
Signature Based Intrusion Detection for Zero-Day Attacks:
(Not) A Closed Chapter?

Hannes Holm
Royal Institute of Technology (KTH), Sweden

hannesh@ics.kth.se

Abstract
A frequent claim that has not been validated is that
signature based network intrusion detection systems
(SNIDS) cannot detect zero-day attacks. This paper
studies this property by testing 356 severe attacks on
the SNIDS Snort, configured with an old official rule
set. Of these attacks, 183 attacks are zero-days’ to the
rule set and 173 attacks are theoretically known to it.
The results from the study show that Snort clearly is
able to detect zero-days’ (a mean of 17% detection).
The detection rate is however on overall greater for
theoretically known attacks (a mean of 54% detection).
The paper then investigates how the zero-days’ are
detected, how prone the corresponding signatures are
to false alarms, and how easily they can be evaded.
Analyses of these aspects suggest that a conservative
estimate on zero-day detection by Snort is 8.2%.

1. Introduction

Cyber security is a critical topic for both
researchers and practitioners as successful cyberattacks
can result in severe costs due to losses of
confidentiality, integrity or availability. Various
security mechanisms have been suggested for detecting
cyberattacks; one of the more popular being intrusion
detection systems (IDS) in general and network based
intrusion detection systems (NIDS) in particular [1].

The plethora of NIDS detection methods and
techniques that have been introduced are commonly
categorized as either anomaly based (ANIDS) or
signature (a.k.a. misuse) based (SNIDS) [2], [3].
Anomaly based schemes estimates the normal behavior
of a system and generates alarms when the deviation
from the normal exceeds some threshold [2]. Signature
based schemes look for patterns (signatures) in the
analyzed data and raise alarms if the patterns match
known attacks [2].

Most NIDS that are commercially available and
used in practice are signature based [4]. However, the
large majority of research conducted on the topic in the
past years concerns ANIDS [2], [5].

To support the large amount of research conducted
on ANIDS it is often (e.g., in [2], [6]) stated that
SNIDS cannot detect zero-day attacks, i.e., attacks
(a.k.a. exploits) that utilize vulnerabilities that are
unknown to the public community [7]. Zero-day
vulnerabilities are especially attractive to attackers as
their exploitation cannot be prevented by applying
software security updates, and as a consequence the
price of such a vulnerability can reach up to $250,000
[8].

For instance, in [2] it is stated that “Signature-
based schemes provide very good detection results for
specified, well-known attacks. However, they are not
capable of detecting new, unfamiliar intrusions, even if
they are built as minimum variants of already known
attacks”; [6] states that “[...] anomaly-based NIDS
have one great advantage over signature-based ones:
they can detect threats for which there exists no
signature yet, including zero-day and targeted
attacks”. Strangely enough, no empirical support for
such claims can be found in literature.

So why does it need to be tested? After all, it might
seem obvious that zero-day attacks cannot be properly
detected by SNIDS as alarms only can be provided for
attacks that match known signatures. The rationale is
that new attacks sometimes have characteristics that
already are covered in the SNIDS rule set. If a zero-day
attack shares a trait with a publicly known previous
attack, even a SNIDS would have a possibility to
detect it. The question is how often this is the case in
practice.

This paper studies the portion of zero-day attacks
that the industry standard SNIDS Snort [9] is able to
detect. The Metasploit Framework is utilized as a
source for attacks and zero-day detection rate is
measured by utilizing a Snort rule set older than the
vulnerabilities corresponding to the tested attacks. To
estimate the relative significance of the results, the
outcome is compared to detection rate for attacks
corresponding to vulnerabilities disclosed before the
release of the utilized Snort rule set (hereafter referred
to as known attacks). In total, 183 zero-day attacks and
173 known attacks were tested.

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.600

4895

The rest of the paper unfolds as follows: Section 2
describes related work. Section 3 describes the
methodology utilized during the study. Section 4
presents and analyses the results. Finally, Section 5
concludes the paper.

2. Related Work

There are to the author’s knowledge no valid or
reliable studies regarding detection rate of zero-days’
for SNIDS. However, there have been several
empirical studies on other properties involving NIDS
accuracy.

An extensive comparative study of 18 different
IDSs was made during 1998 and 1999 by the Lincoln
Laboratory at MIT [10], [11]. The authors found that
the best IDSs detected between 63% to 93% of the
tested known attacks and approximately 50% of the
tested zero-days’. However, significant shortcomings
of this study have been identified by [12] and [13] –
shortcomings that delimits the usefulness of the results
to a real-world scenario. For example, regarding the
chosen attacks.

Hadžiosmanović et al. [6] studied the effectiveness
of four significant ANIDS mechanisms at detecting
various attacks (e.g., the dataset provided by [10],
[11]). The authors found that the mechanisms could not
provide both high detection and low false positive rates
in presence of data with high variability.

Ktata et al. [14] studied the detection rate of Nmap
probes for four different NIDS (Snort, Prelude,
Tamandua, and Firestorm). The authors found that
Snort, Tamandua, and Firestorm detected about 70% of
the tested Nmap probes, while Prelude detected a bit
less than 60% of them.

