
Patcher: An Online Service for Detecting, Viewing and Patching Web
Application Vulnerabilities

Fang Yu and Yi-Yang Tung

Department of Management Information Systems
National Chengchi University

yuf@nccu.edu.tw

Abstract
Web application security becomes a critical issue as

more and more web applications appear and serve
common life and business routines in recent years. It is
known that web applications are vulnerable due to
software defects. Open to public users, vulnerable
websites may encounter lots of malicious attacks from
the Internet. We present a new web service platform
where system developers can detect, view and patch
potential vulnerabilities of their web applications
online. Taking advantage of static string analysis
techniques, our analysis ensures that the patched
programs are free from vulnerabilities with respect to
given attack patterns. Specifically, we integrate the
service front end with program visualization
techniques, developing a 3D interface/presentation for
users to access and view the analysis result under
visualization environment with the aim of improving
users’ comprehension on programs, especially how
vulnerabilities get exploited and patched. We report
our analysis result on several open source
applications, finding and patching various
unknown/known vulnerabilities.

Keywords: visualization, web security, string analysis,
program comprehension

1. Introduction

Web applications have become a crucial part of
commerce, entertainment and social interaction and
they are rapidly replacing desktop applications. In the
near future, they are expected to play critical roles in
national infrastructures such as healthcare, national
security, and the power grid. However, there is a large
stumbling block to the ever-increasing reliance on web
applications in almost every aspect of society: they are
notorious for security vulnerabilities. Global
accessibility of web applications makes this a very
serious problem. Malicious users all around the world
can exploit a vulnerable web application and cause
serious damages.

According to the Open Web Application Security
Project (OWASP)'s top ten list that identifies the most
serious web application vulnerabilities, the top three
vulnerabilities in 2007 were: (1) Cross Site Scripting
(XSS), (2) Injection Flaws (such as SQL Injection) and
(3) Malicious File Execution (MFE). Even after it has
been widely reported that web applications suffer from
these vulnerabilities, the top two of the vulnerabilities
were still listed in the top three of the OWASP's top
ten list in 2010 and 2013. That is to say, in the past
decade, even with the increased awareness about their
importance due to OWAPS reports, these
vulnerabilities continued to be widely spread in
modern web applications, causing great damages.

An XSS vulnerability results from the application
inserting part of the user's input in the next HTML
page that it renders. Once the attacker convinces a
victim to click on a URL that contains malicious
HTML/JavaScript code, the user's browser will then
display HTML and execute JavaScript that can result
in stealing of browser cookies and other sensitive data.
An SQL Injection vulnerability, on the other hand,
results from the application's use of user input in
constructing database statements. The attacker can
invoke the application with a malicious input that is
part of an SQL command that the application executes.
This permits the attacker to damage or get
unauthorized access to data stored in a database.
Finally, MFE vulnerabilities occur if developers
directly use or concatenate potentially hostile input
with file or stream functions, or improperly trust input
files.

One important observation is, all these
vulnerabilities are caused by improper string
manipulation. Programs that propagate and use
malicious user inputs without sanitization or with
improper sanitization are vulnerable to these well-
known attacks.

In this work, we present Patcher, a new service
platform for system developers patching and viewing
vulnerabilities related to string manipulation in their
web applications. Particularly, we incorporate the
service with novel string analysis techniques that not

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.598

4878

only check whether a web application is vulnerable to
the types of attacks we discussed above, but also
generate the corresponding patches that ensure the
applications free from malicious exploits of identified
vulnerabilities.

Patcher is a new online service that is open to public
users. Users can access and upload their code to check
potential vulnerabilities. Users can also insert patches
that are automatically generated to prevent malicious
exploits of their programs. While deploying new web
services, it is essential to build the confidence on their
security mechanisms. To the best of our knowledge,
this is the first public online service that secures web
applications using formal verification techniques.

Another advantage of our service is a user-friendly
interface that aims at improving users’ comprehension
on where the program vulnerabilities are and how they
get exploited and patched. Particularly, we develop an
interactive 3D interface/presentation for users to access
and view the risk status of their applications and
vulnerabilities. The service provides users a clear view
of vulnerabilities of target applications and a quick fix
to reduce their risks. To sum up, we provide a new
service platform for patching and viewing web
application vulnerabilities, combining advance static
string analysis techniques as the back end and
visualization techniques as the front end. We believe
this service would certainly reduce the risks of Web
applications and improve their security quality.

