative impact these different
adversaries may achieve.

For the administrator, we find that this adversary
always reaches the specified target, which is expected
given that he/she already has all required access
privileges. There is a single highly critical
confidentiality impact caused by the confidentiality
breach on the target db2. For this type of attacker, there
are no effective preventive controls, but applying a log
policy on dbServerHosts raises the detection rate
substantially.

The employee succeeds in obtaining access to the
target data set in approximately half of the simulation
runs when no security controls are in place. Even
though the employee has access to internal systems,
he/she cannot access the hosting servers directly and
lacks the skills for technical attacks. He/she must
therefore rely on social attacks. The relatively high
success rate can be attributed to the availability of more
effective social attacks (shoulder surfing) due to
physical access. Accordingly, the control portfolios that
include intensive security trainings (e.g., train2 and
train3) for the database (dbAdminGroup) and server
administrators (adminGroup) turn out highly effective
against this type of attacker. With these controls
implemented, the share of simulation runs in which the
employee reaches the target can be reduced to 6%.
Technical controls, on the other hand, are not included
in any efficient control portfolios for this adversary
type. Again, a log policy on the hosting dbServerHosts
raises the detection probability.

As expected, the advanced persistent threat has the
highest success rate of all external attackers (approx.
2/3). Due to its proficiency and budget, a wide range of

Figure 3. Example system model

adversary time limit
(sec.)

���� �
��� ����� access

Employee 150,000 0.45 0.25 0.30 workstation hosts
Admin 300,000 0.50 0.20 0.30 all hosts
Skilled 200,000 0.30 0.40 0.30 external
Unskilled 100,000 0.30 0.40 0.30 external
APT 1,000,000 0.50 0.20 0.30 external

Table 2. Attacker types Figure 4. Efficient portfolio objective values

4875

attacks and attack paths are available, and, hence, a
wide range of security controls have to be
implemented. Patching vulnerable systems, deploying
antivirus software, code reviews, and performing
security trainings are the most effective preventive
controls against this adversary type. For the dmzHosts
in particular, antivirus software av2 is frequently
included in efficient portfolios. Intrusion detection
systems and log policies result in a high detection rate.
In contrast to internal attack scenarios, controls are
applied to a much wider range of assets (e.g., log
policies on various servers and not only on the target
database server). This can be attributed to the fact that
this attacker type causes significant “collateral”
impacts while trying to find ways to achieve the target
(including high impacts on availability and integrity).

Even with high investments in security controls,
however, this attacker can rarely be stopped from
reaching the target. The most efficient sets of controls
reduced the share of successful attacks to 20% and
raised detection rates to 63%.

Optimization results for the skilled external
attacker are similar, even though this type of adversary
succeeds less frequently. In general, the security
impact is lower compared to advanced persistent
threats. The impacts on confidentiality and integrity
are significantly reduced by the choice of efficient
security controls. Furthermore, technical controls, such
as antivirus and web server hardening, are prevalent in
control portfolios against skilled external attackers.

Against an unskilled external attacker, intrusion
detection systems prove effective and show a high
detection rate. To prevent email attacks (including
backdoors and keyloggers), antivirus software and
security training, especially for workstation users
(workstationUserGroup) are included in a large
fraction of portfolios. The impacts of this adversary
type are less severe, and the share of successful attacks
can be reduced to 3%.

In a real-world setting, both systems and threats are
evolving. The method hence needs to be applied on a
continuous basis. To this end, it is necessary to update
the system model to reflect configuration changes,
update the threat scenarios as the attack landscape is
changing, and update the security KB as new attacks
become known.

8. Conclusions

The evolutionary optimization approach towards
security introduced in this paper aims at improving the
resilience of complex information systems. It is built
upon a knowledge base that models multi-step attacks
for distinct adversary types and leverages this
knowledge to identify promising combinations of
information security controls through simulation-
optimization.

We illustrate the approach with a sample
application. Using an abstract graph to map the
attacker’s mental model, our framework simulates a
large number of attacks for multiple adversaries and
evolves system configurations that are resistant against
these adversaries. We simultaneously consider
multiple, partly conflicting, objectives, i.e., maximizing
prevention and detection of (simulated) attacks while
minimizing their confidentiality, integrity, and
availability impacts at minimal cost. The results of our
experiments suggest that the proposed approach can be
usefully applied to study and optimize the security of
complex information systems.

