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ABSTRACT 
 
Linux Kernel Virtual Machine (KVM) is one of the most 

commonly deployed hypervisor drivers in the IaaS layer of 
cloud computing ecosystems. The hypervisor provides a full-
virtualization environment that intends to virtualize as much 
hardware and systems as possible, including CPUs, network 
interfaces and chipsets. With KVM, heterogeneous 
operating systems can be installed in Virtual Machines 
(VMs) in an homogeneous environment. However, it has 
been shown that various breaches due to software defects 
may cause damages on such a cloud ecosystem. We propose 
a new Virtualization Introspection System (VIS) to protect 
the host as well as VMs running on a KVM-based cloud 
structure from malicious attacks. VIS detects and intercepts 
attacks from VMs by collecting their static and dynamic 
status. We then replay the attacks on VMs and leverage 
artificial intelligence techniques to derive effective decision 
rules with unsupervised learning nature. The preliminary 
result shows the promise of the presented approach against 
several modern attacks on CVE-based vulnerabilities. 

 
1.  Introduction  

 
Cloud computing has become one of the most dominant 

computation platforms nowadays. While system vendors 
and public users are benefit from sharing resources in the 
cloud environment, security breaches that may cause worse 
damages of the cloud ecosystem than personal computers 
could be one of the major stunning blocks on this evolution 
road. One successful exploit of the cloud host may lead to 
the compromise of all guest VMs. It is hence essential and 
desirable to have effective and systematic mechanisms to 
enhance security of cloud computing platforms.  
 

VMs are running in the cloud. One open-source solution 
that has been widely adopted is using Linux [26] Kernel-
based Virtual Machine (KVM) as a hypervisor to drive each 
VM running on top of the cloud platforms. The role of 
KVM is to virtualize each device, such as mother boards, 
CPUs, RAM, hard drives, network interface cards, system 

timer, and virtual networks. On the host, every VM is 
running as a KVM process. This enables the VM manager 
has rights to deploy debug tracing tools and VM device 
monitors, e.g., qemu-monitor, to check both static and 
dynamic status of VMs and take actions online on VMs 
when malicious or abnormal behaviors are observed. That is 
to say, VM managers should be able to not only protect 
hosts from potential attacks, but also provide a new security 
service to guest VM users, detecting whether the VMs have 
been compromised.  

 
One can briefly summarize types of attacks on the cloud 

computing platforms as below: (1) attacking the hypervisor: 
attackers can gain host privileges via software defects and 
vulnerabilities of hosts from guests, (2) attacking guest VMs 
from another VM: attackers can crack another guest in the 
same cloud environment, and (3) attacking guest VMs from 
the outside: attacker can crack guest from outside of the 
cloud environment. In this work, we present a new 
virtualization introspection system (VIS) that monitors both 
static and dynamic status of guest VMs to detect and 
prevent the cloud ecosystem from potential malicious 
attacks. VIS is an aggressive, real-time monitoring 
mechanism with the aim of achieving efficiency, precision 
and transparency. 

 
1.1 New attack threat in the cloud computing 

platforms 
 

In 2011, a new attack on KVM-based cloud systems that 
leads to the controlling right taken from the hypervisor by a 
VM was first introduced by N. Elhage [21]. The attack is 
known as cloudburst attack.  Elhage exploited the memory-
leak bug (CVE-2011-1751) in the kernel KVM codes with 
Virtunoid to break into KVM hosts and take the full control 
of the KVM hypervisor. This bug makes KVM unable to 
check the virtualization of PCI devices, and makes it unclear 
if the device is unplugged. KVM fails to omit the users’ 
request to unplug the device due to the software defect that 
causes the routine fails to support unplugged status. This 
means when a VM unplugs such a device, KVMs may not 
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clean up the memory and disconnect themselves, leaving 
some dangling pointers behind that hackers may take 
advantage to exploit the system. This cloudburst attack can 
be launched on cloud middleware such as OpenStack, 
Eucalyptus, RHEV, OpenECP [23] as well. Furthermore, 
traditional mechanisms that provide non-real-time 
protection, like SWADR, may not be useful in the face of 
virtunoid. 

