
Enhancing User Privacy on Android Mobile Devices via Permissions Removal

Quang Do1 Ben Martini2 Kim-Kwang Raymond Choo3
Information Assurance Research Group, University of South Australia

1doyqy002@mymail.unisa.edu.au; 2ben.martini@unisa.edu.au; 3raymond.choo@unisa.edu.au

Abstract
 Android mobile devices are becoming a popular
alternative to computers. The rise in the number of
tasks performed on mobile devices means sensitive
information is stored on the devices. Consequently,
Android devices are a potential vector for criminal
exploitation. Existing research on enhancing user
privacy on Android devices can generally be
classified as Android modifications. These solutions
often require operating system modifications, which
significantly reduce their potential.
 This research proposes the use of permissions
removal, wherein a reverse engineering process is
used to remove an app’s permission to a resource.
The repackaged app will run on all devices the
original app supported. Our findings that are based
on a study of seven popular social networking apps
for Android mobile devices indicate that the difficulty
of permissions removal may vary between types of
permissions and how well-integrated a permission is
within an app.

1. Introduction

 As mobile device usage increases in both ubiquity
and capability, so will the need for increased security
and privacy. Mobile devices are now being used for
tasks once primarily undertaken on personal
computers and notebooks. Paying bills, banking,
ordering items online and others can now be done
entirely on a smartphone. With the increase in the
amount of sensitive information stored on a mobile
device, user privacy becomes an important, if
somewhat forgotten, factor. The most common
operating system (OS) for mobile device, as of early
2013, is the Android OS by Google [1]. The Android
platform is designed with openness in mind, meaning
all of the system’s source code is available for
download, modification and review [24]. The Google
Play Store uses a blacklist style of accepting Android
applications (“apps”); that is all apps are accepted

unless they are reported by users. Android relies on its
permissions system in order to reduce the risk of a
malicious app on a device. A user can manually check
the list of permissions required by the app upon
installation as a method to determine if it is a legitimate
app. An app without the appropriate permissions cannot
perform tasks requiring that resource. For example, a
phone app requires the CALL_PHONE permission in
order to make phone calls. By default, an app that is
installed on an Android device can only be granted all of
its requested permissions. While some resource
permissions requested may have a legitimate use, others
may be used for nefarious purposes.
 It is a common finding in current research in Android
privacy that the Android OS requires improvements in
order to become a system that is capable of providing an
adequate amount of user privacy. Third party
frameworks that are built into customised versions of
Android showcase what is possible through direct OS
improvements. These improvements include enhancing
the user friendliness of the current permissions system
(e.g. permission categories). Another method of
improving user privacy is the use of fine-grained
permissions. This allows for users to allow or deny
specific permissions on a per application basis. Other
researchers attempt to lessen the impact of malware and
over-privileged apps on a user’s private and sensitive
information by introducing the concept of shadow or
mock data [4, 12, 13, 14]. Finally, a less discussed
method of improving privacy is to reverse engineer and
remove an app’s permission, completely preventing the
app’s access to a resource. Research in Android privacy
can be broadly categorised into permissions removal and
fine grained permissions control, the former of which
will be addressed in this paper.
 This paper explores how Android social networking
apps can be made more privacy friendly by permissions
removal. The main focus of this paper will be on app
permission removal using reverse engineering processes
and we will discuss its viability in addressing user
privacy concerns.
 The layout of this paper is as follows: Section two
presents the background information. Section three

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.623

5070

discusses existing literature, while the following
section explains the experiment setup and methods
used to remove permissions from apps. Section five
discusses the experiments’ results. The last section
concludes the paper and presents possible future
work.

2. Android structure

Android apps are stored and distributed within an
Android Application Package File (APK), a ZIP
format file. Apps are commonly installed via the
Google Play Store platform, which contains hundreds
of thousands of apps created by third-party
programmers and companies. Apps are generally
unmoderated, and Google uses Google Bouncer [2],
an in-house developed anti-malware application, to
scan all submitted apps. The reliability of Google
Bouncer is, however, questionable [3]. For example,
Erturk [29] performed a case study on the prevalence
of Android malware, and presents several forms of
malware already common on the system.
 The use of the Google Play Store allows
automatic selection of appropriate app installation
packages based on the device that is installing the
app. For example, a tablet may require a higher
resolution version of an app, containing tablet
specific layouts.

