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Abstract 
Taking an existing large-scale realistic discrete 

event simulation model [1, 2] of a mobile distributed 
system with more than 700 000 units we investigate the 
efficiency of control protocols for the software and 
data updates of on-board-units (OBUs). Adding four 
different closed-loop control protocols to the existing 
simulation model we explain and investigate the 
technical implications of the control protocols: OBUs 
that allow incoming network connections can be 
reached at any time (Always-On or Sometimes-On). If 
the OBU is designed without a TCP/IP server, 
signaling is implemented either as polling (Sometimes-
On with polling) or using a dedicated GSM signaling 
channel (On-Demand-On). The efficiency is discussed 
as a combination of metrics gathered during 
simulation runs and compared with the OBU-
controlled update logic. These simulation results are 
subsequently used as input for the system development 
process.  

1. Introduction  

Deploying software and data updates is a seemingly 
simple yet vital process in any software intensive 
system. Depending on the circumstances, its success 
can be measured in terms of failed updates, the time 
needed for the deployment and the costs associated 
with the rollout of the updates. Taking the example of 
the German electronic toll system for heavy goods 
vehicles (HGVs) we investigate the software and 

update process in the case of a highly distributed 
system containing more than 700 000 OBUs. The 
update process needs to reach each OBU in time to 
ensure the valid software, geo or tariff data is available 
on each given OBU. Typically updates are distributed 
in advance and once the date of validity is reached the 
systems’ capacity needs to allow all remaining (and
active) OBUs to download the update immediately. 
The current system architecture implements an update 
algorithm distributed across the vehicle fleet (i.e. each 
OBU makes its own decisions) with some global 
timing parameters to shape the overall update rate. 

The difficulty in predicting the properties of a fleet-
wide update is the complexity of the whole system. 
Non-deterministic, non-linear effects as well as 
emergent behavior [3] possibly manifest only at the 
level of the whole system: “Emergent behavior is that 
which cannot be predicted through analysis at any level 
simpler than that of the system as a whole” [4]. Taking 
the existing simulation model of the Toll Collect 
system [1, 2] we use simulations at a scale of 1:1 to 
determine the behavior and the efficiency of fleet-wide 
updates for different update control protocols. 

The outline of the article is as follows: Section 2 
provides a brief overview of the simulation model, the 
changes to the one described in [2] and it introduces 
two independently developed models of the driving 
patterns used in the simulation runs. Section 3 explains 
the major addition to the simulation model: a closed-
loop control of the update process that can be 
configured in four distinct modes of operations. The 
comparison of simulation results for the different 
control protocols is discussed in section 4 followed by 
a brief outlook and summary in section 5.

2. A simulation model of the Toll Collect 
system 

More than 90% of the toll fees (of a total of 4.36 bn 
€ in 2012, table 4 in [5]) due on federal motorways in 
Germany are collected automatically by the Toll 
Collect system. In total, more than 700 000 OBUs are 
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model and the (external) scenario generator

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.634

5154



deployed using up-to-date geo and tariff data to 
determine the toll charge and to transmit the tolls to the 
data centre. As a starting point we take an existing 
discrete event simulation model of the automatic 
tolling system [1, 2]. This model includes the scenario 
generator, all subsystems (fig. 1) and processes 
necessary to determine and to collect the toll charges as 
well as to deploy updates of the software, geo and tariff 
data across the vehicle fleet. In effect the simulation 
encompasses all the relevant HGV driving behavior 
and the technical processes down to time scales of one 
second (and some processes with time scales of 50ms,
e.g. network authentication handling).

The vehicle fleet is currently set up as a loosely 
coupled distributed system – each OBU is running the 
same logic (software code and global configuration 
parameters) independently for most of the time with 
infrequent OBU-initiated data transmissions between 
an OBU and the data centre at random points in time to 
transmit the toll charges collected or to download 
updates to the OBU. Especially the mobile data 
network and the central systems running in the data 
center exhibit a non-linear behavior, e.g. when 
operated close to the maximum design specification. 
The driving patterns are non-deterministic in nature 
since they encode the driving behavior of the HGVs. 
To limit the impact of the non-linear and non-
deterministic behavior included in the tolling system, 
several network components are designed to actively 
limit the maximum load forwarded to the central 
systems. As a consequence, it is not obvious that a 
small-scale simulation model will produce the actual 
system behavior. With several performance 
optimizations (profiling of atomic blocks, removal of 
non-affecting retry protocols, dynamic driving pattern 
calculation [2, 6, 7]) the simulation model is able to 
run at a scale of 1:1 and simulate a time period of one 
year within a day on a standard single CPU core using 
the MSArchitect [9] discrete event simulation core.  

