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Abstract 
A frequent claim that has not been validated is that 
signature based network intrusion detection systems 
(SNIDS) cannot detect zero-day attacks. This paper 
studies this property by testing 356 severe attacks on 
the SNIDS Snort, configured with an old official rule 
set. Of these attacks, 183 attacks are zero-days’ to the 
rule set and 173 attacks are theoretically known to it. 
The results from the study show that Snort clearly is 
able to detect zero-days’ (a mean of 17% detection). 
The detection rate is however on overall greater for 
theoretically known attacks (a mean of 54% detection). 
The paper then investigates how the zero-days’ are 
detected, how prone the corresponding signatures are 
to false alarms, and how easily they can be evaded. 
Analyses of these aspects suggest that a conservative 
estimate on zero-day detection by Snort is 8.2%. 

1. Introduction  

Cyber security is a critical topic for both 
researchers and practitioners as successful cyberattacks 
can result in severe costs due to losses of 
confidentiality, integrity or availability. Various 
security mechanisms have been suggested for detecting 
cyberattacks; one of the more popular being intrusion 
detection systems (IDS) in general and network based 
intrusion detection systems (NIDS) in particular [1].

The plethora of NIDS detection methods and 
techniques that have been introduced are commonly 
categorized as either anomaly based (ANIDS) or 
signature (a.k.a. misuse) based (SNIDS) [2], [3].
Anomaly based schemes estimates the normal behavior 
of a system and generates alarms when the deviation 
from the normal exceeds some threshold [2]. Signature 
based schemes look for patterns (signatures) in the 
analyzed data and raise alarms if the patterns match 
known attacks [2].

Most NIDS that are commercially available and 
used in practice are signature based [4]. However, the 
large majority of research conducted on the topic in the 
past years concerns ANIDS [2], [5]. 

To support the large amount of research conducted 
on ANIDS it is often (e.g., in [2], [6]) stated that 
SNIDS cannot detect zero-day attacks, i.e., attacks 
(a.k.a. exploits) that utilize vulnerabilities that are 
unknown to the public community [7]. Zero-day 
vulnerabilities are especially attractive to attackers as 
their exploitation cannot be prevented by applying 
software security updates, and as a consequence the 
price of such a vulnerability can reach up to $250,000 
[8]. 

For instance, in [2] it is stated that “Signature-
based schemes provide very good detection results for 
specified, well-known attacks. However, they are not 
capable of detecting new, unfamiliar intrusions, even if 
they are built as minimum variants of already known 
attacks”; [6] states that “[...] anomaly-based NIDS 
have one great advantage over signature-based ones: 
they can detect threats for which there exists no 
signature yet, including zero-day and targeted 
attacks”. Strangely enough, no empirical support for 
such claims can be found in literature.  

So why does it need to be tested? After all, it might 
seem obvious that zero-day attacks cannot be properly 
detected by SNIDS as alarms only can be provided for 
attacks that match known signatures. The rationale is 
that new attacks sometimes have characteristics that 
already are covered in the SNIDS rule set. If a zero-day 
attack shares a trait with a publicly known previous 
attack, even a SNIDS would have a possibility to 
detect it. The question is how often this is the case in 
practice.  

This paper studies the portion of zero-day attacks 
that the industry standard SNIDS Snort [9] is able to 
detect. The Metasploit Framework is utilized as a 
source for attacks and zero-day detection rate is 
measured by utilizing a Snort rule set older than the 
vulnerabilities corresponding to the tested attacks. To 
estimate the relative significance of the results, the 
outcome is compared to detection rate for attacks 
corresponding to vulnerabilities disclosed before the 
release of the utilized Snort rule set (hereafter referred 
to as known attacks). In total, 183 zero-day attacks and 
173 known attacks were tested.  
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The rest of the paper unfolds as follows: Section 2
describes related work. Section 3 describes the 
methodology utilized during the study. Section 4
presents and analyses the results. Finally, Section 5 
concludes the paper. 

2. Related Work  

There are to the author’s knowledge no valid or 
reliable studies regarding detection rate of zero-days’ 
for SNIDS. However, there have been several 
empirical studies on other properties involving NIDS 
accuracy.  

An extensive comparative study of 18 different 
IDSs was made during 1998 and 1999 by the Lincoln 
Laboratory at MIT [10], [11]. The authors found that 
the best IDSs detected between 63% to 93% of the 
tested known attacks and approximately 50% of the 
tested zero-days’. However, significant shortcomings 
of this study have been identified by [12] and [13] –
shortcomings that delimits the usefulness of the results 
to a real-world scenario. For example, regarding the 
chosen attacks. 

