
Securing KVM-based Cloud Systems via Virtualization Introspection

Sheng-Wei Lee
Dept. of Management Information System

National Chengchi University
Taipei, Taiwan

100356010@nccu.edu.tw

Fang Yu
Dept. of Management Information System

National Chengchi University
Taipei, Taiwan

yuf@nccu.edu.tw

ABSTRACT

Linux Kernel Virtual Machine (KVM) is one of the most

commonly deployed hypervisor drivers in the IaaS layer of
cloud computing ecosystems. The hypervisor provides a full-
virtualization environment that intends to virtualize as much
hardware and systems as possible, including CPUs, network
interfaces and chipsets. With KVM, heterogeneous
operating systems can be installed in Virtual Machines
(VMs) in an homogeneous environment. However, it has
been shown that various breaches due to software defects
may cause damages on such a cloud ecosystem. We propose
a new Virtualization Introspection System (VIS) to protect
the host as well as VMs running on a KVM-based cloud
structure from malicious attacks. VIS detects and intercepts
attacks from VMs by collecting their static and dynamic
status. We then replay the attacks on VMs and leverage
artificial intelligence techniques to derive effective decision
rules with unsupervised learning nature. The preliminary
result shows the promise of the presented approach against
several modern attacks on CVE-based vulnerabilities.

1. Introduction

Cloud computing has become one of the most dominant

computation platforms nowadays. While system vendors
and public users are benefit from sharing resources in the
cloud environment, security breaches that may cause worse
damages of the cloud ecosystem than personal computers
could be one of the major stunning blocks on this evolution
road. One successful exploit of the cloud host may lead to
the compromise of all guest VMs. It is hence essential and
desirable to have effective and systematic mechanisms to
enhance security of cloud computing platforms.

VMs are running in the cloud. One open-source solution
that has been widely adopted is using Linux [26] Kernel-
based Virtual Machine (KVM) as a hypervisor to drive each
VM running on top of the cloud platforms. The role of
KVM is to virtualize each device, such as mother boards,
CPUs, RAM, hard drives, network interface cards, system

timer, and virtual networks. On the host, every VM is
running as a KVM process. This enables the VM manager
has rights to deploy debug tracing tools and VM device
monitors, e.g., qemu-monitor, to check both static and
dynamic status of VMs and take actions online on VMs
when malicious or abnormal behaviors are observed. That is
to say, VM managers should be able to not only protect
hosts from potential attacks, but also provide a new security
service to guest VM users, detecting whether the VMs have
been compromised.

One can briefly summarize types of attacks on the cloud

computing platforms as below: (1) attacking the hypervisor:
attackers can gain host privileges via software defects and
vulnerabilities of hosts from guests, (2) attacking guest VMs
from another VM: attackers can crack another guest in the
same cloud environment, and (3) attacking guest VMs from
the outside: attacker can crack guest from outside of the
cloud environment. In this work, we present a new
virtualization introspection system (VIS) that monitors both
static and dynamic status of guest VMs to detect and
prevent the cloud ecosystem from potential malicious
attacks. VIS is an aggressive, real-time monitoring
mechanism with the aim of achieving efficiency, precision
and transparency.

1.1 New attack threat in the cloud computing

platforms

In 2011, a new attack on KVM-based cloud systems that
leads to the controlling right taken from the hypervisor by a
VM was first introduced by N. Elhage [21]. The attack is
known as cloudburst attack. Elhage exploited the memory-
leak bug (CVE-2011-1751) in the kernel KVM codes with
Virtunoid to break into KVM hosts and take the full control
of the KVM hypervisor. This bug makes KVM unable to
check the virtualization of PCI devices, and makes it unclear
if the device is unplugged. KVM fails to omit the users’
request to unplug the device due to the software defect that
causes the routine fails to support unplugged status. This
means when a VM unplugs such a device, KVMs may not

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.617

5028

clean up the memory and disconnect themselves, leaving
some dangling pointers behind that hackers may take
advantage to exploit the system. This cloudburst attack can
be launched on cloud middleware such as OpenStack,
Eucalyptus, RHEV, OpenECP [23] as well. Furthermore,
traditional mechanisms that provide non-real-time
protection, like SWADR, may not be useful in the face of
virtunoid.

In this work, we replay this attack via running a VM in a

closed environment, and monitor and traverse the changes
of status of the VM’s devices, and based on the collected
data, we derive effective rules to detect abnormal behaviors
of VMs and protect the cloud environment from being
attacked by virtunoid.

