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Abstract 

In this paper, we introduce a simulation-based, 
evolutionary approach for analyzing and improving 
the security of complex information systems. Rather 
than following a purely technical approach, we bring 
in a social and behavioral perspective through a 
combination of conceptual security knowledge 
modeling, behavioral modeling of threat agents, 
simulation of attacks, and evolutionary optimization.  

Based on results from numerous attack simulations 
for various internal and external attackers, metrics 
such as impact on confidentiality, availability, and 
integrity of the simulated attacks are monitored and 
efficient sets of security controls with respect to 
multiple risk, cost and benefit objectives are 
determined. We describe the developed approach as 
well as a prototypical implementation and demonstrate 
its applicability by means of an illustrative example. 

 
 

1. Introduction 

In the face of a rapidly evolving threat landscape, 
assuring the security of complex information systems 
is a major challenge. In recent years, the frequency and 
sophistication of attacks by motivated adversaries have 
increased dramatically. Unlike malware designed to 
automatically and opportunistically exploit particular 
technical weaknesses, these goal-driven attacks are 
aimed at particular targets. They combine technical 
and social attack techniques to exploit complex 
interactions and leverage architectural weaknesses in 
order to achieve particular objectives. Hence, 
understanding adversaries' motivations, capabilities, 
resources, available attack vectors, and objectives is 
paramount, because these factors determine their 
attack campaign and, ultimately, the risk attackers pose 
to an information system.  

Isolated technical measures, added on top of an 
existing system, are typically insufficient to establish 
an adequate defense and are hence inefficient from a 
risk management perspective. Rather, an integrated 
approach is needed in order to recognize that 
adversaries may combine various technical and non-
technical means to achieve their goals (e.g., network, 
software, physical, and social attacks). Decomposing a 
security analysis problem and evaluating the security of 
individual components or the effectiveness of particular 
security controls is a myopic strategy in this context. 
Our approach reflects this idea in that we evaluate the 
security of complete systems by dynamically 
simulating attacks. Hence, we conceive security as an 
emergent property of complex information systems.  

The main contributions of this paper are as follow: 
We formally model abstract attack patterns and develop 
mechanisms to link them to determine possible routes 
of attacks. Whereas existing approaches typically aim 
to build attack graphs by enumerating the entire set of 
possible paths, we conceive the discovery of these 
paths as a dynamic, adversary-driven process. We 
model adversaries as agents that make deliberate 
decisions in attacking a system while actively 
exploiting dynamic interactions of vulnerabilities. 
Finally, we develop a discrete event attack simulation 
engine, and apply evolutionary algorithms to optimize 
sets of security controls while trading off multiple 
objectives. 

2. Framework overview 

Figure 1 provides a high-level architectural 
overview of the simulation-optimization framework. It 
consists of a knowledge base (Section 3) that formally 
specifies attack mechanisms and security controls as 
well as the system to be protected. A threat scenario 
(Section 4) describes adversaries and their objectives. 
Based on these inputs, our model can link attack 
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patterns dynamically in order to simulate attacks 
(Section 5). This simulation core facilitates evaluation 
of system configurations with various sets of security 
controls in place. Results can be analyzed with respect 
to multiple risk, cost, and benefit criteria.  

Automatically identifying efficient sets of security 
controls is computationally difficult. To tackle this 
challenge, we therefore resort to meta-heuristic 
optimization techniques (Section 6). Optimization 
results finally allow decision-makers to explore 
efficient solutions, trade off conflicting objectives, and 
choose a satisfying solution.  

We illustrate the application of the methodology 
with an example in Section 7. 

3. Knowledge base  

The knowledge base (KB) captures knowledge 
required to simulate attacks in a well-structured and 
reusable format. Our implementation uses the 
declarative logic programming language Prolog to 
model security and system knowledge and reason on 
possible routes of attacks.  

3.1. Security knowledge  

The attack and control model formally specifies 
how systems may be attacked and secured by means of 
attack patterns. Each pattern is applicable in a 
particular context under specific pre-conditions. We 
take advantage of the existing, publicly available 
CAPEC (Common attack pattern enumeration and 
classification) repository [1], which currently contains 
400 community-developed attack patterns for 
exploiting software systems. These patterns derive 
from the concept of design patterns, but are specified 
in a destructive context with the intention to support 
the community to understand the attacker’s perspective 
[2],[3].  