The effectiveness of five IDSs at detecting attacks
against three different web applications was studied by
Elia et al. [15]. This study included Apache Scalp,
Anomalous Character Distribution (ACD) monitor,
GreenSQL, Snort, and DB IDS. The authors found that
Apache Scalp detected 18%, ACD monitor 59%, Green
SQL 24%, Snort 56%, and DB IDS (with optimized
settings chosen) 74% of the tested SQL injections.

To sum up, there are various empirical tests of
different NIDS properties. However, there has been no
reliable and valid test of SNIDS zero-day detection
capabilities. Furthermore, a constant challenge for IDS
tests is in regard to the attempted attacks – to gain
useful results it is important that the tested attacks are
representative for their purpose [16], [17]. This is a
property that is difficult to achieve given typical
project time and resource constraints.

This study analyses Snort detection rates for both
zero-days’ and known attacks using exploits in the

Metasploit Framework. Furthermore, it utilizes a
method for reliable analysis of a large set of the
exploits in Metasploit, even though few vulnerable
configurations are present in the experimental
architecture.

3. Methodology

This chapter describes the experiment architecture,
the attacks that were employed and how zero-days’
were measured.

3.1. Overview of Experiment Architecture

Two physical hosts and a total of seven virtual
hosts were employed in the experiment architecture.
One physical host contained the five attacked virtual
hosts (Windows 2000, Windows XP, Windows 2003,
Windows Vista and Ubuntu 10.04) and the NIDS (a
Windows XP host). The second physical host
contained the virtual attacker host, a Backtrack 5 Linux
system.

Each of the attacked hosts were configured with
large amounts of different services running, for
example, HTTP, SMB/Samba, SMTP, POP3, IMAP,
WINS, FTP/TFTP, Telnet, MySQL, MSSQL and SSH.
Furthermore, several different software providing the
same (or similar) types of services were tested; for
example, the HTTP servers Apache Tomcat, IIS HTTP
and Apache HTTP were all part of the overall
architecture. The NIDS was configured with both
Wireshark and Snort 2.6. Pilot tests were conducted
with both custom and existing Snort rules to ensure
that everything was set up properly. Furthermore, the
virtual machines were restored to previously saved
states if required (e.g., when an attack had an impact
on their functionality).

3.2. Used Exploits

In order to test the effectiveness of a NIDS, there is
a need to have a useful set of attacks [17]. There are
various sources that can be used to extract attacks, for
example, Exploit-DB, Packet Storm, Canvas and the
Metasploit Framework. This study uses Metasploit,
due to its wide usage in practice (and thus arguably its
representativeness of the interests in the security
domain), and that the source codes of all exploits are
available and standardized (and possible to easily
revise).

The exploitation process of server software using
Metasploit involves three properties that can be
detected by SNIDS: (i) the attack code (in the case of a
typical buffer overflow, an overly-long character

4896

sequence and a return address), (ii) the command
payload (e.g., a reverse shell), and (iii) traffic
generated by a successfully executed payload (e.g.,
activity of a dropper).

Executions of payloads and their activity are
however typically rather uninteresting to study as the
choice of payload generally is limited only to size (and
given common dropper techniques such as the
Metasploit stager, even size is rather irrelevant).
Payloads can also be obfuscated in various ways,
making them very difficult to detect for anomaly- and
signature-based detection mechanisms alike [6], [18].
Furthermore, actions by successful payloads are often
carried out through encrypted streams and thus better
detected by agent-based IDS or black/white-lists of IPs
(both being out of scope for this study). For these
reasons, the present study only analyzes detection of
attack code and negates detection of payloads and their
activity. In practice, this was managed by revising
exploit source code to make sure payloads were not
sent. For instance, the exploit dreamftp_format
appends the payload at the end of its injected sequence
of characters (cf. Code 1). If ‘payload.encoded’ is
removed, the exploit will still function as designed
(redirect the control flow of the application to arbitrary
code) – even though there is no code to execute.

Notably, for some exploits the payload is necessary
to enable its execution. For instance, a buffer overflow
exploit that has little space available for a payload
might put it in the overflow itself. This is however not
a problem for the study as the tested exploits calculate
offsets and buffers depending on the size of the
payload (in the context of this study: zero).

Testing whether an attack in Metasploit is detected
by Snort is in theory a very simple task. That is, there
is only a need to install vulnerable software in an
appropriate environment and with an appropriate
configuration, set Snort to monitor the network activity
between the attacker host and the targeted host, then
run the attack and observe whether there is an
appropriate alarm produced by Snort. There is however
a significant problem with this approach. In practice,
testing all Metasploit attacks would mean installing
hundreds of different software, in different
environments and with various configurations. Clearly,
resource constraints of most projects infer that only a
small set of attacks can be attempted through such an
approach, something that could end up biasing results.
This project utilized an alternate approach that allowed
reliable testing of Snort’s detection rate for most of the
server attacks in Metasploit, even though vulnerable
(or sometimes even correct) software were not always
in place. This methodology is described in the
remainder of this section.