A number of different approaches are used to 
ensure the validity of the simulation model: 
� The system architecture is known (white-box 

approach) and can be transferred to the simulation 
model (up to including source code from the real-
world system in the simulation model). 

� The whole simulation model has undergone source 
code inspection [10] with the relevant subject 
matter experts. 

� The software, geo and tariff data updates occurring 
in the real-world system over the past year have 
been reproduced in simulation runs as well as 
updates of test fleets (which in turn yield insights 
on how to implement considerably faster rollouts). 

For the purpose of this work we extended the 
simulation runs to a fleet size of 800 000 OBUs 

(projected future fleet size, compared to 140 000 in [1, 
2]) and a simulated time period of 30 weeks (compared 
to 16 weeks). Each simulation run includes two 
software updates and three geo and tariff data updates 
in between, a typical workload occurring over 6 
months. 

The driving patterns (power cycles and the points in 
time where tolls are collected) used in the simulation 
are built on statistical data observed in the actual 
vehicle fleet and calibrated to the average annual 
distance driven on German toll roads [11,12]. To get a 
sense of the uncertainty inherent in the driving patterns 
we created two different models (by two independent 
teams) to simulate the driving patterns on a time scale 
of one second (table 1).  

Table 1: Statistical (annualized) averages of 
the HGV driving patterns generated by two 

different scenario generators A, B. 
A B

speed [km/h] 80,2 77,8
toll distance [km] 30 255 31 300
power cycles 721 1 326

duration [min] 152 62
network losses per power cycle 3,1 2,4
duration of network loss [s] 16 90

power-on time 21,0% 15,6%
percentage spent on toll roads 20,5% 28,7%
percentage without network 0,6% 4,3%

The driving patterns created by the scenario 
generators A and B make different assumptions when 
breaking down the statistical observables to the 
second-by-second truck behavior. While the annual 
average toll distance is (calibrated to be) comparable, 
the number and duration of power cycles differs 
considerably. As a result, HGVs are powered-on for 
almost a third longer with scenario generator A (table
1) – time available for deploying updates. Technical 
limitations and data protection rules make it impossible 
to observe the power cycle behavior across the real-
world fleet. Scenario generator B includes additional 
data gathered from the Toll Collect test fleet leading to 
many short power cycles. 

Since the publication of [1,2] the simulation model 
has been enhanced to include network outages 
occurring at any time – introducing a considerably 
higher load on the error recovery protocols already 
present in the simulation model. Obviously, mobile 
GSM data connections can fail at any time – especially 
since the HGVs are moving. Again, the exact nature of 
the network losses (probability, duration) cannot be 
observed in the real-world fleet. Taking data from the 
Toll Collect test fleet and a report on the German 
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mobile networks [13] we conclude that for a given 
OBU the mobile data network is not accessible for at 
least up to 5-10% of the total power-on time. As a 
result, both driving patterns include, on average, 
several network losses per power cycle (table 1). 

Starting with the observed weekly activity patterns 
(over a 15 week period in 2011, [2]) we extrapolate to 
30 weeks (table 2). Using this distribution we 
determine the active weeks for each OBU, i.e. a given 
OBU has the same activity pattern for the whole 
simulation (e.g. an OBU that is rarely active will not 
switch its activity pattern to very active during the 
simulation run). 

Both scenario generators differ slightly in the 
weekly activity patterns (especially for HGVs that are 
rarely seen within the German mobile data networks in 
the 15 week data set), e.g. scenario generator A has 6% 
of the vehicle fleet active at least once in 1 to 5 weeks 
(randomly spread over the 30 week simulation run) 
compared to 11% for scenario generator B.