Hadžiosmanović et al. [6] studied the effectiveness 
of four significant ANIDS mechanisms at detecting 
various attacks (e.g., the dataset provided by [10], 
[11]). The authors found that the mechanisms could not 
provide both high detection and low false positive rates 
in presence of data with high variability.  

Ktata et al. [14] studied the detection rate of Nmap 
probes for four different NIDS (Snort, Prelude, 
Tamandua, and Firestorm). The authors found that 
Snort, Tamandua, and Firestorm detected about 70% of 
the tested Nmap probes, while Prelude detected a bit 
less than 60% of them. 

The effectiveness of five IDSs at detecting attacks 
against three different web applications was studied by 
Elia et al. [15]. This study included Apache Scalp, 
Anomalous Character Distribution (ACD) monitor, 
GreenSQL, Snort, and DB IDS. The authors found that 
Apache Scalp detected 18%, ACD monitor 59%, Green 
SQL 24%, Snort 56%, and DB IDS (with optimized 
settings chosen) 74% of the tested SQL injections. 

To sum up, there are various empirical tests of 
different NIDS properties. However, there has been no 
reliable and valid test of SNIDS zero-day detection 
capabilities. Furthermore, a constant challenge for IDS 
tests is in regard to the attempted attacks – to gain 
useful results it is important that the tested attacks are 
representative for their purpose [16], [17]. This is a 
property that is difficult to achieve given typical 
project time and resource constraints. 

This study analyses Snort detection rates for both 
zero-days’ and known attacks using exploits in the 

Metasploit Framework. Furthermore, it utilizes a 
method for reliable analysis of a large set of the 
exploits in Metasploit, even though few vulnerable 
configurations are present in the experimental 
architecture. 

3. Methodology  

This chapter describes the experiment architecture, 
the attacks that were employed and how zero-days’ 
were measured.  

3.1. Overview of Experiment Architecture 

Two physical hosts and a total of seven virtual 
hosts were employed in the experiment architecture. 
One physical host contained the five attacked virtual 
hosts (Windows 2000, Windows XP, Windows 2003, 
Windows Vista and Ubuntu 10.04) and the NIDS (a 
Windows XP host). The second physical host 
contained the virtual attacker host, a Backtrack 5 Linux 
system.  

Each of the attacked hosts were configured with 
large amounts of different services running, for 
example, HTTP, SMB/Samba, SMTP, POP3, IMAP, 
WINS, FTP/TFTP, Telnet, MySQL, MSSQL and SSH. 
Furthermore, several different software providing the 
same (or similar) types of services were tested; for 
example, the HTTP servers Apache Tomcat, IIS HTTP 
and Apache HTTP were all part of the overall 
architecture. The NIDS was configured with both 
Wireshark and Snort 2.6. Pilot tests were conducted 
with both custom and existing Snort rules to ensure 
that everything was set up properly. Furthermore, the 
virtual machines were restored to previously saved 
states if required (e.g., when an attack had an impact 
on their functionality). 

3.2. Used Exploits  

In order to test the effectiveness of a NIDS, there is 
a need to have a useful set of attacks [17]. There are 
various sources that can be used to extract attacks, for 
example, Exploit-DB, Packet Storm, Canvas and the 
Metasploit Framework. This study uses Metasploit, 
due to its wide usage in practice (and thus arguably its 
representativeness of the interests in the security 
domain), and that the source codes of all exploits are 
available and standardized (and possible to easily 
revise).  

The exploitation process of server software using 
Metasploit involves three properties that can be 
detected by SNIDS: (i) the attack code (in the case of a 
typical buffer overflow, an overly-long character 
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sequence and a return address), (ii) the command 
payload (e.g., a reverse shell), and (iii) traffic 
generated by a successfully executed payload (e.g., 
activity of a dropper).  

Executions of payloads and their activity are 
however typically rather uninteresting to study as the 
choice of payload generally is limited only to size (and 
given common dropper techniques such as the 
Metasploit stager, even size is rather irrelevant).
Payloads can also be obfuscated in various ways, 
making them very difficult to detect for anomaly- and 
signature-based detection mechanisms alike [6], [18].
Furthermore, actions by successful payloads are often 
carried out through encrypted streams and thus better 
detected by agent-based IDS or black/white-lists of IPs 
(both being out of scope for this study). For these 
reasons, the present study only analyzes detection of 
attack code and negates detection of payloads and their 
activity. In practice, this was managed by revising 
exploit source code to make sure payloads were not 
sent. For instance, the exploit dreamftp_format
appends the payload at the end of its injected sequence 
of characters (cf. Code 1). If ‘payload.encoded’ is 
removed, the exploit will still function as designed 
(redirect the control flow of the application to arbitrary 
code) – even though there is no code to execute. 