In the employed version of Metasploit, there were
716 exploits. Of these 716 exploits, 423 concerned
server side attacks and 293 client side attacks. This
study is limited to the 423 server side exploits. Server
side attacks in Metasploit can roughly be categorized
in three categories, according to their ease of testing:

� Exploits that proceed as long as a session can
be achieved.

� Exploits that proceed only when vulnerable
software is in place.

� Exploits that proceed only when vulnerable
software is in place and application-specific
actions are successfully performed.

The first category is very simple to test out – this
type of attack will trigger even though there is no
vulnerable software at its destination. For example, an
Apache HTTP exploit of this type would send all
malicious content to an IIS HTTP server (giving the
IDS a chance to produce alarms).

def check
 connect
 banner = sock.get(-1,3)
 disconnect
 if (banner =~ /Dream FTP Server/)
 return Exploit::CheckCode::Appears
 end
 #always return vulnerable state...
 #return Exploit::CheckCode::Safe
 return Exploit::CheckCode::Appears
end

def exploit
 connect
 select(nil,nil,nil,0.25)
 sploit = "\xeb\x29"
 sploit << "%8x%8x%8x%8x%8x%8x%8x%8x%"
 + target['Offset'].to_s + "d%n%n"
 #do not append any payload...
 sploit << "@@@@@@@@" #+ payload.encoded
 sock.put(sploit + "\r\n")
 select(nil,nil,nil,0.25)
 handler
 disconnect
end

Code 1. An excerpt of the revised version of
the exploit dreamftp_format

The second category is a bit more difficult to test as
there are constraints in the exploit prohibiting it to
properly transmit all of its content if the correct
product and version (and sometimes also
configuration) is not in place. Some such exploits
could be attempted without issues as the correct
software were in the experiment architecture.
However, others required revision to enable reliable
testing. In other words, the source codes of exploits in
this category were rewritten and software validation
checks were removed. Revision of exploits during this

4897

Figure 1. An overview of the tested attacks categorized according to the disclosure of their
vulnerabilities. *An aggregation of data for 1990 (1 sample), 1994 (1), 1998 (2), 1999 (2), 2000 (4)

study can be categorized according to three scenarios.
In the first scenario, there is a software check, but

only one type of exploit string is sent. This scenario
was managed by simply removing the software check.
Code 1 illustrates dreamftp_format, the simplest
type of exploit revised according to this methodology.
dreamftp_format conducts a banner grab, and if
the banner matches Dream FTP Server the exploit
proceeds; if not, the exploit is cancelled. The exploit
itself starts a session with the targeted service, passes
the malicious string sploit to the open socket and calls
the Metasploit multihandler (that sets up a listener for
the payload). The second type of scenario concerns
when different exploit strings are sent depending on
the result of a software version check (e.g.,
hp_nnm_toolbar_02). Given this scenario, the
exploit string corresponding to the most recent
software version was chosen. The third scenario
concerns when different exploit strings are sent
depending on the configuration of the targeted
software. Given this scenario, the used exploit string
was arbitrarily chosen from the available ones.

In total, 56 exploits had minor revisions to remove
software validation checks (based on the three
scenarios described above). Of these, 21 were zero-
days’ and 35 known (i.e., their vulnerabilities were
disclosed prior to the release of the utilized Snort rule
set - cf. Section 3.4).

The third category of attacks is the most difficult to
test as they not only require the correct software and
version, but also application-specific actions. For
example, a web application exploit involving injecting
malicious data through a cookie that is generated when
querying the application (e.g.,
manageengine_apps_mngr) or exploits that
involve application-specific authentication (e.g.,
novell_netmail_auth). Some of these attacks
could be attempted without issues as the correct
software was in the experiment architecture; however,
others could not. While it is possible to conduct major
changes to the source code of such attacks to enable
testing, this was not done during the present study as

there is risk of manual error and would require
significant effort.

Of the 423 possible server attacks in the overall set,
67 were excluded due to this factor – resulting in a
sample of 356 tested attacks. An overview of these 356
attacks according to the disclosure dates of their
corresponding vulnerabilities can be seen in Figure 1.
For instance, 57 of the used attacks correspond to
vulnerabilities disclosed during 2005.

Some exploits in Metasploit are targeted against
services that operate on ports not covered by the
experiment architecture. For example, the exploit
realwin_scpc_initialize targets a service
operating on port 912. This exploit, and others like it,
were instead targeted against appropriate services
available in the architecture. This is however an issue
for Snort as many alarms only signal for traffic against
specific ports. To manage this problem, Snort rules for
attacks against ports not covered by the exercise
architecture were revised to instead alert for attacks
against the employed ports. In summary, significant
manual effort was spent to enforce the reliability of
results.

3.3. Monitoring Attacks

The NIDS was configured with a combination of
Snort 2.6 and Wireshark. Wireshark was used to
confirm that the attacks had been attempted as
designed (verified through comparisons of network
data and exploit source code). An important aspect
when measuring the effectiveness of Snort is in regard
to the employed rule set. That is, there are multiple rule
sets that can be employed, many that are developed by
the Snort community. However, it is not known how
commonly used such customized rule sets are in
practice compared to the official rule set provided by
the Sourcefire team [9]. Consequently, Snort was
configured with an official rule set provided by the
Sourcefire team. Another important factor is the type
of Snort alarms that are studied. The default rule set of
Snort grades alarms according to three levels of
priority [19].

