
Using Simulations to Study the Efficiency of Update Control Protocols

Bernd Pfitzinger†‡, Tommy Baumann*, Dragan Macos+, Thomas Jestädt†
†Toll Collect GmbH, Linkstr. 4, 10785 Berlin, Germany. Email: {bernd.pfitzinger|thomas.jestaedt}@toll-collect.de

‡FOM Hochschule für Oekonomie & Management, Zeltnerstraße 19, 90443 Nürnberg, Germany.
*Andato GmbH & Co. KG, Ehrenbergstraße 11, 98693 Ilmenau, Germany. Email: tommy.baumann@andato.com

+Beuth Hochschule für Technik, Luxemburger Str. 10, 13353 Berlin, Germany. dmacos@beuth-hochschule.de

Abstract
Taking an existing large-scale realistic discrete

event simulation model [1, 2] of a mobile distributed
system with more than 700 000 units we investigate the
efficiency of control protocols for the software and
data updates of on-board-units (OBUs). Adding four
different closed-loop control protocols to the existing
simulation model we explain and investigate the
technical implications of the control protocols: OBUs
that allow incoming network connections can be
reached at any time (Always-On or Sometimes-On). If
the OBU is designed without a TCP/IP server,
signaling is implemented either as polling (Sometimes-
On with polling) or using a dedicated GSM signaling
channel (On-Demand-On). The efficiency is discussed
as a combination of metrics gathered during
simulation runs and compared with the OBU-
controlled update logic. These simulation results are
subsequently used as input for the system development
process.

1. Introduction

Deploying software and data updates is a seemingly
simple yet vital process in any software intensive
system. Depending on the circumstances, its success
can be measured in terms of failed updates, the time
needed for the deployment and the costs associated
with the rollout of the updates. Taking the example of
the German electronic toll system for heavy goods
vehicles (HGVs) we investigate the software and

update process in the case of a highly distributed
system containing more than 700 000 OBUs. The
update process needs to reach each OBU in time to
ensure the valid software, geo or tariff data is available
on each given OBU. Typically updates are distributed
in advance and once the date of validity is reached the
systems’ capacity needs to allow all remaining (and
active) OBUs to download the update immediately.
The current system architecture implements an update
algorithm distributed across the vehicle fleet (i.e. each
OBU makes its own decisions) with some global
timing parameters to shape the overall update rate.

The difficulty in predicting the properties of a fleet-
wide update is the complexity of the whole system.
Non-deterministic, non-linear effects as well as
emergent behavior [3] possibly manifest only at the
level of the whole system: “Emergent behavior is that
which cannot be predicted through analysis at any level
simpler than that of the system as a whole” [4]. Taking
the existing simulation model of the Toll Collect
system [1, 2] we use simulations at a scale of 1:1 to
determine the behavior and the efficiency of fleet-wide
updates for different update control protocols.

The outline of the article is as follows: Section 2
provides a brief overview of the simulation model, the
changes to the one described in [2] and it introduces
two independently developed models of the driving
patterns used in the simulation runs. Section 3 explains
the major addition to the simulation model: a closed-
loop control of the update process that can be
configured in four distinct modes of operations. The
comparison of simulation results for the different
control protocols is discussed in section 4 followed by
a brief outlook and summary in section 5.

2. A simulation model of the Toll Collect
system

More than 90% of the toll fees (of a total of 4.36 bn
€ in 2012, table 4 in [5]) due on federal motorways in
Germany are collected automatically by the Toll
Collect system. In total, more than 700 000 OBUs are

Mobile Data
Network

Mobile Data
Network

Central
System
Central
System

Scenario
Generator
Scenario

Generator

Vehicle
Fleet

driving
pattern

Figure 1: Block diagram of the simulation
model and the (external) scenario generator

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.634

5154

deployed using up-to-date geo and tariff data to
determine the toll charge and to transmit the tolls to the
data centre. As a starting point we take an existing
discrete event simulation model of the automatic
tolling system [1, 2]. This model includes the scenario
generator, all subsystems (fig. 1) and processes
necessary to determine and to collect the toll charges as
well as to deploy updates of the software, geo and tariff
data across the vehicle fleet. In effect the simulation
encompasses all the relevant HGV driving behavior
and the technical processes down to time scales of one
second (and some processes with time scales of 50ms,
e.g. network authentication handling).