Notably, for some exploits the payload is necessary 
to enable its execution. For instance, a buffer overflow 
exploit that has little space available for a payload 
might put it in the overflow itself. This is however not 
a problem for the study as the tested exploits calculate 
offsets and buffers depending on the size of the 
payload (in the context of this study: zero).  

Testing whether an attack in Metasploit is detected 
by Snort is in theory a very simple task. That is, there 
is only a need to install vulnerable software in an 
appropriate environment and with an appropriate 
configuration, set Snort to monitor the network activity 
between the attacker host and the targeted host, then 
run the attack and observe whether there is an 
appropriate alarm produced by Snort. There is however 
a significant problem with this approach. In practice, 
testing all Metasploit attacks would mean installing 
hundreds of different software, in different 
environments and with various configurations. Clearly, 
resource constraints of most projects infer that only a 
small set of attacks can be attempted through such an 
approach, something that could end up biasing results. 
This project utilized an alternate approach that allowed 
reliable testing of Snort’s detection rate for most of the 
server attacks in Metasploit, even though vulnerable 
(or sometimes even correct) software were not always 
in place. This methodology is described in the 
remainder of this section. 

In the employed version of Metasploit, there were 
716 exploits. Of these 716 exploits, 423 concerned 
server side attacks and 293 client side attacks. This 
study is limited to the 423 server side exploits. Server 
side attacks in Metasploit can roughly be categorized 
in three categories, according to their ease of testing: 

� Exploits that proceed as long as a session can 
be achieved. 

� Exploits that proceed only when vulnerable 
software is in place. 

� Exploits that proceed only when vulnerable 
software is in place and application-specific 
actions are successfully performed. 

The first category is very simple to test out – this 
type of attack will trigger even though there is no 
vulnerable software at its destination. For example, an 
Apache HTTP exploit of this type would send all 
malicious content to an IIS HTTP server (giving the 
IDS a chance to produce alarms).  

def check 
    connect 
    banner = sock.get(-1,3) 
    disconnect 
    if (banner =~ /Dream FTP Server/) 
        return Exploit::CheckCode::Appears 
    end 
    #always return vulnerable state...   
    #return Exploit::CheckCode::Safe 
    return Exploit::CheckCode::Appears 
end 
 
def exploit 
    connect 
    select(nil,nil,nil,0.25) 
    sploit = "\xeb\x29" 
    sploit << "%8x%8x%8x%8x%8x%8x%8x%8x%"  
    + target['Offset'].to_s + "d%n%n" 
    #do not append any payload... 
    sploit << "@@@@@@@@" #+ payload.encoded 
    sock.put(sploit + "\r\n") 
    select(nil,nil,nil,0.25) 
    handler 
    disconnect 
end 
 

Code 1. An excerpt of the revised version of 
the exploit dreamftp_format

The second category is a bit more difficult to test as 
there are constraints in the exploit prohibiting it to 
properly transmit all of its content if the correct 
product and version (and sometimes also 
configuration) is not in place. Some such exploits 
could be attempted without issues as the correct 
software were in the experiment architecture. 
However, others required revision to enable reliable 
testing. In other words, the source codes of exploits in 
this category were rewritten and software validation 
checks were removed. Revision of exploits during this  
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Figure 1. An overview of the tested attacks categorized according to the disclosure of their 
vulnerabilities. *An aggregation of data for 1990 (1 sample), 1994 (1), 1998 (2), 1999 (2), 2000 (4) 

study can be categorized according to three scenarios. 
In the first scenario, there is a software check, but 

only one type of exploit string is sent. This scenario 
was managed by simply removing the software check. 
Code 1 illustrates dreamftp_format, the simplest 
type of exploit revised according to this methodology. 
dreamftp_format conducts a banner grab, and if 
the banner matches Dream FTP Server the exploit 
proceeds; if not, the exploit is cancelled. The exploit 
itself starts a session with the targeted service, passes 
the malicious string sploit to the open socket and calls 
the Metasploit multihandler (that sets up a listener for 
the payload). The second type of scenario concerns 
when different exploit strings are sent depending on 
the result of a software version check (e.g., 
hp_nnm_toolbar_02). Given this scenario, the 
exploit string corresponding to the most recent 
software version was chosen. The third scenario 
concerns when different exploit strings are sent 
depending on the configuration of the targeted 
software. Given this scenario, the used exploit string 
was arbitrarily chosen from the available ones. 

In total, 56 exploits had minor revisions to remove 
software validation checks (based on the three 
scenarios described above). Of these, 21 were zero-
days’ and 35 known (i.e., their vulnerabilities were 
disclosed prior to the release of the utilized Snort rule 
set - cf. Section 3.4).  