2.1. APK File Structure

Figure 1. Overview of an APK file structure

An APK contains at a minimum, the directories

and files shown in Figure 1. This
AndroidManifest.xml file is most important in the
research. This is stored in a binary XML format and

must be converted to a plain text format before
becoming human-readable. This file contains
information such as the minimum Android version the
app was designed for, the main activity (which is
launched upon opening the app) and other details
important to the basic functionality of an Android app.
Most importantly for our purposes, it contains
declarations of the Android permissions the app requires.
Another file that will be used within this research is the
classes.dex file, which contains the binary code of the
app compiled to Dalvik byte code [4].
 Programmers are free to add as many directories and
files as needed to fulfill their requirements. Due to the
inclusion of the manifest file detailing every file
contained within an app, the structure is quite flexible.
 Android apps are required to go through the
application signing process before they can be installed
onto a device. By default an Android system will not
install an application if it is unsigned. This includes both
physical and emulated Android systems. Generally for
an organisation that releases Android apps, there is a
single private key used to sign all their applications. By
signing different applications with the same private key,
they are able to share code and data as Android
considers them to be within the same process [25].

2.2. Android Permissions System

 Android uses a permissions-based approach to user
privacy and security. Each app runs in its own virtual
machine process, separate from all other apps currently
running. Each Android app has a unique “Linux” User
ID (POSIX). Two apps with different IDs cannot run in
the same process [5]. This sandbox approach ensures
that app data cannot leak to other apps.
 Before installation of an app, a user is presented with
a list of permissions the app requires. A user can only
accept all permissions the app requires and install the
app or cancel the installation completely. These
permissions are defined by the AndroidManifest.xml file
noted above, contained within the APK file in the root
directory. An Android app’s list of permissions is a
reflection of the functionality of that particular app. A
heavily over-privileged app (an app with too many
permission requests) can act as a deterrent to users due
to the long, potentially suspicious list of permissions
requested. As of Android version 4.2.2, the Android OS
has over 120 permissions [26]. Many of these
permissions, though, have little effect on the privacy
concerns of an Android smartphone user and are called
normal permissions.
 “Dangerous” permissions, on the other hand, are
requested upon installation and explicitly defined in the
AndroidManifest.xml file [27]. Figure 2 gives an

5071

example of a dangerous permission; the highlighted
row shows that the app requests access to the user’s
contacts.

Figure 2. Example of AndroidManifest.xml

3. Related Work

The Android OS is a mobile OS that is based on
the use of sandboxing and an app permissions system
wherein an app must first request controlled
permissions from the system on installation. Many
researchers working on Android security and privacy
use the app permissions approach to improve user
privacy on these devices. For example, Book,
Pridgen & Wallach [6] examined a sample of
114,000 apps and found that the number of
permissions required by apps are increasing, and
consequently, posing a privacy risk to Android users.
Shekhar, Dietz & Wallach [7] suggested that the
additional increase of permissions may be due to the
increasing popularity of in-app advertising, which
requires the use of additional resources in order to
cater for their own data collection, analysis and
transmissions. A review of the current literature
suggests that research on enhancing Android users’
privacy in relation to apps permissions are broadly
categorised into (1) improving the Android OS, (2)
fine-grained app permission control, (3) mock data
and (4) Android permission removal.
 Studies by Felt et al. [8] and Kelley et al. [9]
suggested that many users have a low comprehension
of the Android permissions system – that is the
permissions system may be insufficient in providing
adequate user privacy in the hands of a novice user.
Felt et al. then put forth several suggestions for
improving the base Android OS, including showing
the users risks of allowing certain permissions instead
of just the resource and defining user-friendly
categories for permissions. Kern & Sametinger [10]
took a different approach and recommended the use
of fine-grained individual permissions control on a
per app basis. This means that each Android app
would have each of their permissions explicitly listed
and the user would either deny or allow the
permission request. In their study, Kern &
Sametinger also examined the use of extensions to
the OS and third party apps in order to finely control
an app’s permissions, and developed their own app
allowing a user to grant or deny a request as it occurs.
In an independent yet related work, Zhou et al. [4]
designed a system that could control an app’s access
to sensitive permissions – TISSA. With TISSA, the