The rest of this paper is organized as follows: We
summarize previous work in string analysis and web
application security detection and visualization in
Section 2. We briefly introduce our string analysis
techniques and the service architecture (as the back-
end analysis engine) in Section 3. We discuss our
design and implementation of visualization (as the
front-end viewer) in Section 4. We report some
analysis results against open-source Web applications
in Section 5 and draw our conclusion in Section 6.

2. Literature Review

String Analysis and Vulnerability Detection: Due to
its importance in security, string analysis has been
widely studied. One influential approach has been
grammar-based string analysis that statically computes
an over-approximation of the values of string
expressions in Java programs (Christensen et al.,
2003), which has also been used to check for various
types of errors in Web applications (Gould et al., 2004;
Minamide 2005; Wassermann and Su, 2007 and 2008).

There are also several recent string analysis tools
that use symbolic string analysis based on
deterministic finite automata (DFA) encodings

(Shannon et al., 2007; Fu et al., 2007; Yu et al., 2008).
Some of them are based on symbolic execution and use
a DFA representation to model and verify the string
manipulation operations in Java programs (Shannon et
al., 2007; Fu et al., 2007). HAMPI (Kiezun et al. 2009)
is a bounded string constraint solver. It outputs a string
that satisfies all the constraints, or reports that the
constraints are unsatisfiable. Note that this type of
bounded analysis cannot be used for sound string
analysis whereas the string analysis techniques we
adopt in this paper are sound.

Yu et al. (2008, 2010) have used single-track DFA
based symbolic reachability analysis to verify the
correctness of string sanitization operations in PHP
programs. Their preliminary results on generating
(non-relational) vulnerability signatures using single-
track DFA were reported in a short paper (Yu et al.,
2009).

All of the above results use single-track DFA and
encode the reachable configurations of each string
variable separately, i.e., they use a non-relational string
analysis. Yu et al. reported the results on foundations
of string analysis using multi-track automata (Yu et al.,
2010). Multi-track automata read tuples of characters
as input instead of only single characters. Each string
variable corresponds to a particular track (i.e., a
particular position in the tuple), thereby allowing a
relational analysis. As demonstrated in (Yu et al.,
2010), a relational analysis enables verification of
properties that cannot be verified with these earlier
approaches. However, relational string analysis can
generate automata that are exponentially larger than the
automata generated during non-relational string
analysis. To tackle this problem, we also incorporate
the abstraction techniques with the tool including
alphabet abstractions and relation abstractions (Yu et
al., 2011), which enable us to improve the performance
of the relational string analysis by adjusting its
precision. The earlier results on relational string
analysis presented in (Yu et al., 2010) do not use any
abstraction techniques.

It is critical that vulnerabilities are not only
discovered fast, but they are also repaired fast. There
has been previous work on automatically generating
filters for blocking bad input (Costa et al., 2007). The
work focuses on buffer-overflow vulnerabilities that
are different than the string vulnerabilities we
investigate here. In (Costa et al., 2007) the generation
of filters is done starting with an existing exploit
whereas we plan to start with an attack pattern instead.
In (Yu et al., 2009), Yu et al. use single-track automata
to generate the vulnerability signatures of the detected
vulnerabilities in the Web applications. In addition to
generate vulnerability signatures, Yu et al. use the
vulnerability signatures to generate effective

4879

sanitization statements. By applying their techniques,
we are able to prove the absence of vulnerabilities in
the applications that are patched with these statements.
On the other hand, single-track automata are limited to
model relations among variables. As shown in (Yu et
al., 2009), this limitation makes the analysis to
generate rather coarse vulnerability signatures, e.g., Σ*
(any arbitrary string), for a vulnerability that can be
exploited from multiple inputs. To tackle this problem,
Yu et al. proposed a new approach to apply relational
string analysis (Yu et al., 2010). They are able to
generate more precise vulnerability signatures by
catching the relations among inputs (Yu et al., 2011).
We realize these approaches in Patcher, providing a
new service to public users for patching and viewing
their web application vulnerabilities. Compared to
black-box security tools such as Wapiti (2008) and
Netsparker (2013) that detects vulnerabilities via
runtime testing, Patcher adopts static white-box
analysis on source codes of applications and is able to
ensure the correctness of patched programs.