1.2 Traditional attacks

In addition to new attacks, traditional attacks on personal

computers can be launched to attack VMs in the cloud as
well. One common way is using penetration-testing tools
such as Social Engineering Toolkit (SET) to initialize a
social engineering attack. For example, a website attack
vector using a Java Applet method to cheat the victim,
tricking him into clicking on a malicious link on the website
or in an email that embeds a backdoor, e.g., building an ssh
channel with a remote site. Other viable attack methods
could include new JAVA vulnerabilities (e.g. CVE-2013-
0422, CVE-2013-0431). This kind of attacks can be
employed by a hacker via using an open source penetration
testing tool, e.g., the project framework named metasploit
[19], during the Oracle’s patch delay.

In addition to a social engineering attack, another

common attack is (distributed) deny of service (DoS/DDoS)
attack. Hackers can compromise VMs in the clouds as
jumpers to perform such attacks, making it hard to be
tracked. To compromise VMs, one active attack is launched
due to the Windows vulnerability, such as ms08_067_netapi
or ms12-020. After compromising a victim’s VM, the
hacker can use a back door program, e.g., meterpreter [20]
to set the payload - the command that the hacker would like
the victim to execute. The payload can be continuously
sending a large amount of requests to a server within a short
period (DoS). On the other hand, it can also be spy-kind
routines, e.g., taking a screenshot of the target or executing
the “ps” command to list running processes in the target for
further attacks. The migrate command can be used to
transfer the payload to another running process to prevent
the payload from being deactivated, and the shell command
can be used to provide a command prompt in the
meterpreter that you can add an account in the victim.
Furthermore, you can use the use-priv command to upgrade
account privileges to administrator, or the run-persistence
command to inject an agent of the meterpreter in the victim

VM to ensure that after the target system reboots the
backdoor remains open.

To check whether a VM is running a malicious program,
we proposed in this work to replay the attack in the cloud
environment, and then collect data of VMs during several
events. Examples of such events include all VMs idling, a
hacker launching an attack, a hacker who already has a
backdoor, a hacker sending a keystroke, a hacker taking a
screenshot, a hacker launching a pivoting attack, a victim
been compromised, etc. VIS can then collect the data of
each VM and simultaneously labeled the behavior with the
event and VM’s ID. After data been collected, VIS will run
it through an analyzer for training, learning, and
characterizing abnormal behaviors to distinguish between
run-time status of VMs (running malicious code, idling etc.).
Simultaneously, VIS will use a training model in analyzer to
derive decision rules by using GHSOM. Based on these
decision rules, VIS can detect and prevent attacks by
termination and isolation functions.

VMs that directly attack a hypervisor protected by VIS’s

termination function will be destroyed or shutdown to
prevent damages on the systems, such as the sensitive
hypervisor data from theft or destroyed. For a malicious VM
to attack another VM in the same cloud platforms, VIS can
detect it by decision rules without using agent applications
to collect VM’s run-time status. Once a VM is detected
running malicious programs, VIS will take corresponding
responses such as using termination functions to shut down
malicious VM or using isolation functions to migrate the
malicious VM into a sandboxed host. With isolation, this
VM can still work properly, but the VM is physically
isolated and is unable to access VMs in the same cloud
platform. The purpose is similar to a honeypot to trap
further malicious behaviors, and let the administrator of
VMs able to trace further hacking behaviors. Similarly,
compromised VMs can be migrated to the sandboxed host
to be further inspected. The VM manager or the owner may
later decide which VM snapshot is clean, and then restore
this VM snapshot.

2. RELATED WORK
2.1 Defense in the cloud systems

There are many research papers on the cloud
environment working on defending from malicious
programs or hackers such as the security risk evaluation of
the cloud computing presented by Enisa [8] in detail. In
Siebenlist [11], a number of security issues are discussed.
There are also many interesting and worthwhile surveys
about cloud security presented by Armbuest et al. [17].
However, all of these papers are discussing primarily attacks
coming from guest machine users who turned said guest
machine in the cloud computing environment into a
malicious machine.

5029

A cloud attacker may use a virtualization

environment’s vulnerabilities break into another VM when
they detect the target machine in the cloud environment. In
order to guard against above attack method, most
approaches use Virtual Machine Monitor (VMM) isolation
properties to secure VMs by leveraging different levels of
virtual introspection [27]. Virtual introspection [25] allows
users to observe a VM’s state through this process. In
previous papers surveyed, there are some useful approaches
catching our attention. For example, SecVisor [3], Lares [4],
among others, leverage virtualization to monitor the
integrity of guest kernel code from a privileged virtual
machine or from the VMM, also known as the hypervisor.
Advanced Cloud Protection System (ACPS) [16] is one
means of improving the security of cloud nodes. ACPS is an
extension of the KvmSec [10] and KvmSma [16] which are
also known as extensions of the Linux KVM [24]. ACPS is
a protection system that is totally transparent to cloud
environments and can also monitor both local and remote
cloud components to protect the whole cloud system. But,
none of these papers mentioned how to protect cloud
platforms from cloudburst attacks and have no advance
defense mechanisms, like migration, as presented in this
paper.