The third category of attacks is the most difficult to 
test as they not only require the correct software and 
version, but also application-specific actions. For 
example, a web application exploit involving injecting 
malicious data through a cookie that is generated when 
querying the application (e.g., 
manageengine_apps_mngr) or exploits that 
involve application-specific authentication (e.g., 
novell_netmail_auth). Some of these attacks 
could be attempted without issues as the correct 
software was in the experiment architecture; however, 
others could not. While it is possible to conduct major 
changes to the source code of such attacks to enable 
testing, this was not done during the present study as 

there is risk of manual error and would require 
significant effort. 

Of the 423 possible server attacks in the overall set, 
67 were excluded due to this factor – resulting in a 
sample of 356 tested attacks. An overview of these 356 
attacks according to the disclosure dates of their 
corresponding vulnerabilities can be seen in Figure 1. 
For instance, 57 of the used attacks correspond to 
vulnerabilities disclosed during 2005. 

Some exploits in Metasploit are targeted against 
services that operate on ports not covered by the 
experiment architecture. For example, the exploit 
realwin_scpc_initialize targets a service 
operating on port 912. This exploit, and others like it, 
were instead targeted against appropriate services 
available in the architecture. This is however an issue 
for Snort as many alarms only signal for traffic against 
specific ports. To manage this problem, Snort rules for 
attacks against ports not covered by the exercise 
architecture were revised to instead alert for attacks 
against the employed ports. In summary, significant 
manual effort was spent to enforce the reliability of 
results.  

3.3. Monitoring Attacks 

The NIDS was configured with a combination of 
Snort 2.6 and Wireshark. Wireshark was used to 
confirm that the attacks had been attempted as 
designed (verified through comparisons of network 
data and exploit source code). An important aspect 
when measuring the effectiveness of Snort is in regard 
to the employed rule set. That is, there are multiple rule 
sets that can be employed, many that are developed by 
the Snort community. However, it is not known how 
commonly used such customized rule sets are in 
practice compared to the official rule set provided by 
the Sourcefire team [9]. Consequently, Snort was 
configured with an official rule set provided by the 
Sourcefire team. Another important factor is the type 
of Snort alarms that are studied. The default rule set of 
Snort grades alarms according to three levels of 
priority [19]. 
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Figure 2. An overview of the evolution of Snort’s official rule set along the number of disclosed 
vulnerabilities in the NVD (at the end of each year) 

A priority of 1 signifies “dangerous and harmful 
attacks”, for example, signature 2103 (a buffer 
overflow of Samba). A priority 2 alarm signifies 
“suspicious signatures potentially preparing attacks”,
for example, signature 3677 (denial of service attack 
against Ethereal). A priority 3 alarm signifies “unusual 
traffic not identified as dangerous”, for example, 
signature 2465 (access to resources using Samba). 
Naturally, a less severe alarm is likely to provide more 
false alarms, and require greater rule customization to 
be useful. To make the results of the experiments 
useful to a real-world scenario, only alarms of priority 
1 or 2 were seen as proper identifications of carried out 
exploits. 

3.4. Studied Zero-Day Attacks 

A zero-day attack is an attack for a vulnerability 
that is unknown to the public community [7]. An attack 
for a vulnerability discovered post the release of a 
SNIDS rule set is thus per definition a zero-day to the 
SNIDS as it is not publicly known at the release of the 
rule set. For instance, CVE-2007-0882 was disclosed 
the 12th of February 2007. Consequently, a default 
SNIDS rule set published prior to this date cannot 
possibly contain a custom signature for this particular 
vulnerability – unless the SNIDS rule vendor itself 
found it (and did not disclose it) – which is unlikely. 

This study employed a Snort rule set released the 
14th of November 20061; any vulnerabilities disclosed 
post this date are thus per definition zero-days’ to the 
rule set. This rule set was chosen as it would enable a 
satisfactory amount of zero-day samples in Metasploit 
(183 out of the 356 attacks), while at the same time 
allow a benchmark test with attacks corresponding to 
known vulnerabilities (173 out of the 356 attacks). 
That is, in order to properly analyze the effectiveness 
of a zero-day detection rate there is a need to compare 
it to the detection rate of known attacks. 