The vehicle fleet is currently set up as a loosely
coupled distributed system – each OBU is running the
same logic (software code and global configuration
parameters) independently for most of the time with
infrequent OBU-initiated data transmissions between
an OBU and the data centre at random points in time to
transmit the toll charges collected or to download
updates to the OBU. Especially the mobile data
network and the central systems running in the data
center exhibit a non-linear behavior, e.g. when
operated close to the maximum design specification.
The driving patterns are non-deterministic in nature
since they encode the driving behavior of the HGVs.
To limit the impact of the non-linear and non-
deterministic behavior included in the tolling system,
several network components are designed to actively
limit the maximum load forwarded to the central
systems. As a consequence, it is not obvious that a
small-scale simulation model will produce the actual
system behavior. With several performance
optimizations (profiling of atomic blocks, removal of
non-affecting retry protocols, dynamic driving pattern
calculation [2, 6, 7]) the simulation model is able to
run at a scale of 1:1 and simulate a time period of one
year within a day on a standard single CPU core using
the MSArchitect [9] discrete event simulation core.

A number of different approaches are used to
ensure the validity of the simulation model:
� The system architecture is known (white-box

approach) and can be transferred to the simulation
model (up to including source code from the real-
world system in the simulation model).

� The whole simulation model has undergone source
code inspection [10] with the relevant subject
matter experts.

� The software, geo and tariff data updates occurring
in the real-world system over the past year have
been reproduced in simulation runs as well as
updates of test fleets (which in turn yield insights
on how to implement considerably faster rollouts).

For the purpose of this work we extended the
simulation runs to a fleet size of 800 000 OBUs

(projected future fleet size, compared to 140 000 in [1,
2]) and a simulated time period of 30 weeks (compared
to 16 weeks). Each simulation run includes two
software updates and three geo and tariff data updates
in between, a typical workload occurring over 6
months.

The driving patterns (power cycles and the points in
time where tolls are collected) used in the simulation
are built on statistical data observed in the actual
vehicle fleet and calibrated to the average annual
distance driven on German toll roads [11,12]. To get a
sense of the uncertainty inherent in the driving patterns
we created two different models (by two independent
teams) to simulate the driving patterns on a time scale
of one second (table 1).

Table 1: Statistical (annualized) averages of
the HGV driving patterns generated by two

different scenario generators A, B.
A B

speed [km/h] 80,2 77,8
toll distance [km] 30 255 31 300
power cycles 721 1 326

duration [min] 152 62
network losses per power cycle 3,1 2,4
duration of network loss [s] 16 90

power-on time 21,0% 15,6%
percentage spent on toll roads 20,5% 28,7%
percentage without network 0,6% 4,3%

The driving patterns created by the scenario
generators A and B make different assumptions when
breaking down the statistical observables to the
second-by-second truck behavior. While the annual
average toll distance is (calibrated to be) comparable,
the number and duration of power cycles differs
considerably. As a result, HGVs are powered-on for
almost a third longer with scenario generator A (table
1) – time available for deploying updates. Technical
limitations and data protection rules make it impossible
to observe the power cycle behavior across the real-
world fleet. Scenario generator B includes additional
data gathered from the Toll Collect test fleet leading to
many short power cycles.

Since the publication of [1,2] the simulation model
has been enhanced to include network outages
occurring at any time – introducing a considerably
higher load on the error recovery protocols already
present in the simulation model. Obviously, mobile
GSM data connections can fail at any time – especially
since the HGVs are moving. Again, the exact nature of
the network losses (probability, duration) cannot be
observed in the real-world fleet. Taking data from the
Toll Collect test fleet and a report on the German

5155

mobile networks [13] we conclude that for a given
OBU the mobile data network is not accessible for at
least up to 5-10% of the total power-on time. As a
result, both driving patterns include, on average,
several network losses per power cycle (table 1).