Modeling the duration of the power cycles we take 
additional data from the Toll Collect test fleet in 
scenario generator B [2] and an older analysis of the 
real-world fleet in the driving patterns A (table 3). The 
main difference is the addition of many very short 
power cycles in model B. This in turn should interrupt 
updates more frequently and trigger the error recovery 
protocols more often than with the driving patterns of 
model A. 

To summarize, the existing simulation model has 
been extended to include network outages and the 
performance allows simulations at a scale of 1:1.
Where possible, the simulation model has undergone 
source code inspection by subject matter experts and 
the simulated update behavior was validated against 
the updates occurring in the real-world system.  

The major limitation remaining in the scenario 
generators is the lack of geographical information, i.e. 
the tolling process is limited to points in time but not 
points on a map. For this article the approach taken is 
sufficient as long as the update process is independent 
of the OBUs’ position (which is the case for HGVs 
driving within Germany). Location-sensitive 
algorithms (e.g. special update behavior next to the 
boundaries of the toll area or caching algorithms [14,
15] or different roaming strategies) will require the 
addition of location data to the scenario generators. 

To mitigate the uncertainty inherent in modeling 
the driving patterns we implemented two models 
independently. Taking this foundation we apply the 
simulation model to investigate different update 
control protocols. 

Table 2: Number of active weeks for a 30 week 
period used by the scenario generators 

A B
0 10% 6%

1 - 5 6% 11%
6 - 11 7% 8%

12 - 17 9% 8%
18 - 23 12% 11%
24 - 30 56% 56%

Table 3: Duration of the power cycles used in 
the driving patterns models 

[h] A B
0,5 6,0% 64,3%
1,0 8,9% 12,6%
2,0 24,6% 11,6%
3,0 22,5% 6,4%
4,0 16,2% 2,3%
5,0 21,8% 1,1%

> 5,0 0,00% 1,7%

3. Software and data update control 
protocols 

The purpose of the automatic toll system is of 
course to collect the toll charges due. However, 
updates are also occurring regularly either due to new 
features (or optimization) in the OBU software or to 
changes in the geo and tariff data. Updates need to be 
deployed fleet-wide within a given time period 
(typically several weeks), at acceptable cost and 
without impacting the tolling process. The current 
mode of operations allows for up to four software 
updates per year and many more updates to the geo and 
tariff data. 

Today the rollout of updates is an emergent 
property of the tolling system: While powered-on, each 
OBU decides independently and randomly (according 
to global timing parameters) if and when to connect to 
the central system to check for updates. Changing the 
global timing parameters allows different rollout rates 
– that can only be determined through simulations. To 
ensure the operational validity of the simulation model 
[16,19] we simulate the update behavior observed 
between March 2012 and Jan 2013 and compare the 
fleet-wide percentage of updates deployed at the end of 
each day. Computing the Pearson product-moment 
correlation coefficient [17] for the deployment of 
software, geo and tariff data updates we find the 
simulation results to be very close to the actual system 
behavior (as given by a correlation factor close to 1, 
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table 4, using the driving patterns of scenario generator 
B). 

Table 4: Pearson correlation between 
simulated and observed updates 

correlation
software 0.99898
geo data 0.99570

tariff data 0.99474

As part of the Toll Collect system development 
process we use the simulation model to investigate the 
system behavior of planned changes. For the purpose 
of this article we investigated a proposed redesign of 
the update process: Instead of an algorithm running 
locally (and in large parts independently) on all OBUs, 
we introduce a closed-loop controller running in the 
data center. This change to the system architecture has 
two consequences: 
� The update logic contained in the OBU is removed 

and 
� the central closed-loop controller needs the ability 

to connect to a given OBU to deploy the update. 
From an operational point of view another 
consequence is that instead of the update logic the 
OBU would need to implement a “self-test” algorithm 
to check whether the software and data is up-to-date.  

Today it is possible to design a distributed system 
assuming a permanent mobile data connection to the 
data center – as seen in the widespread adoption of 
smartphones. In our investigation we use this behavior 
as one extreme (“Always-On”, at least when the HGV 
is powered-on) and the other extreme is a dedicated 
signaling channel used to start an update on a given 
OBU (“On-Demand-On”). Since updates occur 
infrequently we include an intermediate behavior 

where the OBU is only online for certain time periods 
(“Sometimes-On”), e.g. after the power-on and at 
regular (or random) intervals thereafter. 