user can, for example, specify if the app is allowed to
access the device’s ID, contacts, call logs, etc. TISSA is
even finer grained than the system proposed by Kern &
Sametinger [10]. With TISSA, one could allow an app to
access the device’s contacts information but have the
app receive faked or empty data (i.e. TISSA supports the
use of mock and shadow data). Kern & Sametinger
further found that to provide adequate control of app
permissions, the apps would require repackaging
specifically to reduce resource usage. Bugiel, Heuser &
Sadeghi [11] instead presented some minor changes and
improvements to the actual Android services located
within the OS for fine-tuned control of app permissions.
This differs from the previous research of Zhou et al. [4]
and Kern & Sametinger [10] as a change in this area of
the OS code could lead to the improvements being
feasible in future versions or updates of Android. Most
proposals for fine-tuned app control thus far require
modification of the Android OS. With the use of a
privacy control app as opposed to an OS modification,
an app could possibly work on stock Android devices
that have no OS changes.
 The third area in improving Android users’ privacy is
that of the use of mock or shadow data. An example of
this is sending simulated location data to apps that
request it instead of the real location information.
MockDroid [12] is a modified Android OS that allows
the user to fake, to an app, the access or retrieval of a
requested resource. One example use for this is an app
that requires access to contact information in order to be
installed on a device, but only requests the permission to
data mine the device. A downside to this approach is that
a complete wipe and installation of the modified
Android OS is required to use MockDroid on a device
due to the fact that it employs a custom Android system.
Deploying this approach across many Android devices
in an enterprise environment, for example, is thus not a
feasible endeavour. AppFence [13] is another modified
Android system aimed at imposing privacy controls on
Android apps. When an app requests data that the user
does not want it to be allowed, AppFence substitutes the
data with fake “shadow data”. For example, an app
requesting a list of all contacts may get back an empty
list whereas in reality, this is not the case. Shadow data
can be used in almost all areas of the Android system,
but once again, its use requires a modified Android OS.
TaintDroid [14] is an approach to extending the Android
OS that allows for detection of sensitive data leaving a
device, as well as extremely fine-grained data access
control. TaintDroid allows users to allow or deny apps
from accessing data such as postal addresses, phone
numbers, among others.
 A less discussed type of Android app privacy is that
of app permissions or resource removal. This approach
requires an app be modified so that the permissions are

5072

first selected and then removed. Generally this means
an app’s source code is required or the app is
decompiled, modified to remove these permission
requests and then recompiled. An unpublished
manuscript [15] found that while it is possible to
remove permissions manually from an app via the
manifest file, it generally resulted in an app crashing
or freezing at some point during its operation.
Berthome et al. [16] proposed a set of two apps,
comprising (1) the Security Monitor, a third party app
installed onto the device, and (2) the Security
Reporter, which would be injected into a decompiled
target app. The injected app is able to monitor the
targeted app and can then report to the Security
Monitor with details such as resource requests.
Juanru, Dawu & Yuhao [17] used a similar technique
of decompiling Android apps to aid with their
Android malware research. Xu, Saïdi & Anderson
[18] developed a solution called Aurasium that
automatically repackages Android apps to have
sandboxing and policy enforcement abilities in order
to enhance user privacy. They also identified, as in
our research, that most research being done on
Android privacy requires major modifications to the
OS, resulting in usability issues. Permissions removal
is a relatively new but promising approach as it does
not require modifications to the Android OS.

4. Methodology

4.1 Experimental Setup

 A total of seven Android apps were chosen to be
examined and repackaged. A list of the apps selected
along with the permissions they requested upon
installation is shown in Table 1. The apps were
chosen from the Social category of the Google Play
Store based on the highest number of downloads and
ratings at the time of research (March 2013). All the
seven apps examined are free and are generally
counterparts to popular websites and web services.

An X symbol in a cell in Table 1 represents the
app from the top row requesting this permission
within its AndroidManifest.xml file. Permissions
which two or less apps requested have been omitted
from the table for clarity.
 In our experiment setup the apps were repackaged
on a Windows 7 machine and tested on: a Samsung
Galaxy i9000 (Android 4.1.1), i9100 (Android 4.2.2)
and i9300 (Android 4.1.2). Only the i9000 and i9100
were rooted devices.

Permission

Fa
ce

bo
ok

T
w

itt
er

In
st

ag
ra

m

T
an

go
 T

ex
t

Pi
nt

er
es

t

L
in

ke
dI

n

T
um

bl
r

ACCESS_
FINE_LOCATION

X

X

X

ACCESS_
NETWORK_STATE

X

X

X

X

X

X

AUTHENTICATE_
ACCOUNTS

X

X

X

X

X

CAMERA
X

X

X

GET_ACCOUNTS
X

X

X

X

X

X

INTERNET
X

X

X

X

X

X

X

MANAGE_
ACCOUNTS

X

X

X

X

X

READ_CONTACTS
X

X

X

X

X

X

READ_
PHONE_STATE

X

X

X

READ_
SYNC_SETTINGS

X

X

X

X

X

VIBRATE
X

X

X

X

WAKE_LOCK
X

X

X

X

X

X

X

WRITE_CONTACTS
X

X

X

X

WRITE_EXTERNAL_
STORAGE

X

X

X

X

X

X

X

WRITE_
SYNC_SETTINGS

X

X

X

X

X

Table 1. App Permission Requests

4.2 Permissions Selection

 Before a permission request is to be removed, it must
first be selected to be removed. When selecting a
permission to remove or block, it must not affect the
major functions of an app. For example, social
networking apps require Internet access in order to
function; as such the “INTERNET” permission is
required. Testing an app without Internet access can be
done simply by disabling all Internet connections. The
aim, therefore, is to remove dangerous permissions from
an app that should not be required. As such, the
permissions that are most commonly requested by apps
but also not necessarily required are considered for
removal.
 In order to determine what permissions are requested
by each app, the app was first decompiled following the

5073

process described in section 4.3. The
AndroidManifest.xml file obtained can then be read
with any plain-text editor. Table 1 displays the
information obtained, and section 5.1 discusses the
process through which we decided which permissions
are reasonable to remove.