Starting with the observed weekly activity patterns
(over a 15 week period in 2011, [2]) we extrapolate to
30 weeks (table 2). Using this distribution we
determine the active weeks for each OBU, i.e. a given
OBU has the same activity pattern for the whole
simulation (e.g. an OBU that is rarely active will not
switch its activity pattern to very active during the
simulation run).

Both scenario generators differ slightly in the
weekly activity patterns (especially for HGVs that are
rarely seen within the German mobile data networks in
the 15 week data set), e.g. scenario generator A has 6%
of the vehicle fleet active at least once in 1 to 5 weeks
(randomly spread over the 30 week simulation run)
compared to 11% for scenario generator B.

Modeling the duration of the power cycles we take
additional data from the Toll Collect test fleet in
scenario generator B [2] and an older analysis of the
real-world fleet in the driving patterns A (table 3). The
main difference is the addition of many very short
power cycles in model B. This in turn should interrupt
updates more frequently and trigger the error recovery
protocols more often than with the driving patterns of
model A.

To summarize, the existing simulation model has
been extended to include network outages and the
performance allows simulations at a scale of 1:1.
Where possible, the simulation model has undergone
source code inspection by subject matter experts and
the simulated update behavior was validated against
the updates occurring in the real-world system.

The major limitation remaining in the scenario
generators is the lack of geographical information, i.e.
the tolling process is limited to points in time but not
points on a map. For this article the approach taken is
sufficient as long as the update process is independent
of the OBUs’ position (which is the case for HGVs
driving within Germany). Location-sensitive
algorithms (e.g. special update behavior next to the
boundaries of the toll area or caching algorithms [14,
15] or different roaming strategies) will require the
addition of location data to the scenario generators.

To mitigate the uncertainty inherent in modeling
the driving patterns we implemented two models
independently. Taking this foundation we apply the
simulation model to investigate different update
control protocols.

Table 2: Number of active weeks for a 30 week
period used by the scenario generators

A B
0 10% 6%

1 - 5 6% 11%
6 - 11 7% 8%

12 - 17 9% 8%
18 - 23 12% 11%
24 - 30 56% 56%

Table 3: Duration of the power cycles used in
the driving patterns models

[h] A B
0,5 6,0% 64,3%
1,0 8,9% 12,6%
2,0 24,6% 11,6%
3,0 22,5% 6,4%
4,0 16,2% 2,3%
5,0 21,8% 1,1%

> 5,0 0,00% 1,7%

3. Software and data update control
protocols

The purpose of the automatic toll system is of
course to collect the toll charges due. However,
updates are also occurring regularly either due to new
features (or optimization) in the OBU software or to
changes in the geo and tariff data. Updates need to be
deployed fleet-wide within a given time period
(typically several weeks), at acceptable cost and
without impacting the tolling process. The current
mode of operations allows for up to four software
updates per year and many more updates to the geo and
tariff data.

Today the rollout of updates is an emergent
property of the tolling system: While powered-on, each
OBU decides independently and randomly (according
to global timing parameters) if and when to connect to
the central system to check for updates. Changing the
global timing parameters allows different rollout rates
– that can only be determined through simulations. To
ensure the operational validity of the simulation model
[16,19] we simulate the update behavior observed
between March 2012 and Jan 2013 and compare the
fleet-wide percentage of updates deployed at the end of
each day. Computing the Pearson product-moment
correlation coefficient [17] for the deployment of
software, geo and tariff data updates we find the
simulation results to be very close to the actual system
behavior (as given by a correlation factor close to 1,

5156

table 4, using the driving patterns of scenario generator
B).

Table 4: Pearson correlation between
simulated and observed updates

correlation
software 0.99898
geo data 0.99570

tariff data 0.99474

As part of the Toll Collect system development
process we use the simulation model to investigate the
system behavior of planned changes. For the purpose
of this article we investigated a proposed redesign of
the update process: Instead of an algorithm running
locally (and in large parts independently) on all OBUs,
we introduce a closed-loop controller running in the
data center. This change to the system architecture has
two consequences:
� The update logic contained in the OBU is removed

and
� the central closed-loop controller needs the ability

to connect to a given OBU to deploy the update.
From an operational point of view another
consequence is that instead of the update logic the
OBU would need to implement a “self-test” algorithm
to check whether the software and data is up-to-date.