The information is mostly semi-structured and 
hence needs to be translated into a more formal 
representation to be useful for attack simulations. To 
this end, we add formal descriptions and define 
properties that are used to link attack patterns based on 
the CAPEC sections Summary, Experiments (attack 
steps), Outcomes (success and failure results), and 
Attack Prerequisites. Another attribute obtained from 
CAPEC is the base success probabilities of each action, 
which we derived from Typical Likelihood of Exploit. 
Based on this information, we formulate actions as 
clauses with a set of pre-conditions in the body:  

 
action_sqlInjection(Attacker, DbServer) :- 

technicalSkillLevel(Attacker, TechnicalSkillLevel), 
TechnicalSkillLevel >= 1,  
owned(Attacker, AttackHost), 
connected(AttackHost, WebServer, httpProtocol, 
httpPort), 

 connected(WebServer, DbServer, dbProtocol, dbPort), 
 usesDbSoftware(WebServer, DbServer), 
 not(owned(Attacker, DbServer)). 

 
This example predicate defines an SQL injection 

attack and specifies its pre-conditions. It matches all 
variable bindings for Attacker and DbServer that satisfy 
the pattern, based on the current facts in the KB. 

To define possible outcomes of an attack action, we 
define post-conditions, i.e., state transitions that occur 
when the simulation is executed. Basic outcome types 
are successful and failed attack actions. Successful 
execution of an attack action can, for example, allow 
the attacker to gain root access to the target computer, 
while a failed attempt could take the target computer 
offline. Formally, we define both types as rules that 
assert a change in the KB: 

 
exec_success_action_sqlInjection(Attacker, DbServer) :- 

 assert(owned(Attacker, DBServer)). 
 

Figure 1. Framework overview 
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Invoking this rule with valid bindings from the 
previous query asserts the fact that the attacker now 
has access to the DB server, which in turn affects the 
results of subsequent queries.  

CAPEC also includes a section CIA Impact, which 
specifies the impact of an attack action in terms of loss 
or degradation of confidentiality, integrity, and 
availability on a scale of high, medium, and low. This 
is valuable general information, but it does not 
consider the context in which the impact occurs. 
Because we explicitly simulate attacks on a particular 
system, we determine impact not on an attack pattern 
level, but rather based on the affected asset at 
simulation runtime (cf. Section 5.3). The attack KB 
only specifies the security attributes affected by attack 
actions and the rule that determines how the impact 
level will be queried: 

 
action_impact(action_sqlInjection, confidentiality). 
impact_success_sqlInjection(Attacker, TargetHost,  
Impact):- 

importance(TargetHost, confidentiality, Impact). 
 

This example specifies that SQL injection affects 
the security attribute confidentiality. When an attacker 
successfully carries out this action, the confidentiality 
criticality rating of the attacked TargetHost will 
determine the impact rating.  

We further enrich the security knowledge with 
control definitions derived from CAPEC. The sections 
Solutions, Mitigations and Relevant Security 
Requirements provide the necessary information.  We 
distinguish preventive and detective controls that can 
be applied to particular system elements to increase the 
difficulty of attacks or facilitate the detection of 
ongoing attacks, respectively. Formally, we add 
controls to the KB as predefined facts. The associated 
properties determine (i) if the control type is detective 
or preventive, (ii) whether the control is visible to an 
attacker, (iii) the outcome of the control (stop or null), 
(iv) the aggregation type that determines the effect of 
multiple controls on an asset (min, max, cumulate), (v) 
the control response type (immediate or delayed), (vi) 
the detection delay, (vii) the type of assets that 
implement this control, and (viii) the type of assets that 
this control can be applied to. For example, an 
intrusion detection system’s basic properties are 
defined as follows: 

 
control_properties(control_ids, detective, false, null, max, 
delayed, 1000, ids, hostGroup). 

 
Finally, particular control instances and their cost 

and effectiveness in the context of an action can be 
specified as follows: 

 

control_effectiveness(ids1, action_sqlInjection, 0.8). 
ids(ids1, 7500). 