Figure 3. Permissions selection process

Figure 3 outlines our proposed app permissions

selection process. The first step is for the user to
determine whether the app requires this permission.
The second step determines whether the app actually
requires this permission in order to function. For
example, a mapping app will require location
resources such as the GPS system in order to
function. A note keeping app, on the other hand, has
no obvious need for such information. The next two
steps will determine whether the permission is
harmless and feasible to be removed from the app.
For example, many app permissions allow an app to
access sensitive information such as contact
information, phone logs, IMEI numbers, and SMS. A
user may choose to expressly disallow a particular
permission even when the app has well defined
justifications.

The feasibility of removing an app’s permission is
considered. Some apps may be so heavily integrated
with a certain resource that it may not run without it.

4.3 Permissions Removal

In this paper, permissions removal is used in
order to improve user privacy on Android devices.
Permissions removal is the process wherein an app’s
package installer is reverse engineered to remove

unnecessary or privacy-intruding permissions. The
benefit of this method is that the app can be installed on
any version of Android that supports the unmodified
app. This means no additional third party software or
rooted/custom Android OS is required which may have
been an additional privacy/security risk.
 A major downside to this method is the time required
to properly remove one or more permissions and address
dependencies within the app. It may not be possible to
fully remove an Android permission’s dependencies as
the app’s coded functionality may be too tightly
integrated. For example, removing both coarse and fine
locations from a turn-by-turn navigation app would not
be useful or even viable due to the nature of the app.
Another challenge with this method is that due to the
digital signature verification in Android - the modified
app is not signed with the original key and hence cannot
be updated over the official version of the app installed
on the device. This means a completely new installation
of the app is required in order for this app to be updated
on the (one) device.

Figure 4. Ideal permissions removal process

 Figure 4 shows the ideal method of manual
permissions removal to be performed on an Android
app. The reason this method is considered ideal is that
this process results in the entire app’s source code being
readable and modifiable in Java. An app is first
decompiled using a decompilation tool – in our case,
APK Multi Tool is used [19]. Decompilation results in
several files, as shown, with importance placed on the
“smali” code files and AndroidManifest.xml file.
 The smali code files are the source code of the
particular Android app in a human readable format. The
problem with this format is that it is difficult to read and

5074

debug apps; the language is complicated and hard to
understand. As this is the case, the smali code files
are then converted to a single .dex or Dalvik
Executable file using a tool called smali/baksmali
[20]. This results in a .jar file, simply a Java archive
file containing Java classes which can be read and
extracted to .java files using JD-GUI [21]. At this
point, changes to the app can be easily made by
modifying its Java files.
 The plain text AndroidManifest.xml file can now
be read and modified using any plain text editor.
Removing the highlighted row in Figure 2 would
effectively render the app unable to read contacts
data from the Android device, but may render the app
unusable due to instability issues. Due to this, source
code changes must be made in order to result in a
usable app that cannot access contacts data.
 After the source code changes are made, the app
must be converted back into smali code in order for
the recompilation process to be successful. The
smali/baksmali software package is used once again
to convert the Java code to smali code. APK Multi
Tool is then used to recompile and sign the
repackaged app. The result should be a working app
installation package with some resource access
removed, thus improving user privacy.

5. Results

5.1 Discussion: Android App Permissions

 In our research, we found that the most
commonly requested Android permissions were
INTERNET, WAKE_LOCK and
WRITE_EXTERNAL_STORAGE. These three
permissions were requested by all seven apps
examined in this research. Descriptions of what each
Android permission entails are available on the
Android Developers website [26].
 An Internet connection is required to perform
social networking tasks; as such the INTERNET
permission is essential to the functioning of these
apps. WAKE_LOCK allows the app to keep an app
running in the foreground indefinitely without
turning off the display [26]. This can result in
excessive or unnecessary battery usage, but could be
stopped simply by quitting the app.
 WRITE_EXTERNAL_STORAGE allows an app
to modify the contents of external storage devices
such as attached USB drives and SD cards [26]. This
also includes permission to write on the internal
storage of a device, which is also defined as external
storage. This permission is also essential to most
app’s functions. Due to these findings, the removal