10 11 8
23

30

57
39 44

27
39 42

26

0

20

40

60

- 2000* 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

4898

Figure 2. An overview of the evolution of Snort’s official rule set along the number of disclosed
vulnerabilities in the NVD (at the end of each year)

A priority of 1 signifies “dangerous and harmful
attacks”, for example, signature 2103 (a buffer
overflow of Samba). A priority 2 alarm signifies
“suspicious signatures potentially preparing attacks”,
for example, signature 3677 (denial of service attack
against Ethereal). A priority 3 alarm signifies “unusual
traffic not identified as dangerous”, for example,
signature 2465 (access to resources using Samba).
Naturally, a less severe alarm is likely to provide more
false alarms, and require greater rule customization to
be useful. To make the results of the experiments
useful to a real-world scenario, only alarms of priority
1 or 2 were seen as proper identifications of carried out
exploits.

3.4. Studied Zero-Day Attacks

A zero-day attack is an attack for a vulnerability
that is unknown to the public community [7]. An attack
for a vulnerability discovered post the release of a
SNIDS rule set is thus per definition a zero-day to the
SNIDS as it is not publicly known at the release of the
rule set. For instance, CVE-2007-0882 was disclosed
the 12th of February 2007. Consequently, a default
SNIDS rule set published prior to this date cannot
possibly contain a custom signature for this particular
vulnerability – unless the SNIDS rule vendor itself
found it (and did not disclose it) – which is unlikely.

This study employed a Snort rule set released the
14th of November 20061; any vulnerabilities disclosed
post this date are thus per definition zero-days’ to the
rule set. This rule set was chosen as it would enable a
satisfactory amount of zero-day samples in Metasploit
(183 out of the 356 attacks), while at the same time
allow a benchmark test with attacks corresponding to
known vulnerabilities (173 out of the 356 attacks).
That is, in order to properly analyze the effectiveness
of a zero-day detection rate there is a need to compare
it to the detection rate of known attacks.

1 http://www.snort.org/vrt/docs/ruleset_changelogs/changes-
2006-11-14.html

A theoretical estimate of Snort’s potency at
detecting attacks can be gained by observing the
vulnerability coverage of its rule set. There were 9128
signatures in the tested Snort rule set. At the time of
the release of this rule set, there were 21166
vulnerabilities disclosed in the US National
Vulnerability Database (NVD). Of these
vulnerabilities, 9104 were of high severity as defined
by the Common Vulnerability Scoring System [20]. A
high severity vulnerability can loosely be seen as a
vulnerability that can be remotely exploited to gain
privileges of a host (e.g., user or admin). Metasploit
exploits typically cohere to such vulnerabilities. These
are also a focus area of the Snort rule set due to their
severity. The ratio between Snort signatures, disclosed
vulnerabilities and disclosed vulnerabilities of high
severity seems to be rather consistent over time: the
number of Snort alarms in the official rule set is about
as large as the number of disclosed high vulnerabilities,
and a bit less than half of the total number of disclosed
vulnerabilities (cf. Figure 2). No formal conclusions
regarding vulnerability coverage (and thus detection
rate) should however be made from this dataset as
multiple Snort rules can address the same vulnerability.
Similarly, a single Snort rule sometimes covers
multiple vulnerabilities. However, it serves to illustrate
that the coverage of the chosen rule set is neither larger
nor smaller than a typical Snort Sourcefire rule set.

4. Detection Rate of Zero-Day Attacks

This chapter address whether SNIDS can detect
zero-days’ from five different viewpoints: 1) overall
zero-day detection rate, 2) comparison to detection of
known attacks, 3) reasons behind detection, 4)
possibility of false alarms and 5) possibility of an
attacker evading the triggered signatures. The complete
dataset is available for download2.

2 www.ics.kth.se/snortdetection/snort_detection.xls

10405 15337
21945

28459 34091
39842 44463 48614 53900

0

20000

40000

60000

2004 2005 2006 2007 2008 2009 2010 2011 2012

Snort signatures Total number of disclosed vulnerabilities Disclosed High severity vulnerabilities

4899

4.1. Overall Results

A total of 31 zero-day attacks were detected by
Snort (out of 183). There were a total of 39 unique
alarms for these attacks, giving a mean of 1.29 unique
alarms for each detected attack. In this paper, a unique
alarm, or alert, means that the signature corresponding
to this alarm only is counted once for each attack (there
are sometimes multiple alerts triggered for the same
signature during a single attack).

The detection rates for the zero-day attacks given
different operating system environments and software
services (as categorized by Metasploit) can be seen in
Table 1. The different operating system environments
denote the available payloads corresponding to each
exploit. For example, 135 exploits had payloads for
Windows operating systems (i.e., attacks that could be
used to compromise Windows hosts). The environment
Multi denotes exploits that have payloads for multiple
operating systems. Some combinations did not have
any tested exploits. These are denoted as ‘-‘. The
service Other corresponds to a set of 23 different
services that each had very limited amount of exploit
samples.