 
In this work, we replay this attack via running a VM in a 

closed environment, and monitor and traverse the changes 
of status of the VM’s devices, and based on the collected 
data, we derive effective rules to detect abnormal behaviors 
of VMs and protect the cloud environment from being 
attacked by virtunoid.  

 
1.2 Traditional attacks 

 
In addition to new attacks, traditional attacks on personal 

computers can be launched to attack VMs in the cloud as 
well. One common way is using penetration-testing tools 
such as Social Engineering Toolkit (SET) to initialize a 
social engineering attack. For example, a website attack 
vector using a Java Applet method to cheat the victim, 
tricking him into clicking on a malicious link on the website 
or in an email that embeds a backdoor, e.g., building an ssh 
channel with a remote site. Other viable attack methods 
could include new JAVA vulnerabilities (e.g. CVE-2013-
0422, CVE-2013-0431). This kind of attacks can be 
employed by a hacker via using an open source penetration 
testing tool, e.g., the project framework named metasploit 
[19], during the Oracle’s patch delay.  

 
In addition to a social engineering attack, another 

common attack is (distributed) deny of service  (DoS/DDoS) 
attack. Hackers can compromise VMs in the clouds as 
jumpers to perform such attacks, making it hard to be 
tracked. To compromise VMs, one active attack is launched 
due to the Windows vulnerability, such as ms08_067_netapi 
or ms12-020. After compromising a victim’s VM, the 
hacker can use a back door program, e.g., meterpreter [20] 
to set the payload - the command that the hacker would like 
the victim to execute. The payload can be continuously 
sending a large amount of requests to a server within a short 
period (DoS). On the other hand, it can also be spy-kind 
routines, e.g., taking a screenshot of the target or executing 
the “ps” command to list running processes in the target for 
further attacks. The migrate command can be used to 
transfer the payload to another running process to prevent 
the payload from being deactivated, and the shell command 
can be used to provide a command prompt in the 
meterpreter that you can add an account in the victim. 
Furthermore, you can use the use-priv command to upgrade 
account privileges to administrator, or the run-persistence 
command to inject an agent of the meterpreter in the victim 

VM to ensure that after the target system reboots the 
backdoor remains open. 
 

To check whether a VM is running a malicious program, 
we proposed in this work to replay the attack in the cloud 
environment, and then collect data of VMs during several 
events. Examples of such events include all VMs idling, a 
hacker launching an attack, a hacker who already has a 
backdoor, a hacker sending a keystroke, a hacker taking a 
screenshot, a hacker launching a pivoting attack, a victim 
been compromised, etc. VIS can then collect the data of 
each VM and simultaneously labeled the behavior with the 
event and VM’s ID. After data been collected, VIS will run 
it through an analyzer for training, learning, and 
characterizing abnormal behaviors to distinguish between 
run-time status of VMs (running malicious code, idling etc.). 
Simultaneously, VIS will use a training model in analyzer to 
derive decision rules by using GHSOM. Based on these 
decision rules, VIS can detect and prevent attacks by 
termination and isolation functions.  

 
VMs that directly attack a hypervisor protected by VIS’s 

termination function will be destroyed or shutdown to 
prevent damages on the systems, such as the sensitive 
hypervisor data from theft or destroyed. For a malicious VM 
to attack another VM in the same cloud platforms, VIS can 
detect it by decision rules without using agent applications 
to collect VM’s run-time status. Once a VM is detected 
running malicious programs, VIS will take corresponding 
responses such as using termination functions to shut down 
malicious VM or using isolation functions to migrate the 
malicious VM into a sandboxed host. With isolation, this 
VM can still work properly, but the VM is physically 
isolated and is unable to access VMs in the same cloud 
platform. The purpose is similar to a honeypot to trap 
further malicious behaviors, and let the administrator of 
VMs able to trace further hacking behaviors. Similarly, 
compromised VMs can be migrated to the sandboxed host 
to be further inspected. The VM manager or the owner may 
later decide which VM snapshot is clean, and then restore 
this VM snapshot. 
 