Today it is possible to design a distributed system
assuming a permanent mobile data connection to the
data center – as seen in the widespread adoption of
smartphones. In our investigation we use this behavior
as one extreme (“Always-On”, at least when the HGV
is powered-on) and the other extreme is a dedicated
signaling channel used to start an update on a given
OBU (“On-Demand-On”). Since updates occur
infrequently we include an intermediate behavior

where the OBU is only online for certain time periods
(“Sometimes-On”), e.g. after the power-on and at
regular (or random) intervals thereafter.

For the transmission of updates we use a TCP/IP-
based communication (apart from the extra signaling
channel in the On-Demand-On scenario, fig. 2). Of
course, the closed-loop controller running in the data
center needs to be able to connect to the OBU. If we
decide to simplify the OBU so that it does not run its
own TCP/IP server, incoming connections to the OBU
need to be emulated through polling. The following
subsections explain the four controllers implemented in
the simulation model.

3.1. Always-On and Sometimes-On control
protocols

For the Always-On scenario the IP connection
machine added to the OBU automatically ensures the
availability of a fully configured IP-stack. I.e. as long
as the OBU is powered on, it will automatically
connect to the GSM network and establish a packet
data protocol (PDP) connection. In our case the IP
addresses are allocated in a private network by our data
center once the OBU is successfully authenticated.

Whenever the network access is lost, the OBU will
continuously try to reestablish the PDP context.
Depending on the configuration of the mobile data
network, the previous PDP context may be reused or a
new PDP context needs to be created by the mobile
network operator (MNO) putting an additional strain
on the MNO and the central services.

The Sometimes-On scenario modifies the IP
connection machine so that the OBU releases the PDP
context for some time periods. The central controller
must use the available time for updates. In our
simulation the OBU will remain reachable after each
power-on event and wake up periodically afterwards
(once every four hours).

Mobile Data
Network

IPIPTCPTCP

power cycles
network losses

data

OBU logic

signaling channel

Figure 2: IP and TCP connection machines
added to the simulation model (optional
signaling channel for On-Demand-On).

Figure 3: Always-On and Sometimes-On
controller synchronization

open network
connection

get active
OBUs

Controller Radius

5157

In both scenarios TCP/IP servers are running in the
data center and on the OBU, allowing the
establishment of new connections from each side. The
closed-loop controller in the data center is therefore
able to initiate network connections to any OBU that
needs to receive an update.

 For the purpose of the simulation we implemented
a simple algorithm for the controller (fig. 3): We
periodically take the table of currently active OBUs
(given as the IP-addresses allocated by the Radius-
server in the data center) and loop over the active
OBUs as long as the controller needs to deploy updates
and still has spare capacity. Of course, the time lag
between the OBU connecting to the data center and the
controller trying to establish a connection will lead to
some OBUs being no longer available (e.g. due to
power cycles or loss of the network connection). The
controller then needs to wait for a timeout period to
conclude that the OBU is no longer available before it
can proceed to the next OBU in line. In effect this
reduces the update speed since part of the controller
capacity is tied up waiting for timeouts. Initially we
synchronized the table of active OBUs every 60
seconds (the shortest power cycles included in the
driving patterns) but noticed a sizeable amount of
unreachable OBUs as consequence. Therefore the
synchronization frequency was doubled to once every
30 seconds – incurring a substantial performance
overhead. We repeat the simulations with two different
controller capacities (up to 1 000 or 5 000 parallel
connections) to gauge its effect on the update speed.

3.2. Sometimes-On using polling operations

The communication protocol needs to be modified
if the OBU does not run its own TCP/IP server, i.e.
does not allow incoming connections. The inability of
the controller to open network connections to the OBU
will of course introduce delays to the update process.
Since the controller logic resides in the data center the
OBU establishes “polling” connections (fig. 4): After
establishing a PDP context the OBU opens a TCP
connection directly to the controller and waits. The
controller can use the TCP connection to deploy one or
several updates, maintain the idle connection for some
time (“long polling”) or send a command to terminate
the connection. Once the connection is closed the
Sometimes-On logic will open a new connection after
a given time period or at the start of the next power
cycle. If the polling rate is higher than the publish rate,
the polling mechanism will create many unnecessary
connections – unfortunately the typical scenario in our
case: We aim for fleet-wide updates within a few days
(i.e. deploying updates at the maximum rate supported
by the controller) occurring only several times per
year.