For the transmission of updates we use a TCP/IP-
based communication (apart from the extra signaling 
channel in the On-Demand-On scenario, fig. 2). Of 
course, the closed-loop controller running in the data 
center needs to be able to connect to the OBU. If we 
decide to simplify the OBU so that it does not run its 
own TCP/IP server, incoming connections to the OBU 
need to be emulated through polling. The following 
subsections explain the four controllers implemented in 
the simulation model. 

3.1. Always-On and Sometimes-On control 
protocols 

For the Always-On scenario the IP connection 
machine added to the OBU automatically ensures the 
availability of a fully configured IP-stack. I.e. as long 
as the OBU is powered on, it will automatically 
connect to the GSM network and establish a packet 
data protocol (PDP) connection. In our case the IP 
addresses are allocated in a private network by our data 
center once the OBU is successfully authenticated.  

Whenever the network access is lost, the OBU will 
continuously try to reestablish the PDP context. 
Depending on the configuration of the mobile data 
network, the previous PDP context may be reused or a 
new PDP context needs to be created by the mobile 
network operator (MNO) putting an additional strain 
on the MNO and the central services.  

The Sometimes-On scenario modifies the IP 
connection machine so that the OBU releases the PDP 
context for some time periods. The central controller 
must use the available time for updates. In our 
simulation the OBU will remain reachable after each 
power-on event and wake up periodically afterwards 
(once every four hours). 

Mobile Data 
Network

IPIPTCPTCP

power cycles
network losses

data

OBU logic

signaling channel

Figure 2: IP and TCP connection machines 
added to the simulation model (optional 
signaling channel for On-Demand-On).

Figure 3: Always-On and Sometimes-On 
controller synchronization

open network 
connection

get active 
OBUs

Controller Radius
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In both scenarios TCP/IP servers are running in the 
data center and on the OBU, allowing the 
establishment of new connections from each side. The 
closed-loop controller in the data center is therefore 
able to initiate network connections to any OBU that 
needs to receive an update. 

 For the purpose of the simulation we implemented 
a simple algorithm for the controller (fig. 3): We 
periodically take the table of currently active OBUs 
(given as the IP-addresses allocated by the Radius-
server in the data center) and loop over the active 
OBUs as long as the controller needs to deploy updates 
and still has spare capacity. Of course, the time lag 
between the OBU connecting to the data center and the 
controller trying to establish a connection will lead to 
some OBUs being no longer available (e.g. due to 
power cycles or loss of the network connection). The 
controller then needs to wait for a timeout period to 
conclude that the OBU is no longer available before it 
can proceed to the next OBU in line. In effect this 
reduces the update speed since part of the controller 
capacity is tied up waiting for timeouts. Initially we 
synchronized the table of active OBUs every 60 
seconds (the shortest power cycles included in the 
driving patterns) but noticed a sizeable amount of 
unreachable OBUs as consequence. Therefore the 
synchronization frequency was doubled to once every 
30 seconds – incurring a substantial performance 
overhead. We repeat the simulations with two different 
controller capacities (up to 1 000 or 5 000 parallel 
connections) to gauge its effect on the update speed. 

3.2. Sometimes-On using polling operations 

The communication protocol needs to be modified 
if the OBU does not run its own TCP/IP server, i.e. 
does not allow incoming connections. The inability of 
the controller to open network connections to the OBU 
will of course introduce delays to the update process. 
Since the controller logic resides in the data center the 
OBU establishes “polling” connections (fig. 4): After 
establishing a PDP context the OBU opens a TCP 
connection directly to the controller and waits. The 
controller can use the TCP connection to deploy one or 
several updates, maintain the idle connection for some 
time (“long polling”) or send a command to terminate 
the connection. Once the connection is closed the 
Sometimes-On logic will open a new connection after 
a given time period or at the start of the next power 
cycle. If the polling rate is higher than the publish rate, 
the polling mechanism will create many unnecessary 
connections – unfortunately the typical scenario in our 
case: We aim for fleet-wide updates within a few days 
(i.e. deploying updates at the maximum rate supported 
by the controller) occurring only several times per 
year. 