Program Visualization and Comprehension:
Visualization can help improve the comprehension of
abstract program logics. Gammatella (Orso et al.,2004)
uses the analogy with a traffic light to convey the
concepts of danger, caution and safety with colors: red,
yellow and green. Red represents the maximum value
and green represents the minimum value. The way how
colors are assigned to status depends on the view of
targeting dimension. In Patcher, we also use colors to
decorate vulnerable files and deliver the concept of
risks of the whole applications.

Bohnet and Döllner (2006) developed the technique
that provides the extraction of system architectures and
dependencies between code components. The model
includes the class-level model and the architectural-
level model, and users can choose a scenario (a
sequence of interactions between users and the system)
that triggers specific executions. The visual layout
separates nodes by the components such as functions
and directories. It also provides the facility to quick
access source codes by synchronizing the textual
source code view with its graph exploration view. If
users click the function shape or call relation, the
corresponding source code will be loaded into the
textual source code view area along with the selected
code line highlighted. Vice versa, the corresponded
shape in the graph exploration view will be highlighted
when the source code line is selected. Later we will
show its facilities cover program codes (level 0), data
flows (level 1), dependency graphs (level 2) and
architectural-level views (level 4) specified in Table 1.

Some recent works focus on how to present
contents in mobile devices. SmartFoxServer (2013)

supports the multi-platform technology to integrate the
web servers with mobile applications and devices
including techniques on Adobe Flash, Unity, iOS,
Android, HTML5. It enables developers building an
integrated multi-user platform for servers and clients.
Ahmadi and Kong (2012) introduce an adaptive layout
on the mobile screen based on advance visual analysis
and structure analysis. It provides users a tool to
customize their screen layout of mobile devices. Virpi
et al. (2006) investigate the principles of content
presentation in mobile devices. Gateway (Mackay,
2003) reduces the page scale for having users doing
much less vertical and horizontal scrolling. Minimap
(Virpi et al., 2006) adopts a novel visualization method
that provides users suitable layouts of contents by
listing the requirement of a good content presentation
for mobile devices. It is better to fit more content in to
the screen and eliminate the manipulation of horizontal
scrolling. We also develop an app to present
information in mobile devices.

Our implementation for visualization is on Unity.
Unity is a game engine and IDE cross-platform that
not only supports PC, Mac, Xbox 360 and Web servers
but also mobile operation systems such as iOS and
Android. The graphic engine of Unity can be
incorporated with Direct3D (Windows), OpenGL
(Mac, Windows), OpenGL ES (iOS, Android), and
proprietary APIs (Wii). Using Unity, our visualization
tool can be deployed to multiple platforms, as the
remark from the Unity official “Author Once, Deploy
Everywhere”. Unity also supports integration with 3ds
Max, Maya, Softimage, Blender, Cinema 4D,
Photoshop, Adobe Fireworks. Changes that are made
to the listed assets can be automatically updated in the
Unity environment.

Compared to other security tools, we provide a
new service for visualization of web application
vulnerabilities. The interactive 3D environment
provides users a unique experience on exploring web
application vulnerabilities that traditional chart- or
text-based summary presentation cannot offer.

3. Automata-based String Analysis and the
Web Service

In this section, we present the back-end techniques
that facilitate Patcher the ability to detect and patch
vulnerabilities of string manipulating programs with
respect to attack patterns. We conduct the static source
code analysis according to the stages shown in Figure
1. The analysis takes two inputs: the source code of the
web applications and attack patterns that characterize
malicious strings for specific vulnerabilities. Users
have to upload their programs to the service, which can

4880

be a script or a whole application. We provide several
attack patterns by default for detecting different
vulnerabilities. We then perform taint analysis (Pixy,
2003) to identify sensitive functions in the (PHP)

programs that may take values of user inputs. These
sensitive functions (sink nodes) pose potential
vulnerability points and need to be further inspected.
We then conduct symbolic string analysis (Yu et al.
2008 and 2009) on the dependency graphs. This
vulnerability analysis combines symbolic forward and
backward symbolic reachability analyses. In the
forward analysis, we first assume that the user input
can be any string, and then propagate this information
accordingly on the dependency graph. When a fixpoint
is reached (we have explored all possible states of each
node), we intersect the values of sink nodes with the

attack patterns. The intersection result identifies all
reachable attack strings. The next stage is
characterizing user inputs that can exploit the
vulnerabilities, called vulnerability signatures.
Depending on the number of input nodes, we conduct
back ward reachability analysis on single-track
automata to generate atomic signatures or forward
reachability analysis on multi-track automata (Yu et al.
2010) to generate relational signatures. The later
specifies the relations among multiple inputs, and
presents a more precise characterization of malicious
values of multiple user inputs. The final stage is to
synthesize effective patches (Yu et al. 2011) that can
be inserted in the right position of the programs so that

user inputs that match vulnerability signatures (the
characterized malicious inputs) can be identified and
modified to avoid exploits during the program
executions.