3.2. System knowledge 

To reason about the security of a particular 
information system, it is necessary to model its 
constituent components and establish relations between 
them. To this end, we model specific knowledge about 
the system to be protected, but separate it from the 
abstract attack knowledge. This approach facilitates 
sharing and reuse of domain-specific attack knowledge 
by multiple organizations facing similar threats. The 
system knowledge is organization-specific, and hence, 
kept in a separate file.  

This model stores a set of tangible and intangible 
assets, including hardware components, networks, data, 
employees, policies etc. To illustrate how an asset is 
modeled and controls are associated, consider the 
example of an intrusion detection control. First, an 
instance of host is added to the system model. Second, 
the installed relation is used to link a candidate 
intrusion detection software asset to the host. Third, we 
can state that dbServers_host_1 stores the project 
database projectDb1, and that the server is part of the 
host group dbServerHosts. workstationHosts can access 
the dbServerHosts via HTTP.  

 
host(dbServers_host_1). 
installed(dbServers_host_1, ids1).  
stores(dbServers_host_1, projectDb1). 
inHostGroup(dbServers_host_1, dbServerHosts). 
hacl(workstationHosts, dbServerHosts, httpProtocol, 
httpPort). 

 
To rate the impact of threats, modeled assets can be 

assigned criticality values for multiple security 
attributes. The values can be obtained from existing 
impact analyses or asset criticality assessment reports. 
If this documentation does not exist or such 
assessments have not been performed yet, the system 
owners are responsible for determining the ratings for 
their own systems and information [4]. 

Criticality values can, for example, represent 
monetary values as well as categories of a qualitative or 
continuous scale (e.g., a three-point Likert scale, 1 = 
low, 2 = medium, 3 = high).  

To complete the previous example, we define 
criticality values for the projectDb1. 

 
criticality(projectDb1, confidentiality,2). 
criticality(projectDb1, integrity, 3). 
criticality(projectDb1, availability, 2). 
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4. Threat scenario 

An appropriate adversary model is required to 
understand risks and identify effective controls.  
Whereas adversaries are typically classified based on a 
natural language description in the existing literature 
[5], we take advantage of our formal model to define  
more specific attacker profiles that include capabilities, 
resources (e.g., time), risk preferences, and other 
behavioral attributes (risk aversion, propensity to 
alternate between different attack strategies etc.). 
These attributes determine whether particular 
advanced attack patterns are available, affect the 
choice of attack paths, and determine success 
probabilities in the simulation. We also specify initial 
access where appropriate (an employee may, for 
example, have access privileges on workstationHosts 
and be a member of the workstationUserGroup).  

A complete threat scenario consists of an adversary 
model and an objective specification, stated as a target 
condition that describes a desired system state (e.g., 
attacker has access to db2). 

5. Attack simulation 

The attack simulation leverages and combines the 
knowledge embodied in the security and system KB by 
executing attacks for given threat scenarios.  

Adversaries' choices regarding their course of 
action, the outcome of individual attack actions, and 
the detection of attacks are determined 
probabilistically in the simulation. It is hence 
necessary to perform multiple replications with 
varying sets of random seeds for each attack scenario 
to capture variability and uncertainty. For each 
replication, the simulation executes a schedule of 
discrete events and records outcome variables that can 
be analyzed and aggregated. This flexible framework 
can capture complex causal relations and timing 
interactions. The types of events used in the simulation 
are illustrated in Figure 2. Action Selection events 
schedule Action Start events based on available actions 
determined through pattern linking as wells as the 
adversary's behavioral model. Upon execution, these 
events determine the effective duration of the action 
(which is influenced by factors such as difficulty, 
adversary skills, and preventive controls etc.) and 
schedule an Action End event. 

Detection events may be triggered when assets 
associated with a detective control are being attacked; 
an Attacker Stopped event may be scheduled by 
terminating detective controls. Finally, a Target 
Condition Reached event is scheduled in case the 
attacker has reached the target condition.  

The mechanisms invoked through these events, i.e., 
pattern linking, action selection, action execution, and 
detective control response, are explained in the 
following sections. 