2.2 Malicious behavior detection

A running VM employs the virtualized hardware and one
of the VMs on the host it is a process executed by KVM,
and we use another physical host as a “SandBox-Host” [15]
and execute the malicious program in a VM. In this way we
decided to use “strace” and “qemu-monitor” to collect the
dynamic data from VM and compare VM’s malicious
behavior to models. Using “strace” this can be viewed as
“black-box testing”, as the vector from which the VM can
request the needed system call from the host . This system
call when can be collected from the running VM for
analysis. On the other hand, qemu-monitor can observe the
integrity of virtualized hardware and determine if it is
normal or being used inappropriately. The execution of a
malicious program may come in several phases, such as
vulnerability scanning, executing the attack, embed a
backdoor, etc, so we separate these period and recording the
data for analysis, much like TTAnalyzer [31]. On the other
hand, we classify the data collected by VIS from strace by
period and role. Borrowing from [13], we use static analysis
to disassemble the program and expose some suspicious “op
code”, to use several different kinds of analysis models to
analyze the malicious software and already known and
classified normal software. Then unknown software is put
into the analysis model. The analysis model then determines
if the unknown software is malicious or normal [13]. We
also use this method to do a dynamic analysis: VIS uses the
statistical result from data collected by “strace” to find out

the status of the VM during malicious program execution, as
well as the system call used at that time. At the same time
use these sequence system call to reanalyze and classify
again by doing a similarity analysis as a reference basis of
malicious program.

There are two ways to extract software behavior models

that could provide alternative solutions for analyzing virtual
machine behavior model. One is to retrieve properties of
data values [1][19] such as constraints on legal values in the
form of a Boolean expression. The second way would be to
examine the properties of interaction patterns such as
possible interaction sequences in the form of final state
machines [18]. However, neither of these models account
for their mutual interplay. Even when one takes both
analysis models into consideration, it is hard to see their
intricacies clearly.

Thus, in the future we will adopt a new analysis method,
GK-trail, which would produce models in the form of
extended final state machine [5]. These models were
designed to represent the properties of the data values,
interaction sequences, and provide insight into the interplay
between the two. The extended final state machine shows
itself to be a reliable model in that it does not depend on the
size of the analyzed systems, but rather the complexity of
the interplay within the system's components. This makes
the GK-trail quite flexible in analyzing different types of
systems effectively. However, as this model is still being
tested (at least at the time of the paper), there may be
uncertainties that come with it, and we have thus not
incorporated it..

3. VIS architecture

In this section, we will introduce how the monitor in VIS
dump, store and compare the VM runtime state data, and
how it judge the abnormal VM runtime state data. And the
architecture of VIS as below: Figure 3.1

Figure 3.1 VIS Architecture

5030

Introspection Engine:

The introspection engine consists of the introspection
modules, behavior DB, policy DB, behavior analyzer,
behavior checker, monitor and controller. The following are
the main components of VIS :

(1) Logging and storage component: monitor,

Behavior DB, Policy DB
(2) Analysis component: Behavior Analyzer, behavior

DB, Policy DB
(3) Introspection components: Introspection Modules,

Behavior Analyzer, Behavior Checker
(4) Control components: Controller, Virtualization API

We use “strace” and “qemu-monitor” to monitor the

runtime state of VMs. However, “strace” and “qemu-
monitor” monitor the VMs in different ways. In our case,
we use “strace” to monitor what kinds of system calls that
VMs use in a given runtime, and use ”qemu-monitor” to
monitor the hardware state of the VMs. By comparing the
states of each VM, any abnormal hardware state or any
unusual use of system calls will be apparent and we may
regard them as malicious attacks from VMs and react
accordingly

Introspection Modules

We store many various security rules in introspection
modules. Every module can import to the behavior checker
as an independent python module, loadable dynamically or
executed stand-alone.

Policy Database

This component stores the security policy for
introspection module for behavior checkers to compare.

Behavior Database

The behavior DB stores runtime states of all VMs. The
program running on the VM will determine the system call
and subsequent classification. For example, I usually
classify the data by attack method. After attack method, the
role of the VM will be used, i.e. hacker, victim, and normal.
Then they will be classified by time period, the attack
method employed or program used, and system call. Thus,
the classification is done in the following order: Attack
Method � Role � Period � Program � System call.

Behavior Analyzer

The behavior analyzer will analyze the data stored in the
behavior database to build the introspection modules. This
will be mentioned in Section Implementation.