Compared to the Sometimes-On scenario without 
polling the major difference is that the polling protocol 
immediately opens a network connection to the 
controller via TCP/IP. There is no intermediate step 
where the controller periodically retrieves newly 
registered OBUs from the Radius server. As a 
consequence the polling protocol should make better 
use of the available parallel connections – the time lag 
between registering the IP address and the controller 
trying to open a connection is eliminated. However, the 
controller is still checking once every 30 seconds 
whether any updates need to be deployed.

deploy update(s)

establish PDP 
context

Controller Radius OBU

open TCP connection

end session
close TCP 

connection
release PDP 
context

Figure 4: Polling mechanism used for OBUs 
without TCP/IP server

5,250

5,375

days

tolls
per 

OBU

Figure 5: Average of tolls stored on OBUs 
over four weeks with a software update at 
the end of the second week (Always-On)
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3.3. On-Demand-On: A control protocol using 
a dedicated signaling channel 

A dedicated signaling channel should allow much 
more efficient control protocols since the OBU only 
establishes a PDP context when the controller needs to 
connect to the OBU. In our case we choose the 
network initiated USSD (Unstructured Supplementary 
Service Data) protocol present in the GSM standard 
[18]. Similar to the short message service (SMS) 
USSD allows sending messages to a mobile subscriber 
(MS). However, in the case of USSD messages are not 
stored and forwarded later when the MS cannot be 
reached. In effect, sending USSD messages the 
controller can wake up OBUs that are powered-on and 
within the reach of the mobile data network (but have 
not yet activated the data network). After waking up 
the OBU establishes a PDP context and opens a TCP 
connection to the controller.  

Since USSD messages that cannot be delivered are 
discarded by the network, the controller is not faced 
with old messages being forwarded e.g. at the start of 
the week (a case that needs to considered if SMS is 
chosen as signaling channel). Monitoring the controller 
capacity, the controller will issue as many USSD 
request as possible to fill the available 1 000 (or 5 000) 
parallel connections. 

4. Determining the efficiency of control 
protocols  

In the Toll Collect example the most important 
property of the closed-loop controller is its ability to 
quickly deploy fleet-wide updates without impact on 
the ongoing tolling process. During each simulation 
run we monitor the toll charges stored on the OBUs 
(fig. 5, starting on a Monday and showing four 
consecutive weeks) to ensure that updates do not affect 
the tolling process. The daily activity pattern is clearly 
visible as well as the weekends. As intended the 
weekly behavior is very similar (in pattern and in 
absolute terms). The software update starting at the end 
of the second week does not affect the tolling – it is 
invisible in fig. 5.

In a typical scenario we deploy a small delta patch 
of the software with a file size requiring several 
minutes of download via the mobile data network. 
Starting the update on a Saturday afternoon (at the end 
of the second week, fig. 6) it is distributed quickly 
across the fleet, reaching 50% of the fleet within less 
than 2 days. In fact, looking at the number of parallel 
connections used by the controller (fig. 7) we find that 
the cap at 1 000 connections is only reached for less 
than 12 hours. I.e. two days after the start of the update 
the update is limited by the driving patterns used in the 
simulation – the fact that most OBUs are unreachable 
for considerable periods of time. 

Taking this into account we compare the four 
different scenarios by looking at the time taken to 
reach 50% of the OBU fleet (table 5). As expected, the 
Sometimes-On scenario will give the worst rollout 
speed (when used without polling). Otherwise the 

Figure 6: Fleet-wide software update over 6 
weeks (Always-On, 1000 parallel 

connections, driving patterns model B)

0

1000

Sat Sun Mon

Figure 7: Parallel connections at the controller 
at the start of a fleet-wide update (Always-On, 

up to 1 000 parallel connections, driving 
patterns model B)
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different protocols perform almost identically (with 
slightly longer rollout durations for the driving patterns 
generated by scenario generator �). Increasing the 
controller capacity from 1 000 to 5 000 parallel 
connections levels the field and all four control 
protocols reach 50% of the fleet within 36 (39) hours 
for model A (B). 