On average, one sixth of the zero-day exploits are
detected by Snort. A t-test shows that this statistic is
significantly larger than zero (p = 2.83 ∙ 10-9). Thus, a
signature based NIDS can detect zero-day exploits.

Table 1. Zero-day detection rate given different
operating system environments and software

services (sample sizes are given within
brackets)

Service
Detection rate

Total Windows Unix Multi
Total 17% (183)* 17% (135) 20% (40) 0% (8)
FTP/TFTP 85% (13) 90% (10) 67% (3) -
HTTP 10% (49) 12% (42) 0% (4) 0% (3)
Web applications 25% (16) - 25% (16) -
SMB/Samba 75% (4) 75% (4) - -
SMTP/POP3/IMAP 75% (4) 100% (3) 0% (1) -
Other a 5% (97) 4% (76) 13% (16) 0% (5)
* p = 2.83 ∙ 10-9

a 23 different services

4.2. How does Zero-Day Detection Compare to
Detection of Known Attacks?

There were 93 known attacks that were detected
(out of 173), with a mean of 1.65 unique alarms for
each detected attack. These statistics are slightly more
favorable for actual prevention of attacks than the zero-
day statistics: more unique alarms means that the
individual monitoring the SNIDS will have a greater
opportunity to spot the attack.

Detection rates for the known attacks given
different operating system environments and services
can be seen in Table 2. All detection rates except for
SMTP/POP3/IMAP are higher than the corresponding
zero-day detection rates. The low sample size in this
category (10 for known attacks and 4 for zero-days’)
could be the reason behind this curious result. The
overall detection rate is approximately three times
higher than for the zero-days’.

Table 2. Detection rate of known attacks given
different operating system environments and

software services (sample sizes are given
within brackets)

Service
Detection rate

Total Windows Unix Multi
Total 54% (173) 55% (125) 50% (42) 50% (6)
FTP/TFTP 92% (26) 95% (22) 67% (3) 100% (1)
HTTP 24% (38) 26% (35) 0% (3) -
Web applications 60% (15) - 60% (15) -
SMB/Samba 82% (11) 83% (6) 80% (5) -
SMTP/POP3/IMAP 60% (10) 67% (9) 0% (1) -
Othera 49% (73) 53% (53) 40% (15) 40% (5)
a 32 different services

4.3. How Are Zero-Day Attacks Detected?

This section analyses the properties of the alarms
provided by Snort for the detected zero-day attacks in
order to investigate the reasons behind discovery. As a
basis for analysis, the detected attacks are categorized
according to the vulnerabilities they exploit. The
industry standard vulnerability classification system
Common Weakness Enumeration (CWE) [21] is
employed for this purpose. Detailed descriptions of all
CWE’s discussed in this chapter can be found in [21].

Figure 3. An overview of exploited zero-day
vulnerability types and number of unique

alerts tripped for these exploits

The 31 detected zero-day attacks correspond to six
different CWE categories: Buffer Error (CWE-119),

24

2 2 2 1

29

2
5

2 1
0

5

10

15

20

25

30

35

CWE-119 CWE-94 CWE-78 CWE-98 CWE-264

Exploits Unique alerts

4900

Command Injection (CWE-78), Code Injection (CWE-
94), PHP File Inclusion (CWE-98), and Permissions,
Privileges, and Access Control (CWE-264). An
overview of the detected exploits along these
categories, and the number of unique Snort signatures
tripped for these, can be seen in Figure 3. Buffer error,
a.k.a. buffer overflow, with a total of 24 exploits, is the
most commonly detected type of exploited
vulnerability. This does however not suggest that
detection of buffer overflow is more efficient than
detection of other exploit types as buffer overflow is
dominant in the overall sample of used exploits as
well.

Buffer Error (CWE-119), concerns when software
performs operations on a memory buffer and can read
from - or write to - a memory location that is outside of
the intended boundary of this buffer. A total of 29
unique alerts were tripped for the 24 exploits
corresponding to this vulnerability type. These alerts
can be classified into five different categories:

The most common type of unique alert for buffer
overflow (15/29, or 51.7%) checks a specified byte-
position or range following a call to a certain protocol
function (that is found anywhere in a packet payload).
If there is data at the specified position or outside of
the range, then an alert is triggered. In other words,
valid arguments of such a function are not expected to
exceed a certain size. For instance, signature 1529
alerts if there still is data 100 bytes after the FTP
command ‘SITE’.

The second most common type of unique alert
(8/29, or 27.6%) can roughly be classified as inquiry of
vulnerable resource, which includes use of sensitive
commands (e.g., the TFTP ‘PUT’ command from an
external address) and inquiries of certain files (e.g.,
’/webadmin.dll’ on HTTP).

Three of the 29 unique alerts (10.3%) were for
NOP’s (No OPeration instructions) – each for a long
set of consecutive ‘90’s (an x86 assembly language 1-
byte instruction that does not affect the program state),
‘A’s (inc ecx) and ‘C’s (inc ebx). ‘A’ act as a
NOP if the register ecx is not used by the exploit; ‘C’
if ebx is not used. NOP’s are typically used to ‘slide’
the program counter to the payload, or as for the
detected exploits: as junk data to overflow a buffer.