2. RELATED WORK 
2.1 Defense in the cloud systems 

There are many research papers on the cloud 
environment working on defending from malicious 
programs or hackers such as the security risk evaluation of 
the cloud computing presented by Enisa [8] in detail. In 
Siebenlist [11], a number of security issues are discussed. 
There are also many interesting and worthwhile surveys 
about cloud security presented by Armbuest et al. [17]. 
However, all of these papers are discussing primarily attacks 
coming from guest machine users who turned said guest 
machine in the cloud computing environment into a 
malicious machine. 
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A cloud attacker may use a virtualization 

environment’s vulnerabilities break into another VM when 
they detect the target machine in the cloud environment. In 
order to guard against above attack method, most 
approaches use Virtual Machine Monitor (VMM) isolation 
properties to secure VMs by leveraging different levels of 
virtual introspection [27]. Virtual introspection [25] allows 
users to observe a VM’s state through this process. In 
previous papers surveyed, there are some useful approaches 
catching our attention. For example, SecVisor [3], Lares  [4], 
among others, leverage virtualization to monitor the 
integrity of guest kernel code from a privileged virtual 
machine or from the VMM, also known as the hypervisor. 
Advanced Cloud Protection System (ACPS) [16] is one 
means of improving the security of cloud nodes. ACPS is an 
extension of the KvmSec [10] and KvmSma [16] which are 
also known as extensions of the Linux KVM [24]. ACPS is 
a protection system that is totally transparent to cloud 
environments and can also monitor both local and remote 
cloud components to protect the whole cloud system. But, 
none of these papers mentioned how to protect cloud 
platforms from cloudburst attacks and have no advance 
defense mechanisms, like migration, as presented in this 
paper. 

 

2.2 Malicious behavior detection 
 

A running VM employs the virtualized hardware and one 
of the VMs on the host it is a process executed by KVM, 
and we use another physical host as a “SandBox-Host” [15] 
and execute the malicious program in a VM. In this way we 
decided to use “strace” and “qemu-monitor” to collect the 
dynamic data from VM and compare VM’s malicious 
behavior to models. Using “strace” this can be viewed as 
“black-box testing”, as the vector from which the VM can 
request the needed system call from the host . This system 
call when can be collected from the running VM for 
analysis. On the other hand, qemu-monitor can observe the 
integrity of virtualized hardware and determine if it is 
normal or being used inappropriately. The execution of a 
malicious program may come in several phases, such as 
vulnerability scanning, executing the attack, embed a 
backdoor, etc, so we separate these period and recording the 
data for analysis, much like TTAnalyzer [31]. On the other 
hand, we classify the data collected by VIS from strace by 
period and role. Borrowing from [13], we use static analysis 
to disassemble the program and expose some suspicious “op 
code”, to use several different kinds of analysis models to 
analyze the malicious software and already known and 
classified normal software. Then unknown software is put 
into the analysis model. The analysis model then determines 
if the unknown software is malicious or normal [13]. We 
also use this method to do a dynamic analysis: VIS uses the 
statistical result from data collected by “strace” to find out 

the status of the VM during malicious program execution, as 
well as the system call used at that time. At the same time 
use these sequence system call to reanalyze and classify 
again by doing a similarity analysis as a reference basis of 
malicious program. 

 
There are two ways to extract software behavior models 

that could provide alternative solutions for analyzing virtual 
machine behavior model. One is to retrieve properties of 
data values [1][19] such as constraints on legal values in the 
form of a Boolean expression. The second way would be to 
examine the properties of interaction patterns such as 
possible interaction sequences in the form of final state 
machines [18]. However, neither of these models account 
for their mutual interplay. Even when one takes both 
analysis models into consideration, it is hard to see their 
intricacies clearly. 
 

Thus, in the future we will adopt a new analysis method, 
GK-trail, which would produce models in the form of 
extended final state machine [5]. These models were 
designed to represent the properties of the data values, 
interaction sequences, and provide insight into the interplay 
between the two. The extended final state machine shows 
itself to be a reliable model in that it does not depend on the 
size of the analyzed systems, but rather the complexity of 
the interplay within the system's components. This makes 
the GK-trail quite flexible in analyzing different types of 
systems effectively. However, as this model is still being 
tested (at least at the time of the paper), there may be 
uncertainties that come with it, and we have thus not 
incorporated it.. 

