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Abstract
Within the energy sector, two of the most tightly coupled systems

are natural gas and electric power. The recent advent of cheap
gas extraction technologies have only driven these systems more
tightly together. Despite their interconnections, in many areas of
the world these systems are operated and managed in isolation.
This separation is due to a number of reasons and challenges,
ranging from technological (problems involving connected systems
are difficult to solve) to political and commercial (prevention of
monopolies, lack of communication, market forces, etc.). However,
this separation can lead to a number of undesirable outcomes, such
as what the northeastern United States experienced during the winter
of 2013/2014. In this paper, we develop approaches to address the
technological reasons for separation. We consider the problem of
expanding and designing coupled natural gas and electric power
systems to meet increased coincident demand on both systems. Our
approach utilizes recent advances in convex modeling of gas and
power systems to develop a computationally tractable optimization
formulation.

1. Introduction
In many parts of the world, the advent of cheap natural

gas extraction technologies has led to record low prices for
natural gas. This has led to rapid shifts in the fuel mixes of
generator fleets in electric power systems. However, unlike
other fossil fuels, where fuel is procured days in advance
and/or there is limited competition for the fuel, natural gas
is procured on much faster time scales and is exposed to
significant sources of competition from other sectors (such
as heating). As a result, while cheap natural gas has driven
the price of electricity down, it has also increased fuel supply
risk within power systems. Recent experiences in the northeast
United States, particularly during the winter of 2013/14 have
highlighted this risk. Record cold temperatures directed gas
supply to heating applications, resulting in difficulties in
procuring fuel for gas-fired generators, and leaving power
systems scrambling for alternate sources of power. In this
case, there were no blackouts due to generation shortages, but
there were significant economic consequences [1]. A general
discussion on economic consequences of gas volatility can also
be found in [2].

The risk associated with increased reliance on natural gas
is influenced by a number of factors, one of which is the
inherent separation in management and operation of gas and
power systems. This separation exists for a number of reasons.

From a technological perspective, problems that join both
systems are computationally very difficult and discourage joint
management. Second, in many places the sectors are prohib-
ited from coordinating activities or disjoint market structures
discourage coordination.

One area of separation that could benefit from coordination
is expansion planning. First, natural gas and electric power
systems are undergoing expansion - new natural gas pipelines
are being built to connect new supplies to existing markets
and power systems are continuing to shift away from coal
and towards natural gas. These system expansions are not
well-coordinated and represent an additional pathway for fuel
supply risk reduction within the power system. Second, some
of the factors influencing the problems experienced in the
northeastern United States included a lack of pipeline capacity
to deliver fuel to generators that needed it and lack of power
transfer capacity to deliver power from areas that had excess
fuel capacity. Had the networks been designed with additional
capacity in anticipation of their joint needs, such a situation
may have been avoided.

In this paper, we develop a new joint expansion planning
model for gas and power to address this problem. Fig. 1
shows a schematic of the electricity and natural gas coupling
infrastructure which is based on illustrations taken from [3],
[4], [5], [6]. We focus on solving the computational challenges
associated with this problem and we base our approach on
recent advances in convex relaxations developed for power
and gas systems [7], [8]. This paper does not address the
issues associated with implementing the solutions of this
model. Our aim is to develop a modeling framework and test
system to explore the space of solutions, to help policy makers
and regulators identify the gains from joint infrastructure
planning so that they might find mechanisms to encourage
their development.

The key contributions of the paper include:
1) A tractable relaxation of joint gas-electric physics for

use in expansion planning.
2) A realistic large-scale joint gas-electric system for use

by the community.
3) A demonstration of the approach on coincident peak

demand scenarios.
Literature Review The literature on combined gas-electricity
expansion planning problems is relatively sparse [3], [4], [5],
[6], [9]. In contrast, there are a number of papers that jointly



Figure 1: Schematic of the electricity and natural gas coupling
infrastructure.

optimize the operations of power and gas systems [10], [11],
[12], [13], [14]. Unlike this paper, much of the state-of-the-
art on combined problems relies on capacity models or linear
approximations of the underlying physics in the system. For
example, references [3], [4], [5], [9], [10], [11], [12], [13],
[14], [15] use the linearized DC model of power systems. We
next briefly review those papers that have considered joint
gas-power expansion planning problems and those papers that
consider joint operations models that are the most similar to
the models of this paper. Comprehensive literature surveys on
integrated natural gas and electricity operation planning can
be found in, e.g., [5], [6].

First, reference [9] presents a model that minimizes oper-
ational and expansion costs on both the gas and electricity
systems. Their model includes expansions of generators, pipes,
compressors and storage facilities. Power flows are modeled
with the DC-OPF and gas flows are modeled with the Pan-
handle A equations. Their problem is a multi-stage problem.