Two unique alerts (6.9%) concern authentication
bypass attempts; these are triggered as two exploits
interact with FTP’s authentication mechanism.

Finally, one unique alert (3.5%) not only checks
whether there is data at a specified byte-position
following a specific command (TFTP ‘PUT’), but also
whether a string terminator (‘00’) is present.

Code Injection (CWE-94) concerns when software
allows a user's input to contain code syntax that can
allow an attacker to alter the intended control flow of

the software. Of the two alarms corresponding to this
vulnerability type, one concerns inquiry of a vulnerable
resource (‘/Setup.php’), and one concerns a long set of
consecutive NOP’s (‘90’s). Interestingly, the latter
alert was given for the exploit ms10_061_spoolss,
one of the zero-days’ that Stuxnet utilized. In other
words, Snort’s default rule set had detection possibility
of Stuxnet long before the malware was discovered in
the wild.

Command Injection (CWE-78) concerns when
operating system commands can be invoked using
externally-influenced input to the software. The two
exploits concerning this category received a total of
five unique alerts, all corresponding to inquiries of
vulnerable resources (e.g., ‘/calendar.php’ or
‘/admin.php’).

PHP File Inclusion (CWE-98) concerns when a
PHP application receives input from an upstream
component, but incorrectly restricts the input before its
usage in "require," "include," or similar functions. The
two alerts given for the two exploits of this type were
both for inquiries of vulnerable resources
(weblogic/tomcat ‘.jsp’ and ‘/upload.php’).

Permissions, Privileges, and Access Control (CWE-
264) are related to the management of permissions,
privileges, and other security features that are used to
perform access control. The only used exploit
corresponding to this type of vulnerability is
vsftpd_234_backdoor; this exploit concerns a
malicious backdoor that was introduced to the vsftpd-
2.3.4.tar.gz archive. An alert concerning authentication
bypass was triggered as the exploit sends a malformed
‘USER’ argument (‘:)’).

4.4. What About False Alarms?

A critical property of NIDS detection concerns
false alarms: A signature prone to alert for legitimate
traffic is difficult for an operator to trust.

Each Snort signature has a documented qualitative
evaluation of its overall rate of false positives. Thus,
this study analyzes these documents in order to gain
overall estimates for rate of false positives. An
overview of these results can be seen in Figure 4.

The majority (69%) of signatures given for the
zero-day exploits are denoted to have no known false
positives. Alerted signatures with denoted false
positives typically correspond to inquiry of vulnerable
resource, which was discussed in the previous section.
For instance, usage of the TFTP ’PUT’ command from
an external address can certainly be non-malicious in
some scenarios. NOP-type signatures for ‘90’ are also
considered to have possible false positives due to
frequent existence of such NOP’s in transfers of binary
data.

4901

It is however important to keep in mind that the
actual false positive rate greatly depends on the
employed architecture. Given a scenario where the
used application protocols rarely employ NOPs, this
type of signature could be considered trustworthy.

Figure 4. Documented false positive rates for
the alerts triggered by zero-days’

Another aspect that need be considered is the type
of software that the signatures correspond to - a
common method for reducing false alarms in practice
is to disable signatures corresponding to software that
are not employed in the monitored architecture.

A total of 47% of all triggered alerts for zero-days’
correspond to generic software (e.g., any x86 software
or a generic FTP server). These are likely (but not
necessarily) enabled in real-world scenarios. The
remainder of alerts (in total 53% of all alarms)
corresponds to specific software such as WU-FTPD.
Not even a single one of these alerts correspond to the
actually exploited software, suggesting that they might
be disabled in real-world scenarios.

It should however be mentioned that all alarms
(including the generic) were for the correct types of
software products. For example,
phpmyadmin_config is an exploit for the software
phpMyAdmin. The alarm for this exploit denoted an
attack against the software MediaWiki. While these are
different software, their application type (i.e., PHP) is
the same.

4.5. Signature Evasion Techniques

One significant question is how difficult it is for an
attacker to circumvent the signatures triggered for the
zero-days’. If they are easily evaded by minor changes
to the exploits then their usefulness is limited: any
attacker capable of zero-day attacks is likely also
capable of various intrusion detection evasion
techniques.

To the author’s knowledge, there is no useful
taxonomy of the effort required to bypass different
SNIDS signatures. Thus, for this purpose this research
classifies the triggered signatures in two categories:
signatures that are simple to evade, and signatures that
are difficult to evade.

An example of a simple to evade rule is signature
1390, which triggers when an overly-long set of ‘C’s is
spotted. If the content of the overly-long sequence used
to produce the buffer overflow is not executed, the ‘C’s
could be replaced by arbitrary data. If it is executed, it
could be replaced with other (combinations of) NOP’s
such as ‘FN’ (inc,dec esi), ‘AI’ (inc,dec
ecx), or return-oriented programming (ROP)
instructions that serve the same purpose.