 
3. VIS architecture 

In this section, we will introduce how the monitor in VIS 
dump, store and compare the VM runtime state data, and 
how it judge the abnormal VM runtime state data. And the 
architecture of VIS as below: Figure 3.1 
 

 
Figure 3.1 VIS Architecture 
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Introspection Engine: 

The introspection engine consists of the introspection 
modules, behavior DB, policy DB, behavior analyzer, 
behavior checker, monitor and controller. The following are 
the main components of VIS : 

 
(1) Logging and storage component: monitor, 

Behavior DB, Policy DB 
(2) Analysis component: Behavior Analyzer, behavior 

DB, Policy DB 
(3) Introspection components: Introspection Modules, 

Behavior Analyzer, Behavior Checker 
(4) Control components: Controller, Virtualization API  

 
We use “strace” and “qemu-monitor” to monitor the 

runtime state of VMs. However, “strace” and “qemu-
monitor” monitor the VMs in different ways. In our case, 
we use “strace” to monitor what kinds of system calls that 
VMs use in a given runtime, and use ”qemu-monitor” to 
monitor the hardware state of the VMs. By comparing the 
states of each VM, any abnormal hardware state or any 
unusual use of system calls will be apparent and we may 
regard them as malicious attacks from VMs and react 
accordingly 
 
Introspection Modules 

We store many various security rules in introspection 
modules. Every module can import to the behavior checker 
as an independent python module, loadable dynamically or 
executed stand-alone. 

 
Policy Database 

This component stores the security policy for 
introspection module for behavior checkers to compare.  

 
Behavior Database 

The behavior DB stores runtime states of all VMs. The 
program running on the VM will determine the system call 
and subsequent classification. For example, I usually 
classify the data by attack method. After attack method, the 
role of the VM will be used, i.e. hacker, victim, and normal. 
Then they will be classified by time period, the attack 
method employed or program used, and system call. Thus, 
the classification is done in the following order: Attack 
Method � Role � Period � Program � System call.   

 
Behavior Analyzer 

The behavior analyzer will analyze the data stored in the 
behavior database to build the introspection modules. This 
will be mentioned in Section Implementation. 

 
Behavior Checker 

The behavior checker will import the introspection 
modules from the policy DB. The introspection rules are 

stored in the Introspection module to enable the behavior 
checker to do the comparison immediately to determine 
which VM is executing the malicious program. 

When a predefined attack is identified, the monitor will 
pass the domain action message to the controller, such as 
“domain destroy” or “domain shutdown”, as the response to 
prevent the attack. In the example domain [action] message 
could look like “SVM-01 [destroy]”. 

 
Monitor 

The responsibility of the monitor is collecting data from 
the VM, such as the run-time system calls of VM and 
“qemu-monitor” output from the VM, then they are 
categorized in the order of “Attack Method � Role � 
Period � Program � System call” and stored in the 
behavior database , and from there can be visualized as a bar 
graph.  

 
Controller 

The controller mainly receives commands from the 
behavior checker. The behavior checker determine 
which domain (VM) which action the controller will take, 
such as allow, destroy, shutdown, migrate etc. The 
controller will pass the message to the cloud middleware 
and record the message in cloud middleware’s database 
(unrelated to the policy DB of VIS) so that the cloud 
middleware can record the whole state of the cloud. 
Additionally, cloud middleware can directly use libvirt, 
virsh to control the compromised VM. 

 
4. Implementation 
4.1. Monitoring 

To monitor the run-time status of a VM,. First, VIS must 
determine the VM's run-time system call using “strace” to 
collect VM’s underlying system calls of KVM from Host, as 
Figure 4.1.1 

 

 
Figure 4.1.1 The strace command 

 
Second, to monitor the VM’s run-time virtualized device, 

VIS uses “qemu-monitor” to check simulated device of 
VMs, as Figure 4.1.2 
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Figure 4.1.2 The qemu-monitor command 

 
As mentioned above, VIS uses strace to monitor the 

KVM process of the VM, simultaneously, using qemu-
monitor to monitor virtualized QEMU devices of the VMs, 
as Figure 4.1.3 

 

 
Figure 4.1.3 Monitoring VMs status 

 
4.2 Termination-Shutdown of VMs  

Every abnormal behavior is regarded as malicious, thus 
enabling VIS to intercept a cloudburst attack. For example, 
if the VM uses a system call abnormally, VIS may use 
virtualization API libvirt or a virtualization management 
user interface such as virsh to intercept the attack and 
shutdown the malicious VM. 