5.1. Attack pattern linking 

Attack patterns are linked automatically based on 
shared pre- and post-condition properties. This 
approach is related to the attack graph concept 
introduced in [6], particularly to advanced formalisms 
and methods to construct large trees [7],[8],[9], as well 
as extensions that incorporate security controls to 
obtain defense and protection trees [10],[11]. However, 
these existing approaches typically enumerate the 
entire set of possible paths to build a complete attack 
graph, which is problematic due to the exponential size 
of the search space. Advanced formalisms for dynamic 
security simulations, such as Generalized Stochastic 
Petri Nets [12] and Boolean Logic Driven Markov 
Processes (BDMP) [13] aim to alleviate this problem. 
Our approach conceives the discovery of attack paths 
as a dynamic process and is therefore more general and 
flexible in several respects (e.g., it is not necessary to 
assume “monotonicity”, i.e., that the attacker can never 
loose previously gained privileges or that the negation 
operator cannot be used to express pre-conditions). In 
this respect, we follow some ideas for state-space 
modeling and simulation from the literature [14].  

5.2. Attack action selection 

We associate adversaries with a behavioral model 
that iteratively selects attack actions based on (i) 
individual adversary characteristics, (ii) the attacker's 
general knowledge about possible routes of attack, and 
(iii) the outcomes of prior attack actions. In our 
illustrative application example discussed in Section 7, 
we model five types of internal and external 
adversaries that differ in their characteristics. 

Our behavioral model is based on the idea that 
adversaries possess general security knowledge (to 
varying degree), but typically do not have complete a-
priori information about the system they attack.  The 
general knowledge about possible routes of attack is 
represented via an abstract attack graph that can be 
queried from the KB for a particular attacker and target 
condition.  This graph may be interpreted as an 
adversary's mental map of how actions can be 
combined to achieve a particular outcome. 

The simulation applies this abstract knowledge by 
querying the KB for valid asset assignments for all pre-
conditions of an abstract action in the context of the 
modeled system. This yields a set of action instances 
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(i.e., abstract actions with assigned variables) that can 
be executed against particular assets. 

We denote abstract actions by � and concrete 
action instances by �. The behavioral model specified 
in Algorithm 1 stipulates that adversaries alternate 
between following a chosen attack path (i.e., a 
sequence of abstract attack actions) and trying new 
approaches (i.e., choosing new entry points and attack 
paths). We assume that adversaries minimize expected 
effort, i.e., they tend to launch attacks “close” to the 
target if possible. This idea is implemented in the 
��������� procedure, which chooses among pre-
selected sets of action instances. It calculates the 
shortest path distances ���� �� in terms of cumulative 
effort required between each abstract attack action � 
and the target condition � using Dijkstra's algorithm 
[15]. Using the longest abstract distance found as a 
reference, it calculates the relative distance for all 
candidate actions based on their position in the abstract 
graph.  

The procedure then calculates individual weights 
�� for each action instance � based on �'s success and 
detection probabilities ���� ��  and ���� �� , the 
relative distance ���� � �  to the target condition, and 
the attacker’s preferences ����, ����, and �����. 

Procedure ������������������� then 
determines the final choice from the candidate action 
instances with probabilities proportional to the 
calculated weights �. 

After the initial action has been selected, 
subsequent choices are dependent upon results of the 
previously executed action �. If the previous action 
was successful and new action instances � have 
become available as a consequence, the adversary will 
choose among them with probability �������	���
 and 
choose among all available actions otherwise. If the 
previous action was successful, but did not yield any 
new action instances, then there are two options. With 
probability�������������	�
��, the adversary will 
choose among action instances that have become 
available as a consequence of the same action as �, 
i.e., those returned by �����������	��
���. 
Otherwise, the adversary will search for a new entry 

point by selecting from all available actions 
In case the previous action � was not successful, the 

adversary will retry with probability �
�����. Otherwise, 

it will either choose a “neighboring” action instance 
(with probability ������������	������) or search for a new 
entry point among all available actions. 

At each step during an attack, the adversary will 
chose available action instances directly if their 
outcome fulfills the target condition. 