We have implemented the tool Patcher to realize the
above static source code analysis. Patcher can
automatically analyze PHP programs end-to-end
without user interventions. We have also provided the
web version of Patcher so that users can directly
upload their code and view the results through the web
pages. One can first write the script or upload a local
file to Patcher. Patcher analyzes the script, detects
potential vulnerability in the program, and generates its
patches as the sanitization statement(s) with proper
positions to insert. Developers can also upload a
compressed file of the whole application as a package.
Patcher will check all the execution entries of PHP
scripts in the application automatically, and report and
synthesize all vulnerabilities and their sanitization
statements.

Figure 2 shows the architecture of Patcher that
includes an app for mobile devices, a web site for the
web service, and a display device for 3D graphic
visualization. Each device deals with different level
tasks and information described as below:

• System level: Users first login through the app or

the web site. After passing the authentication, they
can upload their applications for investigation or
access previous analyzed analysis. The server
keeps the list that includes all the applications that
a user has uploaded with application names and
features, performance data and status, and paths to
access analysis results.

• Architectural level: Users can select an
application in the list to view more details on how
many files are vulnerable within the application.
This can be done through the app or the website,
and data will be represented based on the
interface. The level information includes all the
file names, index, and vulnerability counts within
the application. Users can select a file through
both the website and the app to drill down to the
details of a file. The vulnerable files in the
visualization tool will be display as a bee comb,
where each file is represented a honey cell and
colored in red, yellow, or green. The color
indicates how vulnerable a file is (dangerous,
moderate, or safe).

• File and Program code level: This level provides
the information of single file and its source code
and users can check the vulnerabilities in the file.
In this level, users can exam each vulnerability in
detail such as the sensitive function and where it is

Figure 1. String Analysis Stage

Figure 2. Architecture of the system

4881

(line of code), and how to patch it (where to insert
the patch statement). The information can be
presented in different formats. In the website, we
create a source code editor so that users can
directly modify the vulnerability or add the patch
code in the source code. Patches are automatically
generated. System developers can fix
vulnerabilities without knowing much about the
vulnerabilities or the codes. It is particularly useful
to patch legacy parts of Web applications. On the
other hand, users may want to know what
vulnerabilities are and how they are raised and
exploited. We generate an interactive dependency
graph for each vulnerability to serve this purpose.

• Data flow level: Every dependency graph
corresponds to one vulnerability in the file. Both
app and web site can access it by the index of
vulnerabilities and trigger the displace device to
show the graph in 3D. Our server provides an
interactive environment for engineers to trace
program execution step by step or to run a
simulation of a sample path to exploit the
vulnerability. We also synchronize the dependency
graph and source code, and highlight the
corresponding line of the selected execution (node
in the dependency graph) in the source code. That
is, users can trace the source code when explore
executions on the dependency graph.

Figure 3 shows a sample sequence of our web

service in which we integrate our mobile device with
the web service and visualization. First users can login
and upload the application through the website, then
view the analysis result from the mobile app or the
website, and launch the visualization tool. When users
choose an application from the list, the visualization
tool shows the status graph (bee comb) of the
application. Both the website and the app provide
functions to view details of vulnerable files for users
drilling down to exam vulnerabilities and their patches.
By clicking a listed file, users can check its
vulnerabilities and source code. For each vulnerability,
users can click its Dependency Graph to generate the
interactive dependency graphs to trace how values of
input nodes flow to the sink node. To patch the
vulnerability, users can insert the corresponding patch
code at the identified line to sanitize user inputs.

4. Information Representation

In this section, we discuss our design of Patcher on
how the information is represented in different
abstraction levels. By retrieving and manipulating
analysis results from the backend, we can visualize

those data to users in a way for better program
comprehension than data in traditional text formats.

Pacione (2004) suggests that tools addressing

software comprehension are supposed to support
abstraction, structural and behavioral information, as
well as the integration of statically and dynamically
extracted data, separating the subject as six abstraction
levels (shown in Table 1). Each level is a view with a
name, a description and a set of diagrams that illustrate
software at that level of that facet.