Compared to the Sometimes-On scenario without
polling the major difference is that the polling protocol
immediately opens a network connection to the
controller via TCP/IP. There is no intermediate step
where the controller periodically retrieves newly
registered OBUs from the Radius server. As a
consequence the polling protocol should make better
use of the available parallel connections – the time lag
between registering the IP address and the controller
trying to open a connection is eliminated. However, the
controller is still checking once every 30 seconds
whether any updates need to be deployed.

deploy update(s)

establish PDP
context

Controller Radius OBU

open TCP connection

end session
close TCP

connection
release PDP
context

Figure 4: Polling mechanism used for OBUs
without TCP/IP server

5,250

5,375

days

tolls
per

OBU

Figure 5: Average of tolls stored on OBUs
over four weeks with a software update at
the end of the second week (Always-On)

5158

3.3. On-Demand-On: A control protocol using
a dedicated signaling channel

A dedicated signaling channel should allow much
more efficient control protocols since the OBU only
establishes a PDP context when the controller needs to
connect to the OBU. In our case we choose the
network initiated USSD (Unstructured Supplementary
Service Data) protocol present in the GSM standard
[18]. Similar to the short message service (SMS)
USSD allows sending messages to a mobile subscriber
(MS). However, in the case of USSD messages are not
stored and forwarded later when the MS cannot be
reached. In effect, sending USSD messages the
controller can wake up OBUs that are powered-on and
within the reach of the mobile data network (but have
not yet activated the data network). After waking up
the OBU establishes a PDP context and opens a TCP
connection to the controller.

Since USSD messages that cannot be delivered are
discarded by the network, the controller is not faced
with old messages being forwarded e.g. at the start of
the week (a case that needs to considered if SMS is
chosen as signaling channel). Monitoring the controller
capacity, the controller will issue as many USSD
request as possible to fill the available 1 000 (or 5 000)
parallel connections.

4. Determining the efficiency of control
protocols

In the Toll Collect example the most important
property of the closed-loop controller is its ability to
quickly deploy fleet-wide updates without impact on
the ongoing tolling process. During each simulation
run we monitor the toll charges stored on the OBUs
(fig. 5, starting on a Monday and showing four
consecutive weeks) to ensure that updates do not affect
the tolling process. The daily activity pattern is clearly
visible as well as the weekends. As intended the
weekly behavior is very similar (in pattern and in
absolute terms). The software update starting at the end
of the second week does not affect the tolling – it is
invisible in fig. 5.

In a typical scenario we deploy a small delta patch
of the software with a file size requiring several
minutes of download via the mobile data network.
Starting the update on a Saturday afternoon (at the end
of the second week, fig. 6) it is distributed quickly
across the fleet, reaching 50% of the fleet within less
than 2 days. In fact, looking at the number of parallel
connections used by the controller (fig. 7) we find that
the cap at 1 000 connections is only reached for less
than 12 hours. I.e. two days after the start of the update
the update is limited by the driving patterns used in the
simulation – the fact that most OBUs are unreachable
for considerable periods of time.

Taking this into account we compare the four
different scenarios by looking at the time taken to
reach 50% of the OBU fleet (table 5). As expected, the
Sometimes-On scenario will give the worst rollout
speed (when used without polling). Otherwise the

Figure 6: Fleet-wide software update over 6
weeks (Always-On, 1000 parallel

connections, driving patterns model B)

0

1000

Sat Sun Mon

Figure 7: Parallel connections at the controller
at the start of a fleet-wide update (Always-On,

up to 1 000 parallel connections, driving
patterns model B)

5159

different protocols perform almost identically (with
slightly longer rollout durations for the driving patterns
generated by scenario generator �). Increasing the
controller capacity from 1 000 to 5 000 parallel
connections levels the field and all four control
protocols reach 50% of the fleet within 36 (39) hours
for model A (B).