An example of a difficult to evade rule is signature
1972, which triggers when there is data 100 bytes after
the FTP command ‘PASS’ (i.e., a password should not
exceed 100 characters). This signature is very difficult
to circumvent for a buffer overflow exploit of ‘PASS’
as FTP does not support encoding of variables (such as
‘PASS’) and the vulnerable buffer itself most likely
requires (at least) 100 characters to overflow.

An overview of these results can be seen in Figure
5. Most of the signatures would be difficult to evade
for an attacker, especially given buffer overflow
attacks. The main exception is signatures that trigger
based on queries for certain resources on web
applications. Most of these are easily circumvented as
HTTP requests supports URL encoding. For instance,
‘/’ can be URL encoded as ‘%2F’.

Figure 5. Possibility of evading zero-day
signatures

5. Conclusions and Future Work

This chapter first presents a conservative estimate
on zero-day detection rate. It then discusses the results
in from three different viewpoints, namely: impact for
researchers, impact for practitioners and limitations
involved in the study.

19

1

4
2 1

10

1 1 0 0
0

5

10

15

20

CWE-119 CWE-94 CWE-78 CWE-98 CWE-264

No known false positives Known false positives

25

0 0 1 1
4

2
5

1 0
0

5

10

15

20

25

30

CWE-119 CWE-94 CWE-78 CWE-98 CWE-264

Difficult evasion Simple evasion

4902

5.1. A Conservative Estimate on the
Effectiveness of Zero-Day Detection

While the actual detection rate of the tested zero-
days’ was 17%, this number does not consider the
possibility of false alarms or signature evasion
techniques. A more conservative estimate of detection
rate can be gained by only considering attacks detected
by signatures that have no known false positives and
are difficult to evade (as presented in Section 4.4 –
4.5); these are presented as effective signatures in
Figure 6. As can be seen, an overall of 48.8% of all
alerts can be considered effective. Thus, a conservative
estimate on the overall detection rate by Snort for zero-
day attacks is 8.2%.

Figure 6. Signatures that have low false alarm
rates and are difficult to circumvent

5.2. Impact for Researchers

Research on intrusion detection typically concerns
ANIDS [4], much due to the frequent claim that
SNIDS cannot detect zero-days’ [2]. This study clearly
highlights the error with this claim; the observed
detection rate for zero-days’ is significantly larger than
zero.

However, while detection is evident, SNIDS is not
able to provide complete detection of either known
attacks or zero-days’. Future research on intrusion
detection should reflect upon these observations; the
results can be seen as a base-line for what any
proposed zero-day detection mechanism must detect to
be of any use (as SNIDS such as Snort typically are
employed in practice [4]).

This paper also provides a method for reliable
generation of attacks, something that there is no
practiced standard for [17]. The foundation for this
approach lies with the industry standard exploitation
framework Metasploit as it enables a useful interface
for low-effort testing of attacks representative to the

interests of the community. However, in order to
utilize Metasploit with little effort many exploits need
to be rewritten (as they by default do not properly
execute without vulnerable software and configurations
present). Fortunately, this process does not require
significant effort – each exploit revised during the
present study required roughly between 5 and 15
minutes to rewrite. A continually updated set of valid
and easy-to-use exploits would significantly benefit
both researchers and practitioners as it would enable
valid and reliable low-effort testing of IDS detection
rates. To complement such a set of exploits, tests could
also be automated to some degree. To implement such
an approach is left to future work.

A means to improve the Snort rule set in regard to
inquiries of vulnerable resources could be to add
different encoding options for rules. If a certain
encoding option, such as URL encoding, is set for a
rule, then any content matching specified in the rule is
conducted for all possible encoding/non-encoding
combinations of that content. The performance impact
of a valid rule of this type could however certainly be
questionable, especially if several encodings (such as
both hex and URL) are necessary to test.

Buffer overflow signatures that trigger based on
starting commands and consecutive byte-lengths seem
rather robust. Future research might thus benefit from
focusing on this type of signature.

5.3. Impact for Practitioners

The overall detection rate for known attacks (54%)
might seem alarmingly low; especially as most of the
tested exploits could lead to compromised systems
with admin/root privileges. This figure is however
biased from the poor detection of attacks against
(generally) uncommon software located on non-
standard ports. For example, the exploit
message_engine_heap, a buffer overflow for CA
BrightStor ARCserve (operating on port 6071), was
missed Snort. A scenario where no such software is
present would yield significantly higher detection rates.
Similarly, this study did not include detection of
payloads and their activity. Including these would
likely yield higher estimates on detection rates
(assuming that a host-based detection mechanism is
present).

This study also shows that Snort is capable of
detecting zero-days’. It is however questionable if an
overall detection of one sixth of all attacks, or 1/12
given the conservative estimate, is sufficient for a real-
world scenario - other mechanisms should be
implemented to complement SNIDS.

Finally, the observed zero-day detection rates could
also be seen as a baseline for how well SNIDS that

18

0 0 1 1

11

3
5

2
0

0

5

10

15

20

CWE-119 CWE-94 CWE-78 CWE-98 CWE-264

Effective signature Non-effective signature

4903

rarely are updated perform; a practice that
unfortunately seems common in practice.