Behavior Checker

The behavior checker will import the introspection
modules from the policy DB. The introspection rules are

stored in the Introspection module to enable the behavior
checker to do the comparison immediately to determine
which VM is executing the malicious program.

When a predefined attack is identified, the monitor will
pass the domain action message to the controller, such as
“domain destroy” or “domain shutdown”, as the response to
prevent the attack. In the example domain [action] message
could look like “SVM-01 [destroy]”.

Monitor

The responsibility of the monitor is collecting data from
the VM, such as the run-time system calls of VM and
“qemu-monitor” output from the VM, then they are
categorized in the order of “Attack Method � Role �
Period � Program � System call” and stored in the
behavior database , and from there can be visualized as a bar
graph.

Controller

The controller mainly receives commands from the
behavior checker. The behavior checker determine
which domain (VM) which action the controller will take,
such as allow, destroy, shutdown, migrate etc. The
controller will pass the message to the cloud middleware
and record the message in cloud middleware’s database
(unrelated to the policy DB of VIS) so that the cloud
middleware can record the whole state of the cloud.
Additionally, cloud middleware can directly use libvirt,
virsh to control the compromised VM.

4. Implementation
4.1. Monitoring

To monitor the run-time status of a VM,. First, VIS must
determine the VM's run-time system call using “strace” to
collect VM’s underlying system calls of KVM from Host, as
Figure 4.1.1

Figure 4.1.1 The strace command

Second, to monitor the VM’s run-time virtualized device,

VIS uses “qemu-monitor” to check simulated device of
VMs, as Figure 4.1.2

5031

Figure 4.1.2 The qemu-monitor command

As mentioned above, VIS uses strace to monitor the

KVM process of the VM, simultaneously, using qemu-
monitor to monitor virtualized QEMU devices of the VMs,
as Figure 4.1.3

Figure 4.1.3 Monitoring VMs status

4.2 Termination-Shutdown of VMs

Every abnormal behavior is regarded as malicious, thus
enabling VIS to intercept a cloudburst attack. For example,
if the VM uses a system call abnormally, VIS may use
virtualization API libvirt or a virtualization management
user interface such as virsh to intercept the attack and
shutdown the malicious VM.

If a cloudburst attack is detected, the monitor will pass
"domain [shutdown]" or “domain [destroy]”as a message to
shutdown the malicious VM. But, the VM image will not be
deleted immediately. Instead, it will be offline-migrated to
sandboxed host.

4.3 Isolation-Migration of VMs and Redirect iptables

If the attacker is using known traditional attacks, such as
using the Metasploit Framework to find other VMs that can
be attacked, then VIS will online migrate the VM to the
sandboxed host, as in Figure 4.1.3 VIS can monitor the
running VM in real time.

When a traditional attack is detected: When the monitor
detects a traditional attack, the monitor will use online
migration to migrate malicious VMs to specific sandboxed
hosts as Figure 4.3.1 by resetting the iptables of the

malicious VM, the malicious VM is physically separated
from the cloud, but continues running, making it possible to
trace the attacker and has no effect on the original cloud.
Because the relative setting has been changed. the malicious
VM cannot perpetrate any attacks on the cloud
infrastructure or other VMs.

Migration: The first step is to translate the memory of the

compromised or malicious VMs to the sandboxed host,
then hosts on the both side will check whether the
translation is complete. Next, the original host translates the
VM’s IP to the sandboxed host. In order to sever the
connection between compromised/malicious VM to original
host, the original host will cut the connection, while
configuring the compromised/malicious VM's VLAN and
the related “iptables” configuration after the checking the
migration is complete (see Figure 4.3.1). In this way, the
compromised/malicious VM will not discover it is been
migrated. We use this way to track attackers and intercept
potential attacks, as Figure 4.1.3

For example, before the VIS migrates the VM to the

“SandBox-Host”, it will be connected to the sandbox-host
by following command:

“virsh –c qemu+ssh://soslab@SandBox-

Host:999/system”

The command “virsh” is a virtualization support

management user interface, and the "-c" option is use to
specifies the URI parameter with which to connect to the
hypervisor, in our case we use the “qemu+ssh” to connect
with “sandbox-host” and the account is “soslab” that
hostname is “SandBox-Host” on port 999.