Reference [3] develops a bi-objective MILP model to solve
generation expansion planning between the gas and electricity
systems. They use transportation models for the systems. The
objective minimizes investment cost and maximizes reliability
with engineered economic functions. The authors illustrate
their approach on a 6-bus test network.

Reference [16] proposes a multi-stage approach for solving
the gas and electricity expansion planning problem. The model
is formulated as a mixed integer linear program and solved
via cplex. A single-pipeline and a two bus power system is
presented as a study case. They extend their work in [15] with
a case study based on the Brazilian integrated gas/electricity
system. Their main result emphasizes the importance of natural
gas storage facilities in presence of hydro power because of
the risks involved with water flow uncertainty. [14] presents
a model of joint gas and power dispatch without expansion
planning. However, this is one of the few papers that uses
the full non-linear steady-state models of power and gas.
The authors developed an evolutionary algorithm where the
feasibility and fitness of dispatch solutions are evaluated using
numerical simulation methods to solve the power and gas
equations. Their test system is based on combining the IEEE-
14 power system with the Belgian gas network and is the basis

for one of our test systems.
Reference [10] presents a nonlinear model that maximizes

social welfare of gas and electricity systems. The systems
are solved independently with a two-phase algorithm. The
algorithm first solves the electric power system, and then uses
this solution as input for solving the natural gas system. A
primal-dual interior-point method is applied to a variation of
the IEEE-5 bus system.

Reference [11] presents a combined gas and electricity
model where the DC model is used to represent the power
system. They include a multi-time period feature that is based
on a quasi-steady state model of gas. The model is used to
calculate line-pack on daily time scales. ODEs are derived
from a finite difference scheme that is used to represent the
temporal and spatial derivatives of the original PDEs of the
gas model. A sequential linear programming approach is used
to solve the problem.

In an operational context, [12] develops a MILP model
to solve a security-constrained power and natural-gas flow
problem. The power system is based on a DC-OPF model
and the gas system is modeled with a piece-wise linear
approximation. They study a model that combines the IEEE
24-bus system and with a modified Belgian high-calorific gas
network. Reference [13] presents an approach that solves the
gas flow network problem under unit commitment conditions
of the power system.

Finally, there are number of papers that motivate the need
for joint power and gas expansion solutions. For example, [4]
analyzes cost estimations for the Marcellus pipeline expan-
sions and their impact to the Midwest Independent Transmis-
sion System Operator (MISO). Reference [6] also provides a
survey of operations, planning, and market questions that need
to be addressed within integrated natural gas and electricity
problems. Reference [1] provides an interesting discussion of
impacts to the PJM system when coincident peaks in gas and
power consumption occurred in the winter of 2014.

The remainder of this paper is organized as follows: Section
2 describes the joint optimization model. Section 3 describes
the test systems. Section 4 discusses some experimental re-
sults. We conclude with Section 5.

2. Joint electricity and gas expansion model
The framework of the combined electricity and gas ex-

pansion (CEGE) system consists of structured blocks that
include physical, operational, contractual, design (On/Off)
and coupling constraints imposed on both gas and electricity
systems:

min
Λ,ω

(
Cexp(Λ) + Gmix(ω)

)
subject to:
(Power grid constraints)︸ ︷︷ ︸ (Gas flow constraints)︸ ︷︷ ︸
Power flow equations Gas flow equations
Line limits Pressure bounds
Voltage limits (AC) Mass flow balance
Generation bounds Compressor ratio limits︷ ︸︸ ︷

Coupling constraints︷ ︸︸ ︷
Expansion/design constraints



Table 1: Nomenclature of the natural gas (NG) pipeline system.

Symbol Definition
G = (Ng , Ag) NG system base configuration

SETS:
Ng All nodes in G
Ag All links joining a pair of nodes (i, j) in G
T Nodes with Gas-fired power plants, T ⊆ Ng

Ap Base pipelines, Ap ⊆ Ag

Ac Base compressors, Ac ⊆ Ag

PARAMETERS:
W Pipeline resistance (Weymouth) factor
U Pipeline maximum capacity (contractual)

α, α Compression limits at compressor stations
D Nodal fixed consumption

D,D Nodal consumption limits
S, S Nodal production limits
π, π Nodal pressure limits (squared)

VARIABLES:
π Nodal pressure (squared)
x Gas flow on pipelines and compressors
λ auxiliary relaxation variable
d Nodal gas consumption
s Nodal gas production
y
+