Our main purpose is to enhance the comprehension

about the vulnerability and the program execution of
applications or files. We represent the result analysis in
six levels as proposed in (Pacione, 2004); each level
provides analysis result of applications in different
aspects. Table 1 lists the corresponding information
that we provided at each level. Level 0, 1, and 2
provide detailed information regarding one
vulnerability.

• Level 0: In this code level representation, the

source code and lines related to a specific
vulnerability is presented. Users can insert the
generated patches to prevent malicious exploits of
vulnerabilities.

• Level 1: In this exploit execution level
representation, the simulation of a potential exploit
on the dependency graph is provided. Users can

 Table 1.Abstraction levels of the system

4882

traverse how tainted data flows from user inputs to
sensitive functions.

• Level 2: In the vulnerability structure level
representation, an interactive dependency graph is
presented with sink nodes, function nodes, and
input nodes in different shapes. Users can check
the dependency graph as a whole to reason the
structure of the vulnerability.

• Level 3: In the file level representation, a list of
vulnerabilities in a file is represented along with a
brief summary on how many vulnerabilities exist
for each kind. Each vulnerability also has a brief
description on the variable, the sink location, the
input location(s), etc. System developers can
figure out what vulnerabilties exist in this file.

• Level 4: In the application level representation, a
bee comb is used to show the risk status from the
entire view of an application. Users can realize the
security status overall by viewing the bee comb
and choose most dangerous files to patch. A list of
files with a brief summary on total number of
vulnerabilities is also presented.

• Level 5: In the user level presentation, a list of
applications that have been uploaded by the same
user is presented along with a brief summary of
status of each application.

Information in a large-scale view (higher level)

gives users a clear view about high level components
and the architecture. Information in a small-scale view
that provides users detailed information from specific
aspects. Our visualization tool provides browsing
facilities to answer users’ questions that are generally
broad at beginning and then narrow down to specific
issues. That is to say, users check the vulnerable file in
applications when vulnerability is reported and then
drill down to examine the source code to reveal how
the vulnerability is raised. Program visualization also
requests data from various sources to display different
views as the dimension changes. It improves the
comprehension to provide information from different
platforms.

5. Evaluation

To evaluate our platform, we have uploaded various
open source Web applications to Patcher. Table 2
summarizes the analysis results. There are ten
applications that contain 3055 files in total. 2895 out of
3055 files have been analyzed successfully under 4000
seconds (1.3 second per file on average). The success
rate is about 95%. Within these applications, Patcher
reveals 2823 vulnerabilities. Most of them are

previously unknown. The complete list can be found at
http://soslab.nccu.edu.tw/patcher.

As for the performance issue, Patcher takes 1343
seconds to analyze php-fusion-6-01-18 application and
993 seconds to analyze moodle1_6 that has more files
and vulnerabilities. We have taken a close look of
vulnerabilities and found that the dependency graphs of
php-fusion-6-01-18 has larger number of nodes and
may increase the analysis time of string analysis to find
vulnerabilities and generate patches.

As for some graphic results, in the application
benchmarks, we can find three vulnerable files (cells
colored with yellow) that has one vulnerability in each
of them. The dependency graph of the second
vulnerability is complicated due to various method
calls and string operations. As for the bee comb of
schoolmate, we can see that the application has high
security risk with half of its cells are colored in red.
After taking a close look of the files, we found that
most of its sensitive functions directly use user’s inputs
without any sanitization.

In sum, the preliminary result shows that Patcher is
capable of analyzing large size Web applications and
revealing previous unknown/known vulnerabilities,
and generating effective patches to prevent these
vulnerabilities been exploited. The visualization tool
also enhances our understanding on program risks and
structures.

6. Conclusion

We present a new web service and platform for
patching web application vulnerabilities online. We
adopt automata-based symbolic string analysis to
perform static analysis on web applications, detecting
potential severe string related vulnerabilities as well as
generating effective patches. We also incorporate
advance visualization and mobile techniques to
enhance the service usability and program
comprehension.

It is a new service for displaying web application
vulnerabilities by incorporating advance visualization
and static analysis techniques to enhance the service
usability and program comprehension. Along with
vivid graphics. analysis results can be viewed in
different abstraction levels, representing information
on needs. Managers of IT department can check the
system level to evaluate the security status of whole
application and make quick decisions. Engineers can
modify and patch source codes by viewing
vulnerabilities in more detailed file and source code
levels.