Figure 4.3.1 migrate the VM into sandbox Host

5032

5. EVALUATION
5.1 DETECT CLOUDBURST ATTACK

Virtunoid as an exploit is an example of a cloudburst
attack. The exploit will create /dev/rtc files and mount /proc,
then start up the eth0 interface to execute malicious shell
code. In this paper, we rebuild the malicious code in the
guest VM. At first, we compiled virtunoid.c to build the
files virtunoid and initrd.gz, as Figure 5.1.1

Figure 5.1.1 Rebuild the attack VM

We set up the malicious initrd.gz and updated the grub2

menu, then reboot the VM. The exploit will trigger the
attack at boot. The VM Linux kernel will call the init
program then run the script from initrd.gz and exploit the
host. The Cloudburst’s VM executes the exploit of
Cloudburst called virtunoid. The attack will be launched
after VM boots up. The purpose of this experiment is to
observe Cloudburst’s VM with another VM’s system call,
with output of qemu-monitor’s result for each being
different. Cloudburst’s VM will execute special system calls,
and before running these calls, it will “unplug” the PII4 chip
(See figure 5.1.2, below). We rebuild the Cloudburst attack
in the VM.

We monitor the run-time states and hardware integrity of
the VMs on the host side, and collect important qemu-
monitor data of the guest machine; such as CPU registers,
virtual-to-physical memory mappings, active virtual
memory mappings, qdev device model list (name “PIIX4”,
as Figure 5.1.2, bus PCI, desc “ISA bridge”, normally
inaccessible to users), device tree, and system calls.

Figure 5.1.2 PIIX4 chip being ”unplugged”

5.2 Detect Traditional Attacks

We demonstrate six different kinds of attack, in each
attack we divided several different periods, the periods are
different is because we used different attack exploit and
payload. The following table I shown each different
attacks/vulnerabilities has how much periods, and we will
describe two different kind of attacks/vulnerabilities.

TABLE I

SIX DIFFERENT KIND OF ATTACKS/VULNERABILITIES AND PERIODS

Attacks/Vulnerabilities Periods
CVE-2013-0422 9
CVE-2013-0431 9
Dos-hping3 3
MS12-020 3
SET-Web-Java-Applet 9
SE_Firefox_xpi 9

For example, in CVE-2012-0422 it is a java vulnerability,
it can be attack by using a exploit named
“Java_jre17_jmxbean” in metasploit and the payload can be
set up as meterpreter, by using the meterpreter as payload
from first period in our experiment is each VM do nothing,
and there have nine different periods as following describe,
period 1 is hacker VM setup attack, period 2 is hacker VM
using exploit to attack victim VM, after hacker VM
compromised victim VM, hack VM was able to use
meterpreter to do malicious in victim VM, e.g., taking a
screenshot of the target’s screenshot or executing the “ps”
command to list running processes in the target for
“migrate” command. The migrate command can be used to
transfer the payload to another running process to prevent
the payload from being deactivated, and the shell command
can be used to provide a command prompt in the
meterpreter that you can add an account in the victim.

In this experiment we recorded the system call

distribution of three VMs (hacker VM, victim VM, normal
VM) by every ten second with six different kind of attacks
(in the form of 973 files) analyzed via Growing-Hierarchical
Self-Organizing Maps (GHSOM). The result of three
classified result is given in the Table II.

TABLE II

THREE CLASSIFIED RULES IN THE GHSOM ANALYZE RESULT

52

'SET-Web-Java-Applet_kill_BT5R3_Base_40.txt'
'CVE-2013-0431_shell_BT5R3_Base_20.txt'
'CVE-2013-0422_keylogrecorder_BT5R3_Base_20.txt'
'MS12020_attacking_BT5R3_Base_10.txt'
'CVE-2013-0431_migrate_BT5R3_Base_20.txt'

51

'CVE-2013-0422_attacking_BT5R3_Base_10.txt'
'CVE-2013-0422_attacking_BT5R3_Base_20.txt'
'CVE-2013-0422_attacking_BT5R3_Base_70.txt'
'CVE-2013-0422_attacking_BT5R3_Base_80.txt'
'CVE-2013-0422_attacking_BT5R3_Base_30.txt'
'CVE-2013-0431_attacking_BT5R3_Base_30.txt'
'CVE-2013-0431_attacking_BT5R3_Base_10.txt'
'CVE-2013-0431_attacking_BT5R3_Base_20.txt'
'CVE-2013-0422_attacking_BT5R3_Base_40.txt'
'CVE-2013-0422_attacking_BT5R3_Base_60.txt'
'CVE-2013-0422_attacking_BT5R3_Base_50.txt'

50

'CVE-2013-0422_screenshot__Victim_10.txt'
'CVE-2013-0422_ps__Victim_10.txt'

5033

'CVE-2013-0431_ps__Victim_10.txt’
'CVE-2013-0422_sysinfo__Victim_10.txt'
'SET-Web-Java-Applet_shell__Victim_10.txt'

In the Table II (No. 51) consists only of data collected

from the hacker’s VM during DoS attacks. Data collected
from the hacker’s VM during the “attack” period has been
sorted into items of this class so that VIS can use the mean
of these classes to calculate the run-time status of each VM
for reference to prevent similar DoS attacks.