and blocking of the above three permissions will not be
addressed as they are crucial to the inner workings of
these apps.
 The next most common among the apps examined
were the ACCESS_NETWORK_STATE,
GET_ACCOUNTS and READ_CONTACTS
permissions, with only the Instagram app not requesting
the permissions in each case.
 ACCESS_NETWORK_STATE allows an app to
detect whether Internet connectivity is currently
available [26]. This is crucial to the app’s user
experience as it will allow the app to advise the user to
enable an Internet connection if it is unavailable.
 GET_ACCOUNTS is the permission that allows the
app to retrieve the user account information from the
phone [26]. This is also crucial to the smooth running of
the app as the account manager contains information
such as the user’s email address, as well as accounts for
specific services. For example, Facebook and Twitter
accounts are stored in the Android account manager and
accessed by an app with the GET_ACCOUNTS
permission allowed. This speeds up the process of using
these apps as the user does not need to manually login.
 The READ_CONTACTS permission is, arguably,
one of the most requested permissions thus far that apps
should not really require or request in full. This further
supports the fact that the existing permissions system
lacks fine-grained permissions control. Facebook, for
example, may retrieve contact names to help a user find
other friends, but it may also acquire other unnecessary
personal information. Contact information is of little use
directly to most of the apps under examination as the
apps should have their own user accounts with separate
databases. Facebook users, for example, would have
premade or would register for Facebook accounts. All
their data would be stored in Facebook’s databases,
which would be accessible once they log into the app
with their credentials. Because of this, the app should
have no real need for phone contact data. Users’ contact
data may contain information that they do not want
linked to their Facebook profiles such as contact
addresses, full names, and Email addresses amongst
other sensitive data. Instagram, Tumblr and Twitter
especially have little to do with a user’s contacts and
should not have a need for requesting access to them.
Although these services may require a contact’s email
address to perform some tasks, an app can only be
granted all contact information or none.

Instagram and Tumblr are both primarily photo
sharing apps. They have their own user accounts and
databases containing submitted user information, and as
such have no direct need for contact names and phone
numbers, let alone other contact data. It is of
questionable benefit to the user for the apps to be able to
read this information. Data mining is a very distinct

5075

possibility for the inclusion of these permissions in
these apps [4]. Tango Text, Voice and Video (Tango
Text) may be the only app that has a legitimate
reason to request access to contact data as the app’s
purpose is to allow communication with contacts via
text messaging, voice calls and video calls.
 The AUTHENTICATE_ACCOUNTS,
MANAGE_ACCOUNTS,
READ_SYNC_SETTINGS and
WRITE_SYNC_SETTINGS permissions are
requested by all but two of the apps (Instagram and
Pinterest). The AUTHENTICATE_ACCOUNTS and
MANAGE_ACCOUNTS permissions allow an app
to manage their user’s credentials which are stored
within the Android AccountManager service. The
combination of these two permissions gives an app
the ability to add their users’ accounts to the Android
system, allowing users to quickly authenticate their
accounts and passwords [22].
 Similarly, READ_SYNC_SETTINGS and
WRITE_SYNC_SETTINGS are used by the apps to
check whether the app can be synced and to change
this setting respectively [26]. This setting can be
managed manually by the user within the Android
settings page via the list of third party accounts stored
within the device.
 The VIBRATE and WRITE_CONTACTS
permissions are requested by four of the seven apps
tested – Facebook, Twitter, Tango Text and
LinkedIn.
 Requesting the WRITE_CONTACTS permission
allows an app to write to a user’s contact data but not
read this data [26]. This differs from the
READ_CONTACTS permission in that the app is not
allowed to access contact data if it requests only this
permission. A combination of these two permissions
is required for an app to modify or remove a current
contact’s data. An app that requests the
READ_CONTACTS permission without the
WRITE_CONTACTS permission is merely trying to
retrieve a user’s contact information, without this act
of data gathering being of any benefit to the user.
 Finally, ACCESS_FINE_LOCATION and
READ_PHONE_STATE are requested by three of
the seven examined apps – see Table 1.
 The Android OS has two methods to provide an
app with location information. A general location can
be obtained by accessing cell tower and Wi-Fi
information. This can be accessed by an app that has
requested the ACCESS_COARSE_LOCATION
permission [26]. A more accurate location can be
obtained when an app requests the
ACCESS_FINE_LOCATION [26]. This uses the
inbuilt GPS hardware to derive very accurate location
information. Facebook, Twitter and Instagram are the

three apps that request this permission. Location
information is another questionable permission when
requested by apps that are not intrinsically GPS apps or
mapping apps. Studies by Zhou et al. [4] found that apps
do leak location data. Therefore, this permission should
be removable from apps without affecting functionality
while enhancing privacy.
 READ_PHONE_STATE, a seemingly innocuous
permission, is actually capable of providing the app with
a large amount of phone information. It allows the app to
access the phone number of the device, the IMEI
(International Mobile Equipment Identifier) of the
device and whether a call is active, as well as the caller
number [26]. As an IMEI uniquely identifies a device
and is often used to locate a device, the leakage of this
information can be detrimental to the user. An IMEI can
also be used to blacklist a device from mobile networks
by calling a network provider and supplying them with
the IMEI. The only reason a social networking app
would require this permission is to check whether a call
is active in order for the app to act appropriately, be it
pause the current processing or save a draft if the user
were in the process of writing a message. Thus this
permission would be a good candidate for removal.
 In summary, the permissions we have determined are
a common privacy risk to the user are:
READ_CONTACTS, ACCESS_FINE_LOCATION,
and READ_PHONE_STATE.