The effect of including a large proportion of short
power cycles in the driving patterns model B is visible
in many other metrics as well. E.g. the average hourly
number of failed connections from the Always-On or
Sometimes-On controller to the OBU is up to three
times higher when simulated with the driving patterns
from scenario generator B rather than A.

A direct comparison between the distributed update
algorithm (status quo) and the new control protocols is
difficult since the two solutions implement opposite
operational philosophies: The new closed-loop
controller is intended to deploy updates at maximum
speed and capacity whereas the status quo is
configured to level updates over considerable periods
of time. Taking this into account, the main difference is
the duration the OBU is running with an established
PDP context. The distributed update algorithm very
rarely connects to the wireless data network whereas
the new solutions differ widely (table 6): As expected –
Always-On is considerably longer online although
most often no updates need to be deployed.

Replacing the distributed update algorithm with the
controller running in the data center we change the
performance behavior of the simulation model: The
continuously running algorithm on each OBU is shut
down, the performance of simulating the fleet-wide
behavior is improved. However, the closed-loop
controller in the data center requires additional
computing resources – especially since we chose a
rather simplistic algorithm with periodic replication of
tables and the subsequent check whether any updates
need to be deployed. For the sake of fast rollouts the
controller checks twice per minute for new updates
(where the 30 week simulation run includes only a total
of 5 updates).

As a consequence the sum total of CPU commands
issued during the simulation run is lowest for the
distributed update algorithm and the On-Demand-On
scenario (16% more CPU cycles).

Table 5: Rollout duration [h] to reach 50% of
the fleet using up to 1 000 connections and

two driving patterns A, B
A B

Always On 40 42
Sometimes On 61 69
Sometimes-On Polling 40 43
On-Demand-On 42 46

 For the Sometimes-On scenario the simulation
needs 70% more CPU cycles and for the Always-On
scenario 160% more CPU cycles. In the end the new
controller logic is responsible for 10% (On-Demand-
On) up to 60% (Always-On) of the total simulation
runtime.

Table 6: Relative factor of average online time
per OBU for the driving patterns A, B (On-

Demand-On = 1.0)
A B

Always On 921.2 579.4
Sometimes On 11.9 15.4
Sometimes-On Polling 1.3 2.3
On-Demand-On 1.0 1.4

5. Summary and Outlook

We have expanded and validated an existing
simulation model of the German electronic toll system
for HGVs to allow simulation runs at a scale of 1:1.
The simulation performance is sufficient to use the
simulations in “what-if” scenarios in the early design
stages of the system engineering process including all
processes running at time scales down to one second
without resorting to poorly understood scaling factors.

Using the simulation model to investigate a
proposed change of the overall system architecture, we
investigated the fleet-wide update behavior – an
emergent property owing to the distributed algorithm
implemented in the system. Replacing it with four
different implementations of a closed-loop controller
running in the data center, we compare the efficiency
in terms of the time taken for a fleet-wide update and
the average duration the OBUs are online. Especially
the online time differs widely between the four
scenarios: The use of a dedicated signaling channel
(“On-Demand-On”) reduces the amount of time spent
online by a factor of almost 1 000 (compared to
“Always-On”). According to the simulation results it is
not necessary for the OBU to be online at all times to
achieve similar rollout rates.

Introducing simulations to the system engineering
process we were able to quickly improve the
specification accuracy. The simulation results give an
evaluation of the different proposed implementations
and are a new way of specifying the behavior of the
dynamic system.

Taking the microscopic simulation model we have
identified and mitigated some limitations of the model:
Including all technical processes running at time scales
down to one second was improved for some
networking processes to a level of 50 ms. The
validation of the simulation model is currently limited

5160

to the daily update behavior. Additional data with a
higher temporal resolution is required to validate the
simulation model at shorter time scales where we
expect to see the limitations imposed by the statistical
data used in the driving patterns.