Input:  previous action � �,  
   available actions ��� 

new actions �� 
Output: selected action 
  
����������	
����� ������
 for �� � �� ��
  if �������������	
��������� then�
   return ���
  endif�
 endfor�
 
 if �� � ����� then 
  return �������� ���
 else if ������������������
  if ���� �� �� then�
   if  �������	���
 �� ��������� then�
    ���������� 
   else  
    return �������� ���
   endif 
  else if ��������� �� ��������� then 
   �� �� ������������	
����� 
   return �������� �� 
  else 
   return �������� ���
  endif 
 else if ������� � ��������� 
  return � 
 else if ������������ � ��������� then 
  � � � ��������	
��������� 
  return �������� ���
 else 
  return �������� �� 
 endif 
 
 
�������� �� 
for  �� do 
 ���

��	
��

������

�������������
 

 ��� � ��������
���� ��� � ����������

����
��� � ���

����
�����  

end for 
 
return ���������������� ���� 

Algorithm 1. Attacker behavior Figure 2. Event types and scheduling 
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5.3. Attack action execution 

Upon execution, we determine (i) whether the 
attack action was successful, (ii) whether the attack 
target has been reached, (iii) what actions become 
unavailable as a consequence, (iv) what new actions 
are available, and (v) the impact on security attributes 
(e.g., confidentiality, integrity, availability). The 
impact severity of an executed action is dependent 
upon the execution context. The attack patterns stored 
in the security KB specify the attributes affected by an 
action (e.g., action_sqlInjection affects 
confidentiality), but not the severity of an impact. The 
latter is obtained by querying asset valuation with 
respect to the security attribute from the system KB. 
The impacts on security attributes are registered and 
can be analyzed and used for optimization purposes. 
The result of an action then drives the selection of 
subsequent actions. 

5.4. Detective control response 

Detective controls define two possible outcomes: 
(i) Stop, i.e., the simulation run terminates, or (ii) a 
defined path to a post-condition (modeled in the 
abstract attack graph) to execute. These post-
conditions can change property values in the system 
model. For example, when an intrusion detection 
system blocks the adversary's source IP address it 
inhibits certain attacks but potentially also facilitates 
new attack patterns (e.g., IPS reaction leads to service 
disruption and causes an availability impact).  

6. Meta-heuristic optimization 

Decision-makers can obtain valuable insights by 
iteratively modeling a system with a particular set of 
security controls in place and running the simulation to 
assess their joint effectiveness. Discovering 
interactions between individual security controls and 
optimizing the overall configuration by altering the 
system manually until satisfactory results can be 
achieved is, however, a tedious and difficult process 
and infeasible for larger problem sizes.  

We therefore introduce biologically inspired 
optimization techniques and the concept of a control 
portfolio characterized by a genotype string of binary 
indicator variables. Each of these variables represents 
a control-asset pairing (e.g., logPolicy1 implemented 
on dbServerHosts) that takes the value 1 if the 
respective control is applied to the asset and 0 
otherwise. 

To evaluate a control portfolio, we initialize the 
system by applying controls to assets according to its 

genotype. We then simulate a number of attacks with 
varying random seeds and record outcome metrics. 
These metrics can be aggregated across simulation runs 
(e.g., sum, min, max, average, median) and selected as 
optimization objectives.  

Because we consider several objectives 
simultaneously, the optimization does not generally 
result in a single “best” control portfolio, but typically 
in a set of (Pareto-) efficient portfolios. Each proposed 
efficient portfolio is non-dominated, i.e., there is no 
other portfolio with equal or better values for all 
objectives and a strictly better value for one of the 
objectives. 

Due the huge combinatorial decision space (with �� 
potential portfolios, where � is the number of control-
asset combinations), the expensive simulation-based 
evaluation procedure, and the need to account for 
multiple optimization objectives, this simulation-
optimization problem is highly challenging 
computation-wise. Exact solutions (i.e., complete sets 
of all efficient portfolios for a given number of 
simulation replications) can only be determined 
through complete enumeration for rather small problem 
instances. In order to tackle larger problem instances 
we resort to meta-heuristic solution procedures.  

In particular, we experimented with genetic 
algorithms, i.e., population-based approaches that are 
inspired by nature and optimize problems implicitly. 
These algorithms evolve a population of individuals 
(control portfolios) iteratively by evaluating their 
fitness (assessing objectives), selecting fit individuals 
(control portfolios), and performing crossover and 
mutation operations on the selected individuals to 
generate offspring. The binary genotype strings 
generated in this process are evaluated by means of a 
number of simulation replications, which yield 
aggregate objective values used for assessing the 
“fitness” of the respective control portfolio.  