4883

Our web service is open to public. One of our
ongoing works is to dig out more analysis data from
back end servers, collecting more vulnerabilities in
real-life Web applications with the aim of deriving
more efficient detection and patching mechanisms. The
front-end service can be further improved using
visualization tools such as dashboard with bar charts,
as well as enhancing program comprehension by
extending graphic visualizations to more complicated
structures such as flow graphs with conditions and
relations among files and vulnerabilities.

6. Acknowledgement
This work is funded by the NSC grants: 99-2218-E-
004-002-MY3 and 102-2221-E-004-002-.

References
[1] Hamed Ahmadi and Jun Kong. User-centric adaptation of
web information for small screens. Journal of Visual
Languages and Computing ,Vol.23, No.1,pages 13-28, 2012.
[2] Johannes Bohnet, Stefan Voigt and Jürgen Döllner.
Locating and understanding features of complex software
systems by synchronizing time-, collaboration- and code-
focused views on execution traces. In Proc. of the 16th IEEE
International Conference on Program Comprehension, ICPC
'08, pages 268-271, Amsterdam, The Netherlands, June 10-
13, 2008.
[3] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao
Zhang, and Marcus Peinado. Bouncer: securing software by
blocking bad input. In Proc. of the 21st ACM Symposium on
Operating Systems Principles, SOSP '07, pages 117-130,
Stevenson, Washington, USA, October 14-17, 2007.
[4] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In Proc.
of the 10th International Static Analysis Symposium, SAS
'03, pages 1-18, San Diego, CA, USA, June 11-13, 2003.

[5] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller.
Associating the visual representation of user interfaces with
their internal structures and metadata. In Proc. of the 24th
Annual ACM Symposium on User Interface Software and

Technology, UIST '11, pages 245-256, Santa Barbara, CA,
USA, October 16-19, 2011.
[6] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier.
Gliimpse:Animating from markup code to rendered
documents and vice versa. In Proc. of the 24th annual ACM
symposium on User interface software and technology, UIST
'11, pages 245-256, Santa Barbara, CA, USA, October 16-19,
2011.
[7] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai
Qian, and Lixin Tao. A static analysis framework for
detecting sql injection vulnerabilities. In Proc. of the 31st
Annual International Computer Software and Applications
Conference, COMPSAC '07, pages 87-96, Beijing, China, ,
July 24-2, 2007.
[8] gotoAndPlay(). Smartfoxserver @ONLINE,
http://www.smartfoxserver.com/. Jan. 2013.
[9] Paul A. Gross and Caitlin Kelleher. Non-programmers
identifying functionality in unfamiliar code: strategies and
barriers. Journal of Visual Languages and Computing, Vol.
21 No. 5, pages263-276, December 2010.
[10]Carl Gould, Zhendong Su and Premkumar Devanbu.
Static checking of dynamically generated queries in database
applications. In Proc. of the 26th International Conference on
Software Engineering, ICSE '04, pages 645-654, Edinburgh,
United Kingdom, May 23-28, 2004.
[11] Paul A. Gross, Jennifer Yang, and Caitlin Kelleher.
Dinah: an interface to assist non-programmers with selecting
program code causing graphical output. In Proc. of the
International Conference on Human Factors in Computing

 Table 2. The analysis and performance results against some open source web applications