If a cloudburst attack is detected, the monitor will pass 
"domain [shutdown]" or “domain [destroy]”as a message to 
shutdown the malicious VM. But, the VM image will not be 
deleted immediately. Instead, it will be offline-migrated to 
sandboxed host. 

 
4.3 Isolation-Migration of VMs and Redirect iptables 

If the attacker is using known traditional attacks, such as 
using the Metasploit Framework to find other VMs that can 
be attacked, then VIS will online migrate the VM to the 
sandboxed host, as in Figure 4.1.3 VIS can monitor the 
running VM in real time. 
 

When a traditional attack is detected: When the monitor 
detects a traditional attack, the monitor will use online 
migration to migrate malicious VMs to specific sandboxed 
hosts as Figure 4.3.1 by resetting the iptables of the 

malicious VM, the malicious  VM is physically separated 
from the cloud, but continues running, making it possible to 
trace the attacker and has no effect on the original cloud. 
Because the relative setting has been changed. the malicious 
VM cannot perpetrate any attacks on the cloud 
infrastructure or other VMs. 

 
Migration: The first step is to translate the memory of the 

compromised or malicious VMs  to the sandboxed host, 
then hosts on the both side will check whether the 
translation is complete. Next, the original host translates the 
VM’s IP to the sandboxed host. In order to sever the 
connection between compromised/malicious VM to original 
host, the original host will cut the connection, while 
configuring the compromised/malicious VM's VLAN and 
the related “iptables” configuration after the checking the 
migration is complete (see Figure 4.3.1). In this way, the 
compromised/malicious VM will not discover it is been 
migrated. We use this way to track attackers and intercept 
potential attacks, as Figure 4.1.3 

 
For example, before the VIS migrates the VM to the 

“SandBox-Host”, it will be connected to the sandbox-host 
by following command: 

 
“virsh –c qemu+ssh://soslab@SandBox-

Host:999/system” 
 
The command “virsh” is a virtualization support 

management user interface, and the "-c" option is use to 
specifies the URI parameter with which to connect to the 
hypervisor, in our case we use the “qemu+ssh” to connect 
with “sandbox-host”  and the account is “soslab” that 
hostname is “SandBox-Host” on port 999. 

 

 
Figure 4.3.1 migrate the VM into sandbox Host 
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5. EVALUATION 
5.1 DETECT CLOUDBURST ATTACK 

Virtunoid as an exploit is an example of a cloudburst 
attack. The exploit will create /dev/rtc files and mount /proc, 
then start up the eth0 interface to execute malicious shell 
code. In this paper, we rebuild the malicious code in the 
guest VM.  At first, we compiled virtunoid.c to build the 
files virtunoid and initrd.gz, as Figure 5.1.1 

 

 
Figure 5.1.1 Rebuild the attack VM 

 
We set up the malicious initrd.gz and updated the grub2 

menu, then reboot the VM. The exploit will trigger the 
attack at boot. The VM Linux kernel will call the init 
program then run the script from initrd.gz and exploit the 
host. The Cloudburst’s VM executes the exploit of 
Cloudburst called virtunoid. The attack will be launched 
after VM boots up. The purpose of this experiment is to 
observe Cloudburst’s VM with another VM’s system call, 
with output of qemu-monitor’s result for each being 
different. Cloudburst’s VM will execute special system calls, 
and before running these calls, it will “unplug” the PII4 chip 
(See figure 5.1.2, below). We rebuild the Cloudburst attack 
in the VM. 

We monitor the run-time states and hardware integrity of 
the VMs on the host side, and collect important qemu-
monitor data of the guest machine; such as CPU registers, 
virtual-to-physical memory mappings, active virtual 
memory mappings, qdev device model list (name “PIIX4”, 
as Figure 5.1.2, bus PCI, desc “ISA bridge”, normally 
inaccessible to users), device tree, and system calls. 

 

 
Figure 5.1.2 PIIX4 chip being ”unplugged” 

5.2  Detect Traditional Attacks 
 

We demonstrate six different kinds of attack, in each 
attack we divided several different periods, the periods are 
different is because we used different attack exploit and 
payload. The following table I shown each different 
attacks/vulnerabilities has how much periods, and we will 
describe two different kind of attacks/vulnerabilities. 