                                                
1 http://www.snort.org/vrt/docs/ruleset_changelogs/changes-
2006-11-14.html

A theoretical estimate of Snort’s potency at 
detecting attacks can be gained by observing the 
vulnerability coverage of its rule set. There were 9128 
signatures in the tested Snort rule set. At the time of 
the release of this rule set, there were 21166 
vulnerabilities disclosed in the US National 
Vulnerability Database (NVD). Of these 
vulnerabilities, 9104 were of high severity as defined 
by the Common Vulnerability Scoring System [20]. A 
high severity vulnerability can loosely be seen as a 
vulnerability that can be remotely exploited to gain 
privileges of a host (e.g., user or admin). Metasploit 
exploits typically cohere to such vulnerabilities. These 
are also a focus area of the Snort rule set due to their 
severity. The ratio between Snort signatures, disclosed 
vulnerabilities and disclosed vulnerabilities of high 
severity seems to be rather consistent over time: the 
number of Snort alarms in the official rule set is about 
as large as the number of disclosed high vulnerabilities, 
and a bit less than half of the total number of disclosed 
vulnerabilities (cf. Figure 2). No formal conclusions 
regarding vulnerability coverage (and thus detection 
rate) should however be made from this dataset as 
multiple Snort rules can address the same vulnerability. 
Similarly, a single Snort rule sometimes covers 
multiple vulnerabilities. However, it serves to illustrate 
that the coverage of the chosen rule set is neither larger 
nor smaller than a typical Snort Sourcefire rule set. 

4. Detection Rate of Zero-Day Attacks 

This chapter address whether SNIDS can detect 
zero-days’ from five different viewpoints: 1) overall 
zero-day detection rate, 2) comparison to detection of 
known attacks, 3) reasons behind detection, 4) 
possibility of false alarms and 5) possibility of an 
attacker evading the triggered signatures. The complete 
dataset is available for download2. 

                                                
2 www.ics.kth.se/snortdetection/snort_detection.xls 
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4.1. Overall Results 

A total of 31 zero-day attacks were detected by 
Snort (out of 183). There were a total of 39 unique 
alarms for these attacks, giving a mean of 1.29 unique 
alarms for each detected attack. In this paper, a unique 
alarm, or alert, means that the signature corresponding 
to this alarm only is counted once for each attack (there 
are sometimes multiple alerts triggered for the same 
signature during a single attack). 

The detection rates for the zero-day attacks given 
different operating system environments and software 
services (as categorized by Metasploit) can be seen in 
Table 1. The different operating system environments 
denote the available payloads corresponding to each 
exploit. For example, 135 exploits had payloads for 
Windows operating systems (i.e., attacks that could be 
used to compromise Windows hosts). The environment 
Multi denotes exploits that have payloads for multiple 
operating systems. Some combinations did not have 
any tested exploits. These are denoted as ‘-‘. The 
service Other corresponds to a set of 23 different 
services that each had very limited amount of exploit 
samples.  

On average, one sixth of the zero-day exploits are 
detected by Snort. A t-test shows that this statistic is 
significantly larger than zero (p = 2.83 ∙ 10-9). Thus, a 
signature based NIDS can detect zero-day exploits.  

Table 1. Zero-day detection rate given different 
operating system environments and software 

services (sample sizes are given within 
brackets) 

Service
Detection rate

Total Windows Unix Multi
Total 17% (183)* 17% (135) 20% (40) 0% (8)
FTP/TFTP 85% (13) 90% (10) 67% (3) -
HTTP 10% (49) 12% (42) 0% (4) 0% (3)
Web applications 25% (16) - 25% (16) -
SMB/Samba 75% (4) 75% (4) - -
SMTP/POP3/IMAP 75% (4) 100% (3) 0% (1) -
Other a 5% (97) 4% (76) 13% (16) 0% (5)
* p = 2.83 ∙ 10-9

a 23 different services

4.2. How does Zero-Day Detection Compare to 
Detection of Known Attacks? 

There were 93 known attacks that were detected 
(out of 173), with a mean of 1.65 unique alarms for 
each detected attack. These statistics are slightly more 
favorable for actual prevention of attacks than the zero-
day statistics: more unique alarms means that the 
individual monitoring the SNIDS will have a greater 
opportunity to spot the attack.  

Detection rates for the known attacks given 
different operating system environments and services 
can be seen in Table 2. All detection rates except for 
SMTP/POP3/IMAP are higher than the corresponding 
zero-day detection rates. The low sample size in this 
category (10 for known attacks and 4 for zero-days’) 
could be the reason behind this curious result. The 
overall detection rate is approximately three times 
higher than for the zero-days’. 