Unfortunately, this figure is not very clear, so we’ll
examine data from the “hacker’s VM” during the period
when it perpetrates malicious behavior in summary. In the
Figure 5.2.2, each system call is displayed as a box.

Unfortunately, figure 5.2.1 is note easily understood at
first glance. In the figure bellow, we’ve taken each class and
colored it based on frequency of usage, arranged in the same
pattern as figure 5.2.2 White indicates the most frequently
used classes, gray less used, with black being the least used.

Figure 5.2.2 Detail summary in system call

Figure 5.2.3 Class No. 50, 51, 52

After analysis and classification, we can clearly see in

the summary which class is dominated by the “hacker’s
VM” running malicious programs. This has been
highlighted in red in the Figure 5.2.3. On the other hand, as
in Figure 5.2.4 below, you can see how each file is
classified. This figure (Figure 5.2.4) is Class No. 50.

Figure 5.2.4 Classified data of Class 50

Figure 5.2.4 is data from the victim once it has been

compromised by the hacker and already under the influence
of malicious programs. This has been classified as Class No.
50 of the GHSOM analysis. In this case, we can set the
reaction rule notify the customer that the VM been
compromised.

Then we use the mean of the GHSOM analysis (as
Figure 5.2.5) to calculate each class of data set to determine
the decision rules for VIS.

Figure 5.2.5 Mean of Class No. 50

Figure 5.2.5 shows the mean GHSOM calculation result

of Class No. 50 of a compromised victim’s VM. VIS can
compare this data with the VM’s running status, determine
if the VM has been compromised, and either migrate it or
recover it from a snapshot.

Figure 5.2.6 The formula to calculate run-time data with

the mean

Figure 5.2.6 VIS shows the formula used to calculate the

distance between a VM’s run-time status and the mean of
the attack. If the VM’s run-time status is farther the
expected status, then the VM is not under attack.

Figure 5.2.7 Mean of Class No.50

Figures 5.2.7 shows how VIS can choose decision rules

to determine the tolerance between the mean and VM
running state.

Figure 5.2.8 Reaction rules of each class

To detect malicious behaviors, we record system calls of

VMs every 10 seconds, and compute the distance from
expected malicious means according to the formula shown

5034

in Figure 5.2.6. If it is within the “mean” or tolerance value
of the class (e.g., Figure 5.2.7), its “Rule_tag” will be
labeled with that class, e.g., “Class 52”. According to
“Rule_tag”, VIS takes appropriate action on the target VM
as shown in Figure 5.2.8

5.3 Deriving Detection Rules

In this section, we will explain how to derive rules from
GHSOM results. We also discuss the defense rules used to
defend against attacks from the hacker VM, as well as the
recovery rules that we can use to recover compromised VMs.
The tables bellow show attacks by period.

Detection rules

As you can see in the Table I we list six different kind of
vulnerabilities number and exploits, for example, CVE-
2013-0422 is a vulnerability of JAVA which can be attack
by hacker with using a exploit from metasploit, in this case
the hacker can use exploit which named
“java_jre17_jmxben”, and vulnerability number CVE-2013-
0431 can be attack by exploit named “java_jre17_jmxben”,
vulnerability number MS12-020 can be attack by exploit
named “ms12_020_maxchannelids”. On the other hand,
some exploit of social engineering attack can be used
without vulnerabilities, such as SET-Web-Java-Applet and
SE_Firefox_xpi, hacker can use it to make a malicious link
to deceive victim click the malicious link, even pass through
the victim’s firewall and anti-virus applications.

In the Table I, rule 11 can be used to detect a DoS-
hping3 attack, and rule 18_2 is used for others, including
CVE-2013-0422, CVE-2013-0411, MS12-020, SET-Web-
Java-Applet and SE_Firefox_xpi. Rule 18_2 allows VIS to
detect attacks just as they begin against the Victim VM.
Rule 23 can additionally be used to detect Java
vulnerabilities CVE-2013-0422 and CVE-2013-0431.

TABLE III

RULES OF PERIOD OF ATTACKS FOR HACKER

Attacks/
Vulnera
bilities

Period

Period 1 Period 2 Period 3 Period 4

CVE-
2013-
0422

Setting
Attack Attacking Screenshot Sysinfo

Rule
18_2, 23

Rule 18_2,
23

CVE-
2013-
0431

Rule 18_2 Rule
18_2, 23 Rule 18_2 Rule 18_2

Dos-
hping3 Rule 11(12)

MS12-
020 Rule 18_2

SET-
Web-
Java-
Applet

Rule18_2 Rule 18_2 Rule 18_2

SE_Firef
ox_xpi Rule 18_2

Table III classifies data by attack, provides rules used for
detection, and what data was acquired through the attack.