4884

Systems, CHI '11, pages 3397-3400, Vancouver, BC,
Canada, May 7-12, 2011.
[12] Liviu Iftode, Cristian Borcea, Nishkam Ravi, Porlin
Kang, and Peng Zhou. Smart phone: An embedded system
for universal interactions. In Proc. of the 10th IEEE
International Workshop on Future Trends of Distributed
Computing Systems FTDCS '04, pages 88-94, Suzhou,
China, May 26-28, 2004.
[13] James A. Jones, Mary Jean Harrold and John Stasko.
Visualization of test information to assist fault localization.
In Proc. of the 24th International Conference on Software
Engineering, ICSE '02, pages 467-477, New York, NY,
USA, May 19-25, 2002.
[14] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter
Hooimeijer and Michael D. Ernst. Hampi: a solver for string
constraints. In Proc. of the 18th International Symposium on
Software Testing and Analysis ,ISSTA '09, pages 105-116,
Chicago, IL, USA, July 19-23, 2009
[15] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl,
Björn Hartmann and Jan Borchers. Stacksplorer: call graph
navigation helps increasing code maintenance efficiency. In
Proc. of the 24th annual ACM symposium on User interface
software and technology, UIST '11, pages 217-224, New
York, NY, USA, October 16-19, 2011.
[16] Bonnie MacKay. The gateway: a navigation technique
for migrating to small screens. In the Proc. of Extended
abstracts of the 2003 Conference on Human Factors in
Computing Systems, CHI '03, pages 684-685, Ft. Lauderdale,
Florida, USA, April 5-10, 2003.
[17] Mavitunasecurity. Netsparker @ONLINE,May. 2013.
[18] Alessandro Orso, James A. Jones, Mary Jean Harrold,
and John T. Stasko. Gammatella: Visualization of program-
execution data for deployed software. In the Proc. of 26th
International Conference on Software Engineering, ICSE '04,
pages 699-700, Edinburgh, United Kingdom, May 23-28,
2004.
[19] Michael J. Pacione. Software visualization for object-
oriented program comprehension. In Proc. of the 26th
International Conference on Software Engineering, ICSE '04,
pages 63-65, Edinburgh, United Kingdom, May 23-28, 2004.
[20] Virpi Roto, Andrei Popescu, Antti Koivisto, and Elina
Vartiainen.Minimap: a web page visualization method for
mobile phones. In the Proc. of the 2006 Conference on
Human Factors in Computing Systems, CHI '06, pages 35-
44, Montreal, Quebec, Canada, April 22-27, 2006.
[21] Michael Risi and Giuseppe Scanniello. Metricattitude: a
visualization tool for the reverse engineering of object
oriented software. In the Proc. of International Working
Conference on Advanced Visual Interfaces, AVI '12, pages
449-456, Capri Island, Naples, Italy, May 22-25 2012.

[22] Daryl Shannon, Sukant Hajra, Alison Lee, Daiqian
Zhan, and Sarfraz Khurshid. Abstracting symbolic execution
with string analysis. In the Proc. of Testing: Academic and
Industrial Conference Practice and Research Techniques-
MUTATION, TAICPART-MUTATION '07, pages 13-22,
Washington, DC, USA, September10-14 2007.
[23] Tarja Systä, Kai Koskimies and Hausi A. Müller.
Shimba -an environment for reverse engineering java
software systems. Journal of Software: Practice and
Experience, Vol.31 No.4, pages 371-394, 2001.
[24] Unity Technologies. Unity documentation
@ONLINE,Jan. 2013.
[25] Standford University. iPhone application development
@ONLINE, Jan. 2013.
[26] Nicolas Surribas. Wapiti @ONLINE,May. 2013.
[27] Fang Yu, Muath Alkhalaf, and Tevfik Bultan.
Generating vulnerability signatures for string manipulating
programs using automata-based forward and backward
symbolic analyses. In Proc. of the 24th IEEE/ACM
International Conference on Automated Software
Engineering ASE '09, pages 605-609, Auckland, New
Zealand, November 16-20, 2009.
[28] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger:
An automata-based string analysis tool for php. In Proc. of
the 16th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS'10,
pages 154-15, Paphos, Cyprus, March 20-28, 2010.
[29] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Patching
vulnerabilities with sanitization synthesis. In Proc. of the
33rd International Conference on Software Engineering,
ICSE '11, pages 251-260, Waikiki, Honolulu, HI, USA, May
21-28, 2011.
[30] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H.
Ibarra. Symbolic string verification: An automata-based
approach. In Proc. of the 15th International SPIN Workshop
on Model Checking Software, SPIN '08, pages 306-324 Los
Angeles, CA, USA, August 10-12, 2008.
[31] Fang Yu, Tevfik Bultan, and Ben Hardekopf. String
abstractions for string verification. In Proc. of the 15th
International SPIN Workshop on Model Checking Software,
SPIN '11, pages 20-37, Snowbird, UT, USA, July 14-15,
2011.
[32] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Relational
string verification using multi-track automata. In Proc. of the
15th International Conference on Implementation and
Application of Automata, CIAA '10, pages 290-299,
Winnipeg, MB, Canada, August 12-15, 2010. [1] A.B. Smith,
C.D. Jones, and E.F. Roberts, “Article Title”, Journal,
Publisher, Location, Date, pp. 1-10.

4885

Figure 3. A sample sequence of execution and view of Patcher

4886