 
TABLE I 

SIX DIFFERENT KIND OF ATTACKS/VULNERABILITIES AND PERIODS 
 

Attacks/Vulnerabilities Periods 
CVE-2013-0422 9 
CVE-2013-0431 9 
Dos-hping3 3 
MS12-020 3 
SET-Web-Java-Applet 9 
SE_Firefox_xpi 9 

For example, in CVE-2012-0422 it is a java vulnerability, 
it can be attack by using a exploit named 
“Java_jre17_jmxbean” in metasploit and the payload can be 
set up as meterpreter, by using the meterpreter as payload 
from first period in our experiment is each VM do nothing, 
and there have nine different periods as following describe, 
period 1 is hacker VM setup attack, period 2 is hacker VM 
using exploit to attack victim VM, after hacker VM 
compromised victim VM, hack VM was able to use 
meterpreter to do malicious in victim VM, e.g., taking a 
screenshot of the target’s screenshot or executing the “ps” 
command to list running processes in the target for 
“migrate” command. The migrate command can be used to 
transfer the payload to another running process to prevent 
the payload from being deactivated, and the shell command 
can be used to provide a command prompt in the 
meterpreter that you can add an account in the victim. 

  
In this experiment we recorded the system call 

distribution of three VMs ( hacker VM, victim VM, normal 
VM) by every ten second with  six different kind of attacks 
(in the form of 973 files) analyzed via Growing-Hierarchical 
Self-Organizing Maps (GHSOM). The result of three 
classified result is given in the Table II. 

 
TABLE II 

THREE CLASSIFIED RULES IN THE GHSOM ANALYZE RESULT 
 

52 

'SET-Web-Java-Applet_kill_BT5R3_Base_40.txt' 
'CVE-2013-0431_shell_BT5R3_Base_20.txt'  
'CVE-2013-0422_keylogrecorder_BT5R3_Base_20.txt' 
'MS12020_attacking_BT5R3_Base_10.txt' 
'CVE-2013-0431_migrate_BT5R3_Base_20.txt' 

51 

'CVE-2013-0422_attacking_BT5R3_Base_10.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_20.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_70.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_80.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_30.txt' 
'CVE-2013-0431_attacking_BT5R3_Base_30.txt' 
'CVE-2013-0431_attacking_BT5R3_Base_10.txt' 
'CVE-2013-0431_attacking_BT5R3_Base_20.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_40.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_60.txt' 
'CVE-2013-0422_attacking_BT5R3_Base_50.txt' 

50 

'CVE-2013-0422_screenshot__Victim_10.txt' 
'CVE-2013-0422_ps__Victim_10.txt'  
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'CVE-2013-0431_ps__Victim_10.txt’ 
'CVE-2013-0422_sysinfo__Victim_10.txt'  
'SET-Web-Java-Applet_shell__Victim_10.txt' 

 
 
In the Table II (No. 51) consists only of data collected 

from the hacker’s VM during DoS attacks. Data collected 
from the hacker’s VM during the “attack” period has been 
sorted into items of this class so that VIS can use the mean 
of these classes to calculate the run-time status of each VM 
for reference to prevent similar DoS attacks. 

Unfortunately, this figure is not very clear, so we’ll 
examine data from the “hacker’s VM” during the period 
when it perpetrates malicious behavior in summary. In the 
Figure 5.2.2, each system call is displayed as a box.  

Unfortunately, figure 5.2.1 is note easily understood at 
first glance. In the figure bellow, we’ve taken each class and 
colored it based on frequency of usage, arranged in the same 
pattern as figure 5.2.2 White indicates the most frequently 
used classes, gray less used, with black being the least used. 

 

 
Figure 5.2.2 Detail summary in system call 

 

 
Figure 5.2.3 Class No. 50, 51, 52 

 
After analysis and classification, we can clearly see in 

the summary which class is dominated by the “hacker’s 
VM” running malicious programs. This has been 
highlighted in red in the Figure 5.2.3. On the other hand, as 
in Figure 5.2.4 below, you can see how each file is 
classified. This figure (Figure 5.2.4) is Class No. 50. 