We conducted experiments with the NSGA-II [16] 
and SPEA-II [17] genetic algorithms and evaluated 
solution quality and convergence characteristics for 
small problem instances (search space ���) with respect 
to results obtained by complete enumeration. We found 
that both algorithms performed reasonably well. Using 
default parameters, NSGA-II performed slightly better 
and on average identified approximately 65% of all 
efficient solutions within covering the first 20% of the 
search space. By adding the all-zero and all-one 
genotype strings to the otherwise randomly generated 
initial population, applying a two-point rather than the 
single-point crossover operator, and using an adaptive 
mixed mutation strategy that randomly selects between 
insert/revert/swap operations, we could improve 
NSGA-II performance for the given problem 
significantly. For our illustrative application discussed 
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in the following section, we observed a convergence 
toward the full set of efficient solutions typically 
within the first 250 generations.  

7. Application example 

7.1. Implementation 

The attack simulation and optimization 
components are implemented in Java. We use the 
scheduling mechanisms provided by MASON [18], a 
fast discrete-event simulation core which also provides 
the pseudo-random numbers used in the simulation. 
The underlying knowledge base is implemented in 
SWI-Prolog [19] and accessed in Java via JPL [20]. 
The genetic algorithm-based optimization is 
implemented using the meta-heuristics framework 
Opt4J [21]. 

7.2. Knowledge modeling 

For our sample application, we mapped 10 CAPEC 
attack patterns and added additional required actions, 
such as accessing data after the required permissions 
have been obtained. To account for attacks that exploit 
previously unknown vulnerabilities, we added a zero-
day attack action. Successful execution of this action 
will give the adversary access to the attacked host. 
Existing controls such as antivirus software are largely 
ineffective against these kinds of attacks. The attack 
patterns used, including their CAPEC reference 
numbers and modeled security controls, are listed in 
Table 1. 

Next, we enriched the model with security control 
definitions from the corresponding CAPEC patterns. 
Controls include, for example, antivirus software, 
patches for specific software, intrusion detection 
systems, log policies, and security training. 

Finally, the organization and its IT infrastructure is 
represented by creating instances of concepts such as 

Host, Subnet, Data, and User, as well as relations 
between these concepts (e.g., Host stores Data, Host 
uses Software, User in UserGroup). The synthetic 
example system model used in this illustrative scenario 
was generated automatically. It contains 30 hosts, 5 
web servers, 5 database servers, 30 employees, and 3 
administrators (cf. Figure 3 for an overview; details 
such as connections between systems, and installed 
software have been omitted for sake of clarity of 
exposition). 

7.3. Experimental Setup 

We define five external and internal adversaries, all 
of them with the objective of gaining access to data set 
db2. Internal adversaries already have certain levels of 
access to the system (e.g., shoulder surfing requires 
physical access to the environment). For external 
attackers, the demilitarized zone (DMZ) is the main 
entry point to the company's internal network. We 
assign varying preference weights, time budgets and 
other parameters that shape adversaries' simulated 
behavior as summarized in Table 2. An advanced 
persistent threat (APT), for example, has a large time 
budget, the highest technical skill level (and therefore a 
wide range of sophisticated attack actions), and is 
highly risk-averse (i.e., has a strong preference for 
avoiding detection).   

An unskilled external attacker, on the other hand, is 
less patient and hence has a low time budget, a low 
technical skill level, and primarily aims at successfully 
executing attack actions without caring much about 
detection. 

For other behavioral parameters, we set uniform 
values for all adversary types (�������	���
 � ���, 
������� � ���, ������������	�
�� � ���, and 
������������	�����
 � ���). 

We used six optimization objectives in our 
experiments: minimize costs, minimize successful 
attacks, maximize detection of attacks, minimize total 
confidentiality impact, minimize total integrity impact, 
and minimize total availability impact. 

To map the impact category valuations low, 
medium, and high to a scalar objective value, we used a 
lexicographic mapping, i.e., only the highest impact 
category is relevant for the optimization. We performed 
30 simulation replications for each portfolio and 
evolved the system model for 500 generations using 
recommended NSGA-II standard parameters (cf. [16]).  