Further research is possible in several directions.
First, to cover CAPEC more extensively, the security
knowledge base can be extended with additional attack
patterns. This is not a trivial task that requires the
development of an appropriate vocabulary for the
specification of cause and effect across multiple levels
of abstraction. Moreover, additional sources of attack
knowledge beyond software security can be integrated.
The resulting knowledge base needs to be provided to
the information security community and other
interested stakeholders in a shared repository. This
would enable organizations to independently model
their own systems as well as the threats they face and
use the domain knowledge formalized in the shared
knowledge base to obtain recommendations on Figure 5. Control sets and simulation results

4876

effective improvements. Because information security
is a “moving target”, knowledge needs to be
maintained and extended continuously. We therefore
intend to design mechanisms that allow users to
automatically update the knowledge base as new
attacks become known, which in turn would allow
them to determine their exposure to these new attacks
through simulation and obtain recommendations on
efficient mitigations. This could reduce the knowledge
gap between attackers and defenders.

Because the list of proposed efficient sets of
measures is typically large, we also develop interactive
visualizations for the exploration of the solution space
and mechanisms that support decision-makers in the
selection of a set of security controls to implement.

Finally, it would be interesting to evaluate our
approach in the context of other domains with strict
security requirements, such as critical infrastructures.

9. References

[1] “CAPEC - Common Attack Pattern Enumeration and

Classification (CAPEC)” Available:
http://capec.mitre.org/ [Accessed June 14, 2013].

[2] S. Barnum and A. Sethi, “Attack Patterns as a
Knowledge Resource for Building Secure Software,”
in: OMG Software Assurance Workshop: Cigital, 2007.

[3] S. Barnum and G. McGraw, “Knowledge for Software
Security,” IEEE Security Privacy, vol. 3, no. 2, 2005,
pp. 74–78.

[4] NIST Computer Security Division, Special Publication
800-39: Managing Information Security Risk -
Organization, Mission, and Information System View,
2010.

[5] C. Muehrcke, E. Ruitenbeek, K. Keefe, and W.
Sanders, “Characterizing the Behavior of Cyber
Adversaries: The Means, Motive, and Opportunity of
Cyberattacks,” 2010.

[6] B. Schneier, “Attack trees,” Dr. Dobb’s Journal, vol.
24, no. 12, 1999, pp. 21–29.

[7] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable,
graph-based network vulnerability analysis,” in:
Proceedings of the 9th ACM conference on Computer
and communications security, Washington, DC, USA,
2002, pp. 217–224.

[8] R.E. Sawilla and X. Ou, “Identifying critical attack
assets in dependency attack graphs,” in: Proceedings of
the 13th European Symposium on Research in
Computer Security: Computer Security, Springer,
2008, pp. 18–34.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M.
Wing, “Automated generation and analysis of attack

graphs,” in: Proceedings of the 2002 IEEE Symposium
on Security and Privacy, 2002, pp. 273– 284.

[10] S. Bistarelli, F. Fioravanti, and P. Peretti, “Defense
trees for economic evaluation of security investments,”
in: Proceedings of the First International Conference on
Availability, Reliability and Security (ARES 2006),
2006, pp. 416–423.

[11] K.S. Edge, “A Framework for Analyzing and
Mitigating The Vulnerabilities of Complex Systems Via
Attack And Protection Trees,” Air Force Institute of
Technology, Faculty Graduate School of Engineering
and Management, 2007.

[12] G.C. Dalton, R.F. Mills, J.M. Colombi, and R.A.
Raines, “Analyzing attack trees using generalized
stochastic petri nets,” in: Proceedings of the 2006 IEEE
Workshop on Information Assurance, 2006, pp. 116–
123.

[13] L. Pie ̀tre-Cambace ́de ̀s and M. Bouissou, “Beyond
Attack Trees: Dynamic Security Modeling with Boolean
Logic Driven Markov Processes (BDMP),” in:
Proceedings of the 2010 European Dependable
Computing Conference, Apr. 2010, pp. 199–208.

[14] S. Noel, S. Jajodia, L. Wang, and A. Singhal,
“Measuring security risk of networks using attack
graphs,” International Journal of Next-Generation
Computing, vol. 1, no. 1, 2010, pp. 135–147.

[15] E.W. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische mathematik, vol. 1, no. 1,
1959, pp. 269–271.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast elitist multi-objective genetic algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, vol.
6, no. 2, 2000, pp. 182–197.

[17] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the Strength Pareto Evolutionary Algorithm,”
in: Evolutionary Methods for Design, Optimisation and
Control, K. Giannakoglou, D. Tsahalis, K. Papailiou,
and T. Fogarty, Eds., International Center for Numerical
Methods in Engineering, 2002.

[18] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan,
“MASON: A new multi-agent simulation toolkit,” in:
2004 SwarmFest Workshop, 2004.

[19] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager,
“SWI-Prolog,” Theory and Practice of Logic
Programming, vol. 12, no. Special Issue 1-2, 2012, pp.
67–96.

[20] “JPL: A bidirectional Prolog/Java interface” Available:
http://www.swi-prolog.org/packages/jpl/ [Accessed June
14, 2013].

[21] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich,
“Opt4J: a modular framework for meta-heuristic
optimization,” in: Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
2011, pp. 1723–1730.

4877