Forward (positive) flow direction (Binary)
y
−

Reverse (negative) flow direction (Binary)

where the functions Cexp(Λ) and Gmix(ω) in the objective
represent, respectively, capital expenditures (upgrades) and
generation costs, i.e.:

Cexp = Gmix =
(Capital expenditures)︸ ︷︷ ︸ (Generation mix)︸ ︷︷ ︸
EP generation capital + min

∑
i

∑
t C(gti)

EP transmission capital + where: C(gti) = cost of power
NG transmission capital + generation (g) of fuel
NG compression capital type t at bus i

The CEGE problem is a mixed-integer non-linear program
(MINLP) that is very difficult to solve. In the next sections,
we describe the full problem in detail and discuss recent
high quality convex relaxations developed in the literature
that we use to convert the problem into a computationally
tractable optimization. Unless otherwise noted, parameters and
variables are indexed over the sets of base network components
and expansion candidates. The nomenclature is presented in
Tables 1, 2, and 3.

2.1. Relaxations for bilinear terms

In this model we make heavy use of bilinear relaxations
introduced by McCormick in [17], [18] and widely applied
in [8], [19], [20]. Intuitively, this relaxation formulates convex
envelopes for bilinear terms. Given a product of two variables,
xy, the relaxation is denoted by w̌ ∈ ⟨x, y⟩Mc , which
represents the following set of linear constraints:

⟨x, y⟩Mc ≡


w̌ ≥ xly + ylx− xlyl
w̌ ≥ xuy + yux− xuyu

w̌ ≤ xly + yux− xlyu

w̌ ≤ xuy + ylx− xuyl

where [xl, xu] and [yl, yu] represent the minimum and maxi-
mum bounds on x and y, respectively. Note that when x or y

Table 2: Nomenclature of the electric power (EP) grid.

Symbol Definition
E = (Ne, Ae) EP system base configuration

SETS:
Ne All nodes in E (electrical buses)
Ae All transmission lines in E
Ω Power generators
Ωg Gas-fired power generators, Ωg ⊆ Ω
Ωe Non-gas-fired power generators, Ωe ⊆ Ω
Γ Generators of a bus

PARAMETERS:
MVABase Base apparent power

δ0 Slack/swing bus
PL Nodal active power load
QL Nodal reactive power load

C0, C1, C2 Power generation cost coefficients
V , V Nodal voltage magnitude limits

PG, PG Active power generation limits
QG, QG Reactive power generation limits

θu Phase angle difference bound
X Line reactance (reactive power loss)
R Line resistance(active power loss)
S̃ Thermal limit/capacity of line
g Line conductance, = R

(X2+R2)

b Line susceptance, = X
X2+R2

VARIABLES:
p̂ Active power flow on lines
q̂ Reactive power flow on lines
pg Active power generation at generators
qg Reactive power generation at generators
v Nodal voltage magnitude
θ Nodal phase angle
v̌ auxiliary relaxation variable
w̌c auxiliary relaxation variable
w̌s auxiliary relaxation variable

Table 3: Nomenclature of the design and coupling attributes.

Symbol Definition
SETS:
ΛP Pipeline expansion candidates
ΛC Compressor expansion candidates
ΛG Power generator expansion candidates
ΛT Transmission line expansion candidates
γ The generator associated with a natural gas node

PARAMETERS:
cp Pipeline installation cost
cc Compressor installation cost
ct Electric transmission line installation cost
cg Power generator installation cost

H1, H2, H3 Heat rate curve coefficients
(BINARY) VARIABLES equal to 1 if:

zp Pipeline candidate is added; 0 otherwise
zc Compressor candidate is added; 0 otherwise
zt Transmission line candidate is added; 0 otherwise
zg Power generator candidate is added; 0 otherwise

are binary variables this relaxation is tight. We also make use
of the following relaxation for quadratic terms of the form v2:

⟨v2⟩R ≡
{

v̌ ≥ v2

v̌ ≤ (vu + vl)v − vuvl

where [vl, vu] represents the bounds on v.

2.2. Objective function
The objective function of the CEGE model minimizes the

total cost incurred by power generation dispatch and expected
upgrade costs of the CEGE system. The primary operational



cost for the gas transmission system is compression, which
is small relative to other costs in this model and is ignored.
Formally, the objective takes the form of Eq. (1).

min
[
β ∗

( ∑
i∈Ωe

(C2ipg
2
i + C1ipgi + C0i)

+
∑
i∈T

(C2id
2
i + C1idi + C0i)

)
+ (1− β)

( ∑
i∈ΛP

cpi z
p
i +∑

i∈ΛC

cciz
c
i +

∑
i∈ΛT

ctiz
t
i +

∑
i∈ΛG

cgi z