5.4. Limitations

There are more than 20,000 high severity
vulnerabilities available today, but only exploits
corresponding to 356 such flaws were tested by this
study. Thus, the sample size might be too small to
allow completely valid results. It is nonetheless
important to recognize this is significantly larger than
what has previously been used in evaluations of
SNIDS effectiveness (for instance, [10] only tested 58
different attack types – many that were not of high
severity).

Another potential bias is that the chosen Snort rule
set is significantly more or less potent than the average
Snort rule set. This does however not seem likely,
especially as the rule set seems to improve at a rather
predictable rate (cf. Figure 2). Nevertheless, the
observed detection rates for known attacks should be
interpreted with care as they are unlikely to fully
reflect the current standard of the default Snort rule set.

6. References

[1] M. Sumner, “Information security threats: a
comparative analysis of impact, probability, and
preparedness,” Information Systems Management,
vol. 26, no. 1, pp. 2–12, 2009.

[2] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-
Fernandez, and E. Vazquez, “Anomaly-based
network intrusion detection: Techniques, systems
and challenges,” Computers and Security, vol. 28,
no. 1–2, pp. 18–28, 2009.

[3] E. Biermann, “A comparison of Intrusion Detection
systems,” Computers & Security, vol. 20, no. 8, pp.
676–683, Dec. 2001.

[4] M. A. Faysel and S. S. Haque, “Towards Cyber
Defense : Research in Intrusion Detection and
Intrusion Prevention Systems,” Journal of Computer
Science, vol. 10, no. 7, pp. 316–325, 2010.

[5] P. Kabiri and A. A. Ghorbani, “Research on
Intrusion Detection and Response: A Survey,”
International Journal of Network Security, vol. 1,
no. 2, pp. 84–102, 2005.

[6] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E.
Zambon, and S. Etalle, “N-Gram against the
machine: on the feasibility of the n-gram network
analysis for binary protocols,” in Research in
Attacks, Intrusions, and Defenses, 2012, pp. 354–
373.

[7] L. Bilge and T. Dumitras, “Before we knew it: an
empirical study of zero-day attacks in the real
world,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012,
pp. 833–844.

[8] C. Miller, “The legitimate vulnerability market:
Inside the secretive world of 0-day exploit sales,” in
Workshop on the Economics of Information
Security, 2007.

[9] Sourcefire, “Snort,” 2013. [Online]. Available: An
intrusion-detection model. [Accessed: 12-Apr-
2013].

[10] R. Lippmann et al., “Evaluating intrusion detection
systems: the 1998 DARPA off-line intrusion
detection evaluation,” Proceedings DARPA
Information Survivability Conference and
Exposition. DISCEX’00, pp. 12–26, 1998.

[11] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba,
and K. Das, “The 1999 DARPA on-line intrusion
detection evaluation,” Computer Networks, vol. 34,
2000.

[12] J. McHugh, “Testing Intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by
Lincoln Laboratory,” ACM Transactions on
Information and System Security, vol. 3, no. 4, pp.
262–294, Nov. 2000.

[13] M. Mahoney and P. Chan, “An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for
network anomaly detection,” in Recent Advances in
Intrusion Detection, 2003, pp. 220–237.

[14] F. B. Ktata, N. El Kadhi, and K. Ghédira, “Agent
IDS based on Misuse Approach,” Journal of
Software, vol. 4, no. 6, pp. 495–507, Aug. 2009.

[15] I. A. Elia, J. Fonseca, and M. Vieira, “Comparing
SQL Injection Detection Tools Using Attack
Injection: An Experimental Study,” in 21st
International Symposium onSoftware Reliability
Engineering (ISSRE), 2010, pp. 289–298.

[16] B. I. A. Barry and H. A. Chan, “Intrusion detection
systems,” in Handbook of Information and
Communication Security, vol. 2001, no. 6, P.
Stavroulakis and M. Stamp, Eds. Springer, 2010, pp.
193–205.

[17] P. Mell, V. Hu, R. Lippmann, J. Haines, and M.
Zissman, “An overview of issues in testing intrusion
detection systems,” Citeseer. National Institute of
Standards and Technology (NIST), Gaithersburg,
MD, USA, 2003.

[18] Y. Song, M. E. Locasto, A. Stavrou, A. D.
Keromytis, and S. J. Stolfo, “On the infeasibility of
modeling polymorphic shellcode,” Machine
learning, vol. 81, no. 2, pp. 179–205, 2010.

[19] S. Riebach, E. Rathgeb, and B. Toedtmann,
“Efficient deployment of honeynets for statistical
and forensic analysis of attacks from the internet,”
in NETWORKING, 2005, pp. 507–517.

[20] P. Mell, K. Scarfone, and S. Romanosky, “A
Complete Guide to the Common Vulnerability
Scoring System (CVSS), Version 2.0, Forum of
Incident Response and Security Teams.” 2007.

[21] Mitre, “Common Weakness Enumeration,” 2012.
[Online]. Available: http://cwe.mitre.org/.
[Accessed: 12-Apr-2013].

4904