Table 2. Detection rate of known attacks given 
different operating system environments and 

software services (sample sizes are given 
within brackets) 

Service
Detection rate

Total Windows Unix Multi
Total 54% (173) 55% (125) 50% (42) 50% (6)
FTP/TFTP 92% (26) 95% (22) 67% (3) 100% (1)
HTTP 24% (38) 26% (35) 0% (3) -
Web applications 60% (15) - 60% (15) -
SMB/Samba 82% (11) 83% (6) 80% (5) -
SMTP/POP3/IMAP 60% (10) 67% (9) 0% (1) -
Othera 49% (73) 53% (53) 40% (15) 40% (5)
a 32 different services

4.3. How Are Zero-Day Attacks Detected?  

This section analyses the properties of the alarms 
provided by Snort for the detected zero-day attacks in 
order to investigate the reasons behind discovery. As a 
basis for analysis, the detected attacks are categorized 
according to the vulnerabilities they exploit. The 
industry standard vulnerability classification system 
Common Weakness Enumeration (CWE) [21] is 
employed for this purpose. Detailed descriptions of all 
CWE’s discussed in this chapter can be found in [21]. 

Figure 3. An overview of exploited zero-day 
vulnerability types and number of unique 

alerts tripped for these exploits 

The 31 detected zero-day attacks correspond to six 
different CWE categories: Buffer Error (CWE-119), 
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Command Injection (CWE-78), Code Injection (CWE-
94), PHP File Inclusion (CWE-98), and Permissions, 
Privileges, and Access Control (CWE-264). An 
overview of the detected exploits along these 
categories, and the number of unique Snort signatures 
tripped for these, can be seen in Figure 3. Buffer error, 
a.k.a. buffer overflow, with a total of 24 exploits, is the 
most commonly detected type of exploited 
vulnerability. This does however not suggest that 
detection of buffer overflow is more efficient than 
detection of other exploit types as buffer overflow is
dominant in the overall sample of used exploits as 
well. 

Buffer Error (CWE-119), concerns when software 
performs operations on a memory buffer and can read 
from - or write to - a memory location that is outside of 
the intended boundary of this buffer. A total of 29 
unique alerts were tripped for the 24 exploits 
corresponding to this vulnerability type. These alerts 
can be classified into five different categories: 

The most common type of unique alert for buffer 
overflow (15/29, or 51.7%) checks a specified byte-
position or range following a call to a certain protocol 
function (that is found anywhere in a packet payload).
If there is data at the specified position or outside of 
the range, then an alert is triggered. In other words, 
valid arguments of such a function are not expected to 
exceed a certain size. For instance, signature 1529
alerts if there still is data 100 bytes after the FTP 
command ‘SITE’. 

The second most common type of unique alert 
(8/29, or 27.6%) can roughly be classified as inquiry of 
vulnerable resource, which includes use of sensitive 
commands (e.g., the TFTP ‘PUT’ command from an 
external address) and inquiries of certain files (e.g., 
’/webadmin.dll’ on HTTP). 

Three of the 29 unique alerts (10.3%) were for 
NOP’s (No OPeration instructions) – each for a long 
set of consecutive ‘90’s (an x86 assembly language 1-
byte instruction that does not affect the program state),
‘A’s (inc ecx) and ‘C’s (inc ebx). ‘A’ act as a 
NOP if the register ecx is not used by the exploit; ‘C’
if ebx is not used. NOP’s are typically used to ‘slide’
the program counter to the payload, or as for the 
detected exploits: as junk data to overflow a buffer. 

Two unique alerts (6.9%) concern authentication 
bypass attempts; these are triggered as two exploits 
interact with FTP’s authentication mechanism. 

Finally, one unique alert (3.5%) not only checks 
whether there is data at a specified byte-position 
following a specific command (TFTP ‘PUT’), but also 
whether a string terminator (‘00’) is present. 

Code Injection (CWE-94) concerns when software 
allows a user's input to contain code syntax that can 
allow an attacker to alter the intended control flow of 

the software. Of the two alarms corresponding to this 
vulnerability type, one concerns inquiry of a vulnerable 
resource (‘/Setup.php’), and one concerns a long set of 
consecutive NOP’s (‘90’s). Interestingly, the latter 
alert was given for the exploit ms10_061_spoolss, 
one of the zero-days’ that Stuxnet utilized. In other 
words, Snort’s default rule set had detection possibility 
of Stuxnet long before the malware was discovered in 
the wild.

Command Injection (CWE-78) concerns when 
operating system commands can be invoked using 
externally-influenced input to the software. The two 
exploits concerning this category received a total of 
five unique alerts, all corresponding to inquiries of 
vulnerable resources (e.g., ‘/calendar.php’ or 
‘/admin.php’).  

PHP File Inclusion (CWE-98) concerns when a 
PHP application receives input from an upstream 
component, but incorrectly restricts the input before its 
usage in "require," "include," or similar functions. The 
two alerts given for the two exploits of this type were 
both for inquiries of vulnerable resources 
(weblogic/tomcat ‘.jsp’ and ‘/upload.php’).