 

 

Figure 5.2.4 Classified data of Class 50 
 
Figure 5.2.4 is data from the victim once it has been 

compromised by the hacker and already under the influence 
of malicious programs. This has been classified as Class No. 
50 of the GHSOM analysis. In this case, we can set the 
reaction rule notify the customer that the VM been 
compromised. 

Then we use the mean of the GHSOM analysis (as 
Figure 5.2.5) to calculate each class of data set to determine 
the decision rules for VIS. 

 

 
Figure 5.2.5 Mean of Class No. 50 

 
Figure 5.2.5 shows the mean GHSOM calculation result 

of Class No. 50 of a compromised victim’s VM. VIS can 
compare this data with the VM’s running status, determine 
if the VM has been compromised, and either migrate it or 
recover it from a snapshot. 

  

 
Figure 5.2.6 The formula to calculate run-time data with 

the mean 
 
Figure 5.2.6 VIS shows the formula used to calculate the 

distance between a VM’s run-time status and the mean of 
the attack. If the VM’s run-time status is farther the 
expected status, then the VM is not under attack. 

 

 
Figure 5.2.7 Mean of Class No.50 

 
Figures 5.2.7 shows how VIS can choose decision rules 

to determine the tolerance between the mean and VM 
running state. 

 

 
Figure 5.2.8 Reaction rules of each class 

 
To detect malicious behaviors, we record system calls of 

VMs every 10 seconds, and compute the distance from 
expected malicious means according to the formula shown 
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in Figure 5.2.6. If it is within the “mean” or tolerance value 
of the class (e.g., Figure 5.2.7), its “Rule_tag” will be 
labeled with that class, e.g., “Class 52”. According to 
“Rule_tag”, VIS takes appropriate action on the target VM  
as shown in Figure 5.2.8 

 
5.3 Deriving Detection Rules 

In this section, we will explain how to derive rules from 
GHSOM results. We also discuss the defense rules used  to 
defend against attacks from the hacker VM, as well as the 
recovery rules that we can use to recover compromised VMs. 
The tables bellow show attacks by period. 

 
Detection rules  

As you can see in the Table I we list six different kind of 
vulnerabilities number and exploits, for example, CVE-
2013-0422 is a vulnerability of JAVA which can be attack 
by hacker with using a exploit from metasploit, in this case 
the hacker can use exploit which named 
“java_jre17_jmxben”, and vulnerability number CVE-2013-
0431 can be attack by exploit named “java_jre17_jmxben”, 
vulnerability number MS12-020 can be attack by exploit 
named “ms12_020_maxchannelids”. On the other hand, 
some exploit of social engineering attack can be used 
without vulnerabilities, such as SET-Web-Java-Applet and 
SE_Firefox_xpi, hacker can use it to make a malicious link 
to deceive victim click the malicious link, even pass through 
the victim’s firewall and anti-virus applications. 

In the Table I, rule 11 can be used to detect a DoS-
hping3 attack, and rule 18_2 is used for others, including 
CVE-2013-0422, CVE-2013-0411, MS12-020, SET-Web-
Java-Applet and SE_Firefox_xpi. Rule 18_2 allows VIS to 
detect attacks just as they begin against the Victim VM. 
Rule 23 can additionally be used to detect Java 
vulnerabilities  CVE-2013-0422 and CVE-2013-0431. 

 
TABLE III 

RULES OF PERIOD OF ATTACKS FOR HACKER 
 

Attacks/
Vulnera
bilities 

Period 

Period 1 Period 2 Period 3 Period 4 

CVE-
2013-
0422 

Setting 
Attack Attacking Screenshot Sysinfo 

Rule  
18_2, 23 

Rule 18_2, 
23   

CVE-
2013-
0431 

Rule 18_2 Rule  
18_2, 23 Rule 18_2 Rule 18_2 

Dos-
hping3 Rule 11(12)    

MS12-
020  Rule 18_2   

SET-
Web-
Java-
Applet 

Rule18_2 Rule 18_2  Rule 18_2 

SE_Firef
ox_xpi  Rule 18_2    

 

Table III classifies data by attack, provides rules used for 
detection, and what data was acquired through the attack.  