TABLE IV

MEAN AND UPPER BOUND OF RULES FOR HACKER VM

Rules Bound
System call usage

futex futex_err timer_settime timer_settime
_err

rule_11 627.69 0 2768.75 469.5 0

rule_23 81.52 66.5 10.53 1050 83 33

rule_18_2 81.47 82 12.6 884.78 12

As you can see, the bound of rule 11 is 627.69, bond of

rule 23 is 81.523437 and bound of rule 18_2 is 81.470703.

Recovery rules

We can use rules rule 47_2, 33, and 65_4 (see Table V)
to detect attacks, such as CVE-2013-0422, CVE-2013-0431
and DoS-hping3. However, we can safely assume that not
all users of cloud systems have the knowledge needed to
recover data or otherwise cleanup their VM after it has been
compromised. We have therefore decided to provide a
recovery function "qemu-img" to detect compromised VMs.

TABLE V
MEAN AND UPPER BOUND OF RULES FOR VICTIM VM

Rules Bound
System call usage

futex futex_err timer_
settime

timer_
settime

_err
rule_47_2 28.23 1303 72 2056 0

rule_33 2059.9 32762 2078 1907 0

rule_65_4 44.31 1719 77.5 2086 0

Table V shows the upper bound of rule 47 as 28.29916,

rule 33 as 2059.8958, and rule 65 as 44.3125.

5.4 Testing: Detection of attacks

In this section, we will show the result of tests of each
rule. This section will demonstrate how attacks progress on
VMs, how they are compromised, as well as demonstrate
VIS in action.

Detection of malicious VMs

5035

Figure 5.4.1 Attacks detected by rule 11

Figure 5.4.1 shows rule 11 detecting an attack and VIS

sending the command to the controller to migrate the hacker
VM (BT5R4_Base).Table IV shows rule 18_2 detecting
attacks. VIS sends the command to shutdown the hacker
VM(BT5R4_Base).

TABLE VI
RULES AND DETECTABLE ATTACKS

Rules

Exploits/Vulnerabilities
CVE-
2013-
0422
JAVA

CVE-
2013-
0431

JAVA

DoS-
hping

3

MS12-
020

SET-
Web-
Java-
Applet

SE_
Fire
fox_
xpi

Rule 11 v

Rule 23 v v

Rule 18_2 v v v v v

Table VI shows that 18_2 is a special rule - able to detect

almost every type of attack. The only exception is when the
hacker VM boots into text mode, which prompts a false
positive and is shutdown. Rule 23 also has a false positive,
causing a shutdown during web browsing.

Detection of compromised VMs

Table VII shows rule 33 detecting a compromised VM.
VIS will send a command to the controller to use the
snapshot function to recover data from the victim VM.

TABLE VII

RULES AND DETECTABLE ATTACKS

Rules

Exploits/Vulnerabilities
CVE-
2013-

0422(J
AVA)

CVE-
2013-

0431(J
AVA)

DoS-
hping3

MS12-
020

SET-
Web-
Java-
Applet

SE_
Fire
fox_
xpi

Rule 65_4 v v

Rule 47_2 v

Rule 33 v

We see in Table V that not every compromised VM can

be detected - more experiments are needed to increase
detection efficiency. However, rule 65_4 can detect the two

Java related attacks, Rule 47_2 can detect one form attack.
If a VM under DoS attack is detectable under rule 33, then a
change in the virtual network settings can stop a hacker
VM's attack on the victim VM.

6. CONCLUSION

We propose VIS, a virtualization introspection system
for KVM-based cloud platforms. This system can monitor
both static and dynamic VM status, replay and classify
various attacks to determine which VMs are attacking the
Hypervisor, and determine which VMs are attacking other
VMs. Additionally, VIS can also detect compromised VMs ,
as well as perform termination and online migration.

VIS is limited to protection based on established rules: it
needs to collect more attack patterns. Additionally, the rules
are derived by heuristics, have false positives and negatives,
and require more sophisticated analysis, such as system call
sequences.

References

[1] A. Biermann and J. Feldman. On the synthesis of finite state

machines from samples of their behavior. IEEE Transactions
on Computer, 21:592–597, 1972

[2] A. H. Sung , J. Xu , P. Chavez , S. Mukkamala. “Static
Analyzer of Vicious Executables (SAVE)” Proceedings of the
20th Annual Computer Security Applications Conference,
p.326-334, 2004

[3] A. Seshadri, M. Luk, N. Qu, and A. Perrig. “SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes.” In 16th SOSP, Oct 2007, pp. 335-350

[4] B.D. Payne, M Carbone, M Sharif, and W Lee. “Lares: An
Architecture for Secure Active Monitoring Using
Virtualization.” In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland 2008), May 2008, pp.233-247

[5] D. Lo and S.-C. Khoo. Mining patterns and rules for software
specification discovery. Proc. VLDB Endow., 1(2):1609–
1616, Aug. 2008

[6] D. Lorenzoli, L. Mariani, and M. Pezz`e. Automatic
generation of software be- havioral models. In Proceedings of
the 30th international conference on Software engineering,
ICSE ’08, pages 501–510, New York, NY, USA, 2008. ACM.