7.4. Results 

All optimization experiments were executed on a 
2x3Ghz Xeon machine and required a runtime between 

Attack action CAPEC (ID) 
sql injection SQL Injection (66) 
social attack Information Elicitation via Social 

Engineering (410) 
brute force Password Brute Forcing (49) 
spearfish attack Social Information Gathering via 

Pretexting - (407) 
buffer overflow Buffer overflow in an API call (8) 
email keylogger Email Injection (134) 
email backdoor Email Injection (134) 
zero day Privilege Escalation (233) 
directory traversal Directory Traversal (213) 
shoulder surfing Social Information Gathering (404) 
access data Legitimate Action 
access host Legitimate Action 

Table1. Example attack patterns used 
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approximately 90 minutes (Admin scenario) and 50 
hours (APT scenario). However, the optimization 
typically converged well before 500 generations. The 
genetic algorithm identified 251 efficient portfolios for 
the advanced persistent threat scenario, 306 for the 
skilled external attacker and 104 for the unskilled 
external attacker. Compared to these external threat 
sources, the number of efficient solutions was much 
lower for internal attackers, namely just 2 for the 
administrator scenario and 58 for the employee 
scenario. Figure 4 illustrates the objective values of 
efficient portfolios in a parallel coordinate plot. The 
impact objective axes (CIA) are visually separated into 
high (above the red mark), medium (above the orange 
mark), and low (above the green mark) impact 
categories. Only the impact from the highest category 
is visualized for each portfolio.  

Figure 5 illustrates the set of solutions obtained for 
the different attacker types in a heatmap 
representation. For the admin attacker, there are only 
two efficient portfolios not depicted in this 
representation. For all other types, the labels on the 
right hand side indicate the proposed efficient 
portfolios identified in the optimization. Each 
individual line represents a portfolio and contains its 
genotype string on the left hand side (blue) and the 
optimization objective values obtained for the 
portfolios on the right hand side (red). Control 
columns are arranged by control type and each 
individual field represents an assignment of a control 

to a particular asset (i.e., blue if the control is included 
in the portfolio, and white otherwise). Result columns 
for impact metrics consist of high, medium, and low 
impact categories grouped by attributes. 

This rather dense representation is not suitable for 
in-depth analysis, but it provides an overview of which 
control types tend to be more or less efficient for 
particular attacker types. It also facilitates a rough 
comparison of the relative impact these different 
adversaries may achieve. 

For the administrator, we find that this adversary 
always reaches the specified target, which is expected 
given that he/she already has all required access 
privileges. There is a single highly critical 
confidentiality impact caused by the confidentiality 
breach on the target db2. For this type of attacker, there 
are no effective preventive controls, but applying a log 
policy on dbServerHosts raises the detection rate 
substantially. 

The employee succeeds in obtaining access to the 
target data set in approximately half of the simulation 
runs when no security controls are in place. Even 
though the employee has access to internal systems, 
he/she cannot access the hosting servers directly and 
lacks the skills for technical attacks. He/she must 
therefore rely on social attacks. The relatively high 
success rate can be attributed to the availability of more 
effective social attacks (shoulder surfing) due to 
physical access. Accordingly, the control portfolios that 
include intensive security trainings (e.g., train2 and 
train3) for the database (dbAdminGroup) and server 
administrators (adminGroup) turn out highly effective 
against this type of attacker. With these controls 
implemented, the share of simulation runs in which the 
employee reaches the target can be reduced to 6%.  
Technical controls, on the other hand, are not included 
in any efficient control portfolios for this adversary 
type. Again, a log policy on the hosting dbServerHosts 
raises the detection probability. 

As expected, the advanced persistent threat has the 
highest success rate of all external attackers (approx. 
2/3). Due to its proficiency and budget, a wide range of 

 

Figure 3. Example system model 

adversary  time limit 
(sec.) 