Permissions, Privileges, and Access Control (CWE-
264) are related to the management of permissions, 
privileges, and other security features that are used to 
perform access control. The only used exploit 
corresponding to this type of vulnerability is 
vsftpd_234_backdoor; this exploit concerns a 
malicious backdoor that was introduced to the vsftpd-
2.3.4.tar.gz archive. An alert concerning authentication 
bypass was triggered as the exploit sends a malformed 
‘USER’ argument (‘:)’).

4.4. What About False Alarms? 

A critical property of NIDS detection concerns 
false alarms: A signature prone to alert for legitimate 
traffic is difficult for an operator to trust.  

Each Snort signature has a documented qualitative 
evaluation of its overall rate of false positives. Thus, 
this study analyzes these documents in order to gain 
overall estimates for rate of false positives. An 
overview of these results can be seen in Figure 4.  

The majority (69%) of signatures given for the 
zero-day exploits are denoted to have no known false 
positives. Alerted signatures with denoted false 
positives typically correspond to inquiry of vulnerable 
resource, which was discussed in the previous section. 
For instance, usage of the TFTP ’PUT’ command from 
an external address can certainly be non-malicious in 
some scenarios. NOP-type signatures for ‘90’ are also 
considered to have possible false positives due to 
frequent existence of such NOP’s in transfers of binary 
data. 
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It is however important to keep in mind that the 
actual false positive rate greatly depends on the 
employed architecture. Given a scenario where the 
used application protocols rarely employ NOPs, this 
type of signature could be considered trustworthy.  

Figure 4. Documented false positive rates for 
the alerts triggered by zero-days’

Another aspect that need be considered is the type 
of software that the signatures correspond to - a 
common method for reducing false alarms in practice 
is to disable signatures corresponding to software that 
are not employed in the monitored architecture.  

A total of 47% of all triggered alerts for zero-days’
correspond to generic software (e.g., any x86 software 
or a generic FTP server). These are likely (but not 
necessarily) enabled in real-world scenarios. The 
remainder of alerts (in total 53% of all alarms) 
corresponds to specific software such as WU-FTPD. 
Not even a single one of these alerts correspond to the 
actually exploited software, suggesting that they might 
be disabled in real-world scenarios.  

It should however be mentioned that all alarms 
(including the generic) were for the correct types of 
software products. For example, 
phpmyadmin_config is an exploit for the software 
phpMyAdmin. The alarm for this exploit denoted an 
attack against the software MediaWiki. While these are 
different software, their application type (i.e., PHP) is 
the same.  

4.5. Signature Evasion Techniques 

One significant question is how difficult it is for an 
attacker to circumvent the signatures triggered for the 
zero-days’. If they are easily evaded by minor changes 
to the exploits then their usefulness is limited: any 
attacker capable of zero-day attacks is likely also 
capable of various intrusion detection evasion 
techniques.  

To the author’s knowledge, there is no useful 
taxonomy of the effort required to bypass different 
SNIDS signatures. Thus, for this purpose this research 
classifies the triggered signatures in two categories: 
signatures that are simple to evade, and signatures that 
are difficult to evade.

An example of a simple to evade rule is signature 
1390, which triggers when an overly-long set of ‘C’s is 
spotted. If the content of the overly-long sequence used 
to produce the buffer overflow is not executed, the ‘C’s 
could be replaced by arbitrary data. If it is executed, it 
could be replaced with other (combinations of) NOP’s
such as ‘FN’ (inc,dec esi), ‘AI’ (inc,dec 
ecx), or return-oriented programming (ROP) 
instructions that serve the same purpose.

An example of a difficult to evade rule is signature 
1972, which triggers when there is data 100 bytes after 
the FTP command ‘PASS’ (i.e., a password should not 
exceed 100 characters). This signature is very difficult 
to circumvent for a buffer overflow exploit of ‘PASS’ 
as FTP does not support encoding of variables (such as 
‘PASS’) and the vulnerable buffer itself most likely 
requires (at least) 100 characters to overflow. 

An overview of these results can be seen in Figure 
5. Most of the signatures would be difficult to evade 
for an attacker, especially given buffer overflow 
attacks. The main exception is signatures that trigger 
based on queries for certain resources on web 
applications. Most of these are easily circumvented as 
HTTP requests supports URL encoding. For instance, 
‘/’ can be URL encoded as ‘%2F’.