[7] D. Zissis and D. Lekkas. “Addressing Cloud Computing
Security Issues.” Future Generation Computer Systems(28:3)
March 2012, pp.583-592

[8] ENISA. (2009, Feb) "Cloud computing: benefits, risks and
recommendations for information security." Available:
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-
computingrisk-assessment [Jul. 10, 2010].

[9] F. Bellard. “Qemu, a Fast and Portable Dynamic Translator,”
in ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41-41

[10] F. Lombardi and R. Di Pietro. “KvmSec: A Security
Extension for Linux Kernel Virtual Machines.” In SAC ’09:
Proceedings of the 2009 ACM symposium on applied
Computing, ACM, New York, NY, USA, 2009. pp. 2029-34.

5036

[11] F. Siebenlist. “Challenges and opportunities for virtualized
security in the clouds,” Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies,
Stresa, Italy, 2009, pages 1-2.

[12] G.H. Kim and E.H. Spafford. “The Design and
Implementation of Tripwire: A File System Integrity
Checker.” In CCS ’94: Proceedings of the 2nd ACM
conference on computer and communications security. ACM,
New York, NY, USA, 1994. pp. 18-29

[13] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas.
“Opcode Sequences as Representation of Executables for
Data-mining-based Unknown Malware Detection.”
Information Sciences, 2011.

[14] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N.
Gruschka, L. Lo Iacono. “All Your Clouds are Belong to us –
Security Analysis of Cloud Management Interfaces.” In
Proceedings of the 3rd ACM workshop on Cloud computing
security workshop (CCSW), Chicago, IL, USA, 17–21
October 2011. pp.3-14.

[15] K. Rieck, T. Holz, C. Willems, P. Duessel, and P. Laskov.
“Learning and Classification of Malware Behavior”, Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2008.

[16] Lombardi and Di Pietro. “Secure virtualization for cloud
computing.” Journal of Network and Computer
Applications(34:4), July 2011, pp.1113-1122.

[17] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica,
"Above the clouds: A Berkeley view of cloud computing,"
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, 2001.

[19] Metasploit. Metasploit. http://www.metasploit/, 2013.
[20] Metasploit. Meterpreter. http://www.offensive-

security.com/metasploit-unleashed/Meterpreter_Basics, 2013.

[21] N. Elhage. Virtunoid: A KVM Guest -> Host privilege
escalation exploit. In DEFCON, 2011.Black Hat USA 2011,
August, 2008.

[22] O. Cicchello and S. C. Kremer. Inducing grammars from
sparse data sets: a survey of algorithms and results. Journal of
Machine Learning Research, 4:603–632, 2003.

[23] Openecp. Openecp. http://www.openecp.org, 2010.
[24] RedHat. Libvirt. http://libvirt.org, 2007.
[25] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,

J. Rhee, and D. Xu. DKSM: Subverting Virtual Machine
Introspection for Fun and Profit, Proceedings of the 2010 29th
IEEE Symposium on Reliable Distributed Systems Pages 82-
91.

[26] S.-W. Lee, D.-B. Tsai, A Guide to Having Fun with the Next
Generation Linux, Ubuntu, ISBN: 9867199979 GrandTech
Press,Taipei, Taiwan, Dec.2006.

[27] S.-W. Lee, F. Yu, Virtualization Introspection System on
KVM-based Cloud Computing Platforms, The 18th
Conference on Information Management and Pratice, Taipei,
Taiwan, Dec. 2012.

[28] T. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud Computing
Resource Management through a Grid Middleware: A Case
Study with DIET and Eucalyptus.” Cloud Computing, IEEE
International Conference on, 2009. pp. 151-154.

[29] T. Ormandy. “An Empirical Study into the Security Exposure
to Hosts of Hostile Virtualized Environments.” In
CanSecWest, 2007.

[30] T. Ristenpart, E. Tromer, H. Shacham, and Stefan Savage.
“Hey, You, Get off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds.” In CCS ’09:
Proceedings of the 16th ACM conference on Computer, 2009,
pp.199-212.

[31] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for
Analyzing Malware.” 15th Annual Conference of the
European Institute for Computer Antivirus Research (EICAR),
2006.

5037