 
TABLE IV 

MEAN AND UPPER BOUND OF RULES FOR HACKER VM 
 

Rules Bound 
System call usage 

futex futex_err timer_settime timer_settime 
_err 

rule_11 627.69 0 2768.75 469.5 0 

rule_23 81.52 66.5 10.53 1050 83 33 

rule_18_2 81.47 82 12.6  884.78 12  

 
As you can see, the bound of rule 11 is 627.69, bond of 

rule 23 is 81.523437 and bound of rule 18_2 is 81.470703. 
 
Recovery rules 

We can use rules rule 47_2, 33, and 65_4 (see Table V) 
to detect attacks, such as CVE-2013-0422, CVE-2013-0431 
and DoS-hping3. However, we can safely assume that not 
all users of cloud systems have the knowledge needed to 
recover data or otherwise cleanup their VM after it has been 
compromised. We have therefore decided to provide a 
recovery function "qemu-img" to detect compromised VMs. 
 

TABLE V 
MEAN AND UPPER BOUND OF RULES FOR VICTIM VM 

 

Rules Bound 
System call usage 

futex futex_err timer_ 
settime 

timer_ 
settime 

_err 
rule_47_2 28.23 1303 72 2056 0 

rule_33 2059.9 32762 2078 1907 0 

rule_65_4 44.31 1719 77.5 2086 0 

 
Table V shows the upper bound of rule 47 as 28.29916, 

rule 33 as 2059.8958, and rule 65 as 44.3125. 
 
5.4 Testing: Detection of attacks 

In this section, we will show the result of tests of each 
rule. This section will demonstrate how attacks progress on 
VMs, how they are compromised, as well as demonstrate 
VIS in action. 

 
Detection of malicious VMs  
 

5035



 

 

 
 

Figure 5.4.1 Attacks detected by rule 11 
 
Figure 5.4.1 shows rule 11 detecting an attack and VIS 

sending the command to the controller to migrate the hacker 
VM (BT5R4_Base).Table IV shows rule 18_2 detecting 
attacks. VIS sends the command to shutdown the hacker 
VM(BT5R4_Base). 
 

TABLE VI 
RULES AND DETECTABLE ATTACKS 

 

Rules 

Exploits/Vulnerabilities 
CVE-
2013-
0422 
JAVA 

CVE-
2013-
0431 

JAVA 

DoS-
hping

3 

MS12-
020 

SET-
Web-
Java-
Applet 

SE_ 
Fire 
fox_ 
xpi 

Rule 11   v    

Rule 23 v v     

Rule 18_2 v v  v v v 

 
Table VI shows that 18_2 is a special rule - able to detect 

almost every type of attack. The only exception is when the 
hacker VM boots into text mode, which prompts a false 
positive and is shutdown. Rule 23 also has a false positive, 
causing a shutdown during web browsing. 

 
Detection of compromised VMs 

Table VII shows rule 33 detecting a compromised VM. 
VIS will send a command to the controller to use the 
snapshot function to recover data from the victim VM. 

 
TABLE VII 

RULES AND DETECTABLE ATTACKS 
 

Rules 

Exploits/Vulnerabilities 
CVE-
2013-

0422(J
AVA) 

CVE-
2013-

0431(J
AVA) 

DoS-
hping3 

MS12-
020 

SET-
Web-
Java-
Applet 

SE_ 
Fire 
fox_ 
xpi 

Rule 65_4 v v     

Rule 47_2  v     

Rule 33   v    

 
We see in Table V that not every compromised VM can 

be detected - more experiments are needed to increase 
detection efficiency. However, rule 65_4 can detect the two 

Java related attacks, Rule 47_2 can detect one form attack. 
If a VM under DoS attack is detectable under rule 33, then a 
change in the virtual network settings can stop a hacker 
VM's attack on the victim VM. 

 
6. CONCLUSION 

We propose VIS, a virtualization introspection system 
for KVM-based cloud platforms. This system can monitor 
both static and dynamic VM status, replay and classify 
various attacks to determine which VMs are attacking the 
Hypervisor, and determine which VMs are attacking other 
VMs. Additionally, VIS can also detect compromised VMs , 
as well as perform termination and online migration. 

VIS is limited to protection based on established rules: it 
needs to collect more attack patterns. Additionally, the rules 
are derived by heuristics, have false positives and negatives, 
and require more sophisticated analysis, such as system call 
sequences. 
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