5.2. Repackaging Android Apps

Figure 5. Alternative removal process

 Following the steps presented in Figure 4, we
encountered a major problem. The current process for
converting smali code to Java code is not yet fully
functional. The resulting Java code, upon conversion,
contains many thousands of errors. Another reason this
approach may not be so ideal is that the most commonly
used software package to convert the smali code into
Java files, DEX2JAR [31], has a known backdoor that

5076

could be exploited [30]. Therefore, an alternative
approach must be undertaken in order to ensure a
working app at the end of the decompilation and
recompilation process – see Figure 5.

The approach outlined in Figure 5 is capable of
recompiling to an error-free app as the smali code is a
direct representation of the app.
 We decided to use Virtuous Ten Studio due to its
ability to decompile and recompile apps without the
need for an external tool as well as accommodate the
editing of smali and xml files. The program also
includes an inbuilt documentation system that allows
for the syntax highlighting of smali code files.

5.2.1 ACCESS_FINE_LOCATION

 Of the apps tested in this research, three requested
this Android permission – Facebook, Twitter and
Instagram. For social networking apps, location
information is not crucial to the functionality of the
app. As such, it is a simple matter of modifying the
AndroidManifest.xml file of these apps to exclude
the location permission in order to prevent the app
from requesting any location information.
 Removing this permission from each of the apps
resulted in a fully usable app, apart from their
inability to obtain user location. There were no
crashes or force closes of the apps, although as
previously mentioned, the app cannot be installed
over a currently installed official version of the app
due to the use of a different key in the app signing
process. A removal and reinstall of the modified app
is required, meaning all app data is lost. The
permission can be removed without usability issues,
which is due to dependencies within the app. This is
because it is similar to running in flight mode, with
Internet access enabled. Removing this permission
manually simply makes the app think this is the case.
It is clear that this resource is not crucial to the
functioning of the Social Networking apps tested.

5.2.2 READ_CONTACTS

 This permission is requested by Facebook,
Twitter, Instagram, Tango Text, LinkedIn and
Tumblr. The READ_CONTACTS permission is one
that is generally very tightly integrated into the
functioning of a Social Networking app. Although
these are social networking apps, it does not
necessarily mean that they should be given full
access to all contact information on the device.
 Unlike the ACCESS_FINE_LOCATION
permission, READ_CONTACTS cannot simply be
removed from an app with no adverse effects. When

this permission is removed from the Tumblr app’s
AndroidManifest.xml file, the main functions of the app
remain fully functional. However, upon importing
contacts, the app remains in an infinite looping state
until the app is closed.
 Contact data in an Android system is stored in the
form of a SQLite database. An app cannot access this
database directly unless it has root permissions.
Otherwise, it must first request the READ_CONTACTS
permission in its manifest file and then import the
ContactsContract package from the Android libraries.
This package allows the app to read in data by querying
the database via API calls. As this is the main method
used by Android programmers to access contact data, in
order to remove an app’s dependencies with contact
data, this would be a logical starting point.
 Contact data is imported into Tumblr in the
ImportContactsTask class section of its code. This code
simply accesses the contacts database on the device and
retrieves the email information of each of the contacts.
In order to find the ImportContactsTask class within the
large amount of source code within the Tumblr app, the
ContactsContract package was used as the basis of a
keyword in order to search through these files. This code
is called only when a user accesses the “Find blogs to
follow” page and clicks on their own contacts. Tumblr
advises the user that their contact data is being read and
searched. The contact’s email is used by Tumblr to
determine if the contact has a Tumblr blog that the user
may follow. By only removing the READ_CONTACTS
permission from the manifest file, the search for blogs to
follow becomes never-ending; the app continuously
searches for contacts that it will never have access to.
This is non-functional behaviour and therefore must be
changed in the source code. By removing the
READ_CONTACTS permission from Tumblr’s
manifest file and modifying the ImportContactsTask
class to no longer read in the Android device’s contact
information, the Tumblr app is no longer able to request
contact information. In order to prevent Tumblr from
attempting to read contact data, two methods are
possible. One method is to completely disable the
button, which causes the app to read in the contacts.
Another method is to simply return an empty list as the
list of contacts. Both of these methods were attempted
on Tumblr and were successful.
 Upon removal of the READ_CONTACTS
permission from the AndroidManifest.xml file,
Facebook is able to launch and the user is able to
perform all tasks except for finding friends. Performing
this task results in an unexpected close of the app. A
similar technique to the one used to make Tumblr usable
can be used here to prevent the user from searching for
friends.