The effect of including a large proportion of short 
power cycles in the driving patterns model B is visible 
in many other metrics as well. E.g. the average hourly 
number of failed connections from the Always-On or 
Sometimes-On controller to the OBU is up to three 
times higher when simulated with the driving patterns 
from scenario generator B rather than A. 

A direct comparison between the distributed update 
algorithm (status quo) and the new control protocols is 
difficult since the two solutions implement opposite 
operational philosophies: The new closed-loop 
controller is intended to deploy updates at maximum 
speed and capacity whereas the status quo is 
configured to level updates over considerable periods 
of time. Taking this into account, the main difference is 
the duration the OBU is running with an established 
PDP context. The distributed update algorithm very 
rarely connects to the wireless data network whereas 
the new solutions differ widely (table 6): As expected –
Always-On is considerably longer online although 
most often no updates need to be deployed. 

Replacing the distributed update algorithm with the 
controller running in the data center we change the 
performance behavior of the simulation model: The 
continuously running algorithm on each OBU is shut 
down, the performance of simulating the fleet-wide 
behavior is improved. However, the closed-loop 
controller in the data center requires additional 
computing resources – especially since we chose a
rather simplistic algorithm with periodic replication of 
tables and the subsequent check whether any updates 
need to be deployed. For the sake of fast rollouts the 
controller checks twice per minute for new updates 
(where the 30 week simulation run includes only a total 
of 5 updates).  

As a consequence the sum total of CPU commands 
issued during the simulation run is lowest for the 
distributed update algorithm and the On-Demand-On 
scenario (16% more CPU cycles). 

Table 5: Rollout duration [h] to reach 50% of 
the fleet using up to 1 000 connections and 

two driving patterns A, B 
A B

Always On 40 42
Sometimes On 61 69
Sometimes-On Polling 40 43
On-Demand-On 42 46

 For the Sometimes-On scenario the simulation 
needs 70% more CPU cycles and for the Always-On 
scenario 160% more CPU cycles. In the end the new 
controller logic is responsible for 10% (On-Demand-
On) up to 60% (Always-On) of the total simulation 
runtime. 

Table 6: Relative factor of average online time 
per OBU for the driving patterns A, B (On-

Demand-On = 1.0)
A B

Always On 921.2 579.4
Sometimes On 11.9 15.4
Sometimes-On Polling 1.3 2.3
On-Demand-On 1.0 1.4

5. Summary and Outlook 

We have expanded and validated an existing 
simulation model of the German electronic toll system 
for HGVs to allow simulation runs at a scale of 1:1.  
The simulation performance is sufficient to use the 
simulations in “what-if” scenarios in the early design 
stages of the system engineering process including all 
processes running at time scales down to one second 
without resorting to poorly understood scaling factors. 

Using the simulation model to investigate a 
proposed change of the overall system architecture, we 
investigated the fleet-wide update behavior – an 
emergent property owing to the distributed algorithm 
implemented in the system. Replacing it with four 
different implementations of a closed-loop controller 
running in the data center, we compare the efficiency 
in terms of the time taken for a fleet-wide update and 
the average duration the OBUs are online. Especially 
the online time differs widely between the four 
scenarios: The use of a dedicated signaling channel 
(“On-Demand-On”) reduces the amount of time spent 
online by a factor of almost 1 000 (compared to 
“Always-On”). According to the simulation results it is 
not necessary for the OBU to be online at all times to 
achieve similar rollout rates. 

Introducing simulations to the system engineering 
process we were able to quickly improve the 
specification accuracy. The simulation results give an 
evaluation of the different proposed implementations 
and are a new way of specifying the behavior of the 
dynamic system. 

Taking the microscopic simulation model we have 
identified and mitigated some limitations of the model:
Including all technical processes running at time scales 
down to one second was improved for some 
networking processes to a level of 50 ms. The 
validation of the simulation model is currently limited 
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to the daily update behavior. Additional data with a 
higher temporal resolution is required to validate the 
simulation model at shorter time scales where we 
expect to see the limitations imposed by the statistical 
data used in the driving patterns. 

For future work we propose to use the simulation 
model and an optimization framework to reconstruct 
the detailed daily driving patterns from the real world 
systems’ observables instead of trying to determine 
fleet-wide statistical driving patterns. 
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