For future work we propose to use the simulation
model and an optimization framework to reconstruct
the detailed daily driving patterns from the real world
systems’ observables instead of trying to determine
fleet-wide statistical driving patterns.

10. References

[1] B. Pfitzinger, T. Baumann, and T. Jestädt, “Analysis and
evaluation of the German toll system using a holistic
executable specification”, Hawaii International Conference
on System Sciences, pp. 5632-5638, 2012.
[2] B. Pfitzinger, T. Baumann, and T. Jestädt, “Network
Resource Usage of the German Toll System: Lessons from a
Realistic Simulation Model”, Hawaii International
Conference on System Sciences, pp. 5115-5122, 2013.
[3] H. Kopetz, “Real-time systems: design principles for
distributed embedded applications”, Springer, 2011.
[4] G. B. Dyson, “Darwin among the machines: The
evolution of global intelligence”, Basic Books, 1998.
[5] Bundesministerium der Finanzen, “Monatsbericht des
BMF, Februar 2013”, ISSN 1618-291X, Berlin, Feb. 2013
[accessed 20-Mar-2013]. Available: http://www.bundes
finanzministerium.de/Content/DE/Monatsberichte/2013/02/D
ownloads/monatsbericht_2013_02_deutsch.pdf?__blob=publ
icationFile&v=4.
[6] T. Baumann, B. Pfitzinger, and T. Jestädt, “Simulation
driven design of the German toll system – evaluation and
enhancement of simulation performance”, Federated
Conference on Computer Science and Information Systems
(FedCSIS), pp. 901-909, 2012.
[7] A. Pacholik, T. Baumann, W. Fengler, and D. Grüner,
“Discrete Event Simulation Performance – Benchmarking
Simulators”, Grand Challenges in Modeling & Simulation,
Genua, 2012.

[8] B. Pfitzinger and T. Jestädt, “Exploring HGV fleet
behavior: Notes from the German toll system”, proceedings
of the 9th ITS European Congress, Dublin, 2013
(forthcoming).
[9] MSArchitect, [accessed 17-Mar-2013]. Available:
http://www.andato.com/
[10] M. E. Fagan, "Design and Code inspections to reduce
errors in program development", IBM Systems Journal 15
(3), pp. 182-211, 1976.
[11] B. Pfitzinger, T. Baumann, and T. Jestädt, „Simulating
the German toll system: Choosing ’good enough’ driving
patterns”, proceedings of the mobil.TUM 2013 conference,
Munich, 2013 (forthcoming).
[12] Bundesamt für Güterverkehr, “Mautstatistik –
Jahrestabellen 2012,” [accessed 07-March-2013]. Available:
http://www.bag.bund.de/SharedDocs/Downloads/DE/Statisti
k/Lkw-Maut/Jahrestab_12_11.pdf?__blob=publicationFile
[13] B. Theiss, “Mobilfunk in Deutschland – Der Netztest
2012”, connect 12, 2012.
[14] K. Lunde, L. Kieble, and M.-A. Funk, “Prediction
strategies in a service level granting prefetching cache for
version-controlled gis data,” ISAST Transactions on
Computers and Intelligent Systems, vol. 2, no. 2, pp. 46-51,
2010.
[15] K. Lunde and L. Kieble, “Simulating communication
within a satellitebased automated toll collection system,”
Proceedings of the 55th International Scientific Colloquium,
pp. 318-323, 2010.
[16] R. G. Sargent, "Verification and validation of simulation
models", Winter Simulation Conference, pp. 130-143, 2005.
[17] The Apache Software Foundation, “Apache Commons
Math, Release 3.1.1”, Jan 2013, [accessed 08-March-2013].
Available: http://commons.apache.org/proper/commons-
math/download_math.cgi.
[18] ETSI 3rd Generation Partnership Project, „Technical
Specification TS 24.090 version 11.0.0“, Oct 2012 [accessed
10-March-2013]. Available: http://www.etsi.org/deliver/
etsi_ts/124000_124099/124090/11.00.00_60/ts_124090v110
000p.pdf.
[19] R. G. Sargent, "Verification and validation of simulation
models", Journal of simulation, vol. 7, pp. 12-24, 2013.

5161