5077

 Removing the READ_CONTACTS permission
from its AndroidManifest.xml will result in
Instagram finding zero contact on a device that has
contacts. The rest of the functionality of the app is
unaffected. This is the ideal outcome for the
permissions removal process.
 When removing the READ_CONTACTS
permission from Twitter’s AndroidManifest.xml list
of permissions, the app is not adversely affected until
one starts to import contacts into Twitter. Upon
importing contacts into Twitter on a device with
existing contacts, Twitter closes unexpectedly. This
suggests the app may use contact data with good
intentions. Once again, the method used to make
Tumblr and Facebook usable could be used here.
 Removing the READ_CONTACTS permission
from the LinkedIn app causes the app to force close
when a user enters the settings screen. This makes the
app nearly non-functional and must be resolved.
 The Tango Text app has justification for the
READ_CONTACTS permission as it is also used as
a phone call and text messaging replacement app and
so we did not attempt to remove its permission in our
research.

5.2.3. READ_PHONE_STATE

 Facebook, LinkedIn and Tango Text all require
the READ_PHONE_STATE permission in order to
be installed. This permission allows the app to access
several important resources including: turning off an
app’s sound when there is an incoming call,
accessing the phone’s IMEI information and other
personal information [32].
 Removing this permission from both Facebook
and LinkedIn caused no obvious side effects. This
may be because the apps only use this permission in
order to mute themselves upon an incoming phone
call. READ_PHONE_STATE also gives an app the
64-bit hexadecimal ID, which is unique to the phone
and is sometimes used instead of a user login [28].
Apps that rely on this ID may become inoperable.
 Tango Text is one app that makes use of these
unique device IDs. Removing this permission from
its manifest file causes an “error 62” message to
appear, and renders the app unusable. Upon removing
instances where Tango Text tries to read in the
phone’s unique identifier, the Tango Text app crashes
upon startup, due to its empty or corrupt device ID.

6. Conclusion and Future Work

 From the apps that were tested in this research, it
was found that ACCESS_FINE_LOCATION could

be removed from social networking apps without
requiring direct source code changes. The only change
required was to actually remove the permission request
from the AndroidManifest.xml file and then recompile
the app. The apps, with the location permissions
removed, were functionally stable after the permission
removal. Apps such as Facebook, which have use of the
location request in some of their features are, of course,
impaired in this aspect.
 To prevent apps from reading contacts information
generally requires some code changes in order to prevent
the app from crashing or stalling. Most of the apps, even
though they were social networking applications, have a
process that a user must go through before the app can
read the contacts information. This is generally an option
labeled in a similar vein to “Import Contacts” and
implies that the app has been programmed to be user
privacy friendly. The one exception to this, in our
research, was the LinkedIn app, which would attempt to
read contact data upon opening of the settings screen.
 From these results, it can be determined that it is
indeed possible to remove permission requests from
apps via reverse engineering and result in a usable and
privacy friendly app.

Removing the READ_PHONE_STATE permission
from Facebook and LinkedIn had a similar result to
removing location access from them. With Tango Text,
which required this permission in order to identify the
phone, the app would instead display an error message.
This means that successful removal of this permission
would depend on the app in question.
 All the research undertaken in this paper on
permissions removal was manually completed, therefore
future research recommendations include automating
this process. By using heuristic methods, it may be
possible to locate sections within the source code where
permissions resources are used automatically. The
decompilation, modification and recompilation process
could then be completely autonomous.
 This leads onto a further future work or research that
could be undertaken where this automated system would
be implemented onto an Android device. This would
result in a self-functioning system that could enhance the
privacy of apps on the device.

References

[1] M. Oleaga, 2013, “OS vs. Android Market Share 2013:
Google Mobile Platform Dominating Apple Worldwide in
March Figures”, http://www.latinospost.com/articles/
15039/20130322/ios-vs-android-market-share-2013-google-
mobile-platform-dominating.htm, accessed 25 March 2013.

5078

[2] O. Hou, 2012, “A Look at Google Bouncer”,
http://blog.trendmicro.com/trendlabs-security-
intelligence/a-look-at-google-bouncer/, accessed 14 April
2013

[3] FY. Rashid, 2012, “Researchers upload dangerous app
to Google Play store”, http://www.scmagazine.com.au/
News/310192,blackhat-researchers-upload-dangerous-app-
to-google-play-store.aspx, accessed 14 April 2013

[4] Y. Zhou, X. Zhang, X. Jiang & V. Freeh, “Taming
information-stealing smartphone applications (on
Android)”, TRUST 2011, pp. 93-107.