���� �
��� ����� access 

Employee 150,000 0.45 0.25 0.30 workstation hosts 
Admin 300,000 0.50 0.20 0.30 all hosts 
Skilled  200,000 0.30 0.40 0.30 external 
Unskilled  100,000 0.30 0.40 0.30 external 
APT 1,000,000 0.50 0.20 0.30 external 

Table 2. Attacker types Figure 4. Efficient portfolio objective values 
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attacks and attack paths are available, and, hence, a 
wide range of security controls have to be 
implemented. Patching vulnerable systems, deploying 
antivirus software, code reviews, and performing 
security trainings are the most effective preventive 
controls against this adversary type. For the dmzHosts 
in particular, antivirus software av2 is frequently 
included in efficient portfolios. Intrusion detection 
systems and log policies result in a high detection rate. 
In contrast to internal attack scenarios, controls are 
applied to a much wider range of assets (e.g., log 
policies on various servers and not only on the target 
database server). This can be attributed to the fact that 
this attacker type causes significant “collateral” 
impacts while trying to find ways to achieve the target 
(including high impacts on availability and integrity). 

Even with high investments in security controls, 
however, this attacker can rarely be stopped from 
reaching the target. The most efficient sets of controls 
reduced the share of successful attacks to 20% and 
raised detection rates to 63%. 

Optimization results for the skilled external 
attacker are similar, even though this type of adversary 
succeeds less frequently. In general, the security 
impact is lower compared to advanced persistent 
threats. The impacts on confidentiality and integrity 
are significantly reduced by the choice of efficient 
security controls. Furthermore, technical controls, such 
as antivirus and web server hardening, are prevalent in 
control portfolios against skilled external attackers.  

Against an unskilled external attacker, intrusion 
detection systems prove effective and show a high 
detection rate. To prevent email attacks (including 
backdoors and keyloggers), antivirus software and 
security training, especially for workstation users 
(workstationUserGroup) are included in a large 
fraction of portfolios. The impacts of this adversary 
type are less severe, and the share of successful attacks 
can be reduced to 3%. 

In a real-world setting, both systems and threats are 
evolving. The method hence needs to be applied on a 
continuous basis. To this end, it is necessary to update 
the system model to reflect configuration changes, 
update the threat scenarios as the attack landscape is 
changing, and update the security KB as new attacks 
become known.  

8. Conclusions 

The evolutionary optimization approach towards 
security introduced in this paper aims at improving the 
resilience of complex information systems. It is built 
upon a knowledge base that models multi-step attacks 
for distinct adversary types and leverages this 
knowledge to identify promising combinations of 
information security controls through simulation-
optimization.  

We illustrate the approach with a sample 
application. Using an abstract graph to map the 
attacker’s mental model, our framework simulates a 
large number of attacks for multiple adversaries and 
evolves system configurations that are resistant against 
these adversaries. We simultaneously consider 
multiple, partly conflicting, objectives, i.e., maximizing 
prevention and detection of (simulated) attacks while 
minimizing their confidentiality, integrity, and 
availability impacts at minimal cost. The results of our 
experiments suggest that the proposed approach can be 
usefully applied to study and optimize the security of 
complex information systems. 

Further research is possible in several directions. 
First, to cover CAPEC more extensively, the security 
knowledge base can be extended with additional attack 
patterns. This is not a trivial task that requires the 
development of an appropriate vocabulary for the 
specification of cause and effect across multiple levels 
of abstraction. Moreover, additional sources of attack 
knowledge beyond software security can be integrated.  
The resulting knowledge base needs to be provided to 
the information security community and other 
interested stakeholders in a shared repository. This 
would enable organizations to independently model 
their own systems as well as the threats they face and 
use the domain knowledge formalized in the shared 
knowledge base to obtain recommendations on Figure 5. Control sets and simulation results 
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effective improvements. Because information security 
is a “moving target”, knowledge needs to be 
maintained and extended continuously. We therefore 
intend to design mechanisms that allow users to 
automatically update the knowledge base as new 
attacks become known, which in turn would allow 
them to determine their exposure to these new attacks 
through simulation and obtain recommendations on 
efficient mitigations. This could reduce the knowledge 
gap between attackers and defenders. 

Because the list of proposed efficient sets of 
measures is typically large, we also develop interactive 
visualizations for the exploration of the solution space 
and mechanisms that support decision-makers in the 
selection of a set of security controls to implement. 

Finally, it would be interesting to evaluate our 
approach in the context of other domains with strict 
security requirements, such as critical infrastructures. 
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