Figure 5. Possibility of evading zero-day 
signatures 

5. Conclusions and Future Work 

This chapter first presents a conservative estimate 
on zero-day detection rate. It then discusses the results 
in from three different viewpoints, namely: impact for 
researchers, impact for practitioners and limitations 
involved in the study. 
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5.1. A Conservative Estimate on the 
Effectiveness of Zero-Day Detection 

While the actual detection rate of the tested zero-
days’ was 17%, this number does not consider the 
possibility of false alarms or signature evasion 
techniques. A more conservative estimate of detection 
rate can be gained by only considering attacks detected 
by signatures that have no known false positives and 
are difficult to evade (as presented in Section 4.4 –
4.5); these are presented as effective signatures in 
Figure 6. As can be seen, an overall of 48.8% of all 
alerts can be considered effective. Thus, a conservative 
estimate on the overall detection rate by Snort for zero-
day attacks is 8.2%. 

Figure 6. Signatures that have low false alarm 
rates and are difficult to circumvent 

5.2. Impact for Researchers 

Research on intrusion detection typically concerns 
ANIDS [4], much due to the frequent claim that 
SNIDS cannot detect zero-days’ [2]. This study clearly 
highlights the error with this claim; the observed 
detection rate for zero-days’ is significantly larger than 
zero.  

However, while detection is evident, SNIDS is not 
able to provide complete detection of either known 
attacks or zero-days’. Future research on intrusion 
detection should reflect upon these observations; the 
results can be seen as a base-line for what any 
proposed zero-day detection mechanism must detect to 
be of any use (as SNIDS such as Snort typically are 
employed in practice [4]).

This paper also provides a method for reliable 
generation of attacks, something that there is no 
practiced standard for [17]. The foundation for this 
approach lies with the industry standard exploitation 
framework Metasploit as it enables a useful interface 
for low-effort testing of attacks representative to the 

interests of the community. However, in order to 
utilize Metasploit with little effort many exploits need 
to be rewritten (as they by default do not properly 
execute without vulnerable software and configurations 
present). Fortunately, this process does not require 
significant effort – each exploit revised during the 
present study required roughly between 5 and 15 
minutes to rewrite. A continually updated set of valid 
and easy-to-use exploits would significantly benefit 
both researchers and practitioners as it would enable 
valid and reliable low-effort testing of IDS detection 
rates. To complement such a set of exploits, tests could 
also be automated to some degree. To implement such 
an approach is left to future work. 

A means to improve the Snort rule set in regard to 
inquiries of vulnerable resources could be to add 
different encoding options for rules. If a certain 
encoding option, such as URL encoding, is set for a 
rule, then any content matching specified in the rule is 
conducted for all possible encoding/non-encoding 
combinations of that content. The performance impact 
of a valid rule of this type could however certainly be 
questionable, especially if several encodings (such as 
both hex and URL) are necessary to test. 

Buffer overflow signatures that trigger based on 
starting commands and consecutive byte-lengths seem 
rather robust. Future research might thus benefit from 
focusing on this type of signature. 

5.3. Impact for Practitioners 

The overall detection rate for known attacks (54%) 
might seem alarmingly low; especially as most of the 
tested exploits could lead to compromised systems 
with admin/root privileges. This figure is however 
biased from the poor detection of attacks against 
(generally) uncommon software located on non-
standard ports. For example, the exploit 
message_engine_heap, a buffer overflow for CA 
BrightStor ARCserve (operating on port 6071), was 
missed Snort. A scenario where no such software is 
present would yield significantly higher detection rates. 
Similarly, this study did not include detection of 
payloads and their activity. Including these would 
likely yield higher estimates on detection rates 
(assuming that a host-based detection mechanism is 
present).

This study also shows that Snort is capable of
detecting zero-days’. It is however questionable if an 
overall detection of one sixth of all attacks, or 1/12 
given the conservative estimate, is sufficient for a real-
world scenario - other mechanisms should be 
implemented to complement SNIDS.  

Finally, the observed zero-day detection rates could 
also be seen as a baseline for how well SNIDS that 
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rarely are updated perform; a practice that 
unfortunately seems common in practice. 

5.4. Limitations 

There are more than 20,000 high severity 
vulnerabilities available today, but only exploits 
corresponding to 356 such flaws were tested by this 
study. Thus, the sample size might be too small to 
allow completely valid results. It is nonetheless 
important to recognize this is significantly larger than 
what has previously been used in evaluations of 
SNIDS effectiveness (for instance, [10] only tested 58 
different attack types – many that were not of high 
severity).  

Another potential bias is that the chosen Snort rule 
set is significantly more or less potent than the average 
Snort rule set. This does however not seem likely, 
especially as the rule set seems to improve at a rather 
predictable rate (cf. Figure 2). Nevertheless, the 
observed detection rates for known attacks should be 
interpreted with care as they are unlikely to fully 
reflect the current standard of the default Snort rule set.  
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