[5] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev
& C. Glezer, “Google Android: A Comprehensive Security
Assessment”, IEEE Security & Privacy Magazine, vol. 8,
no. 2, 2012, pp. 35-44.

[6] T. Book, A. Pridgen & DS. Wallach, “Longitudinal
Analysis of Android Ad Library Permissions”, arXiv
preprint arXiv:1303.0857, 2013.

[7] S. Shekhar, M. Dietz & D.S. Wallach, “Adsplit:
Separating smartphone advertising from application”,
CoRR, abs/1202.4030, 2013.

[8] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin & D.
Wagner, “Android permissions: User attention,
comprehension, and behavior”, SOUPS 2012, p. 3.

[9] P.G. Kelley, S. Consolvo, L.F. Cranor, J. Jung, N.
Sadeh & D. Wetherall, “A Conundrum of Permissions:
Installing Applications on an Android Smartphone”,
Financial Cryptography and Data Security 2012, pp. 68-79.

[10] M. Kern, & J. Sametinger, “Permission Tracking in
Android”, UBICOMM 2012, pp. 148-155.

[11] S. Bugiel, S. Heuser & AR. Sadeghi, “myTunes:
Semantically Linked and User-Centric Fine-Grained
Privacy Control on Android”, Technical Report TUD-CS-
2012-0226, Center for Advanced Security Research
Darmstadt (CASED), 2012.

[12] AR. Beresford, A. Rice, N. Skehin & R. Sohan,
“MockDroid: trading privacy for application functionality
on smartphones”, HotMobile 2011, pp. 49-54.

[13] P. Hornyack, S. Han, J. Jung, S. Schechter & D.
Wetherall, “These aren't the droids you're looking for:
retrofitting android to protect data from imperious
applications”, ACM CCS 2011, pp. 639-652.

[14] W. Enck, P. Gilbert, BG. Chun, L.P. Cox, J. Jung, P.
McDaniel & AN. Sheth, “TaintDroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones”, 9th USENIX conference on Operating
systems design and implementation, 2012, pp. 1-6.

[15] J. Helfer & T. Lin, 2012, “Giving the User Control over
Android Permissions”,
http://css.csail.mit.edu/6.858/2012/projects/helfer-ty12.pdf,
accessed 25 March 2013.

[16] P. Berthome, T. Fecherolle, N. Guilloteau & JF. Lalande,
“Repackaging Android Applications for Auditing Access to
Private Data”, ARES 2012, pp. 388-396.

[17] L. Juanru, G. Dawu & L. Yuhao, “Android Malware
Forensics: Reconstruction of Malicious Events”, ICDCSW
2012, pp. 552-558.

[18] R. Xu, H. Saïdi & R. Anderso, 'Aurasium: Practical policy
enforcement for android applications', 21st USENIX
conference on Security symposium, 2012, pp. 27-27.

[19] http://apkmultitool.com/, accessed 11 April 2013

[20] http://code.google.com/p/smali/, accessed 11 April 2013

[21] http://java.decompiler.free.fr/?q=jdgui, accessed 11 April
2013

[22] C. Mann & A Starostin, “A framework for static detection
of privacy leaks in android applications”, ACM SAC 2012, pp.
1457-1462.

[23] http://www.virtuous-ten-studio.com/, accessed 4 May
2013

[24] http://source.android.com/, accessed 13 June 2013

[25] S. Bugiel, S. Heuser & AR. Sadeghi, myTunes:
Semantically Linked and User-Centric Fine-Grained Privacy
Control on Android, Technical Report TUD-CS-2012-0226,
Center for Advanced Security Research Darmstadt, 2012.

[26] http://developer.android.com/reference/android/
Manifest.permission.html, accessed 14 June 2013

[27] http://developer.android.com/guide/topics/manifest
/permission-element.html, accessed 13 June 2013

[28] http://developer.android.com/reference/android
/provider/Settings.Secure.html#ANDROID_ID, accessed 13
June 2013

[29] E. Erturk, 'A case study in open source software security
and privacy: Android adware', WorldCIS 2012, pp. 189-191.

[30] R. Unuchek, 2013, “The most sophisticated Android
Trojan”, http://www.securelist.com/en/blog/8106/
The_most_sophisticated_Android_Trojan, accessed 13 June
2013

[31] http://code.google.com/p/dex2jar/, accessed 13 June 2013

[32] http://developer.android.com/reference/android
/telephony/TelephonyManager.html#getDeviceId(), accessed
14 June 2013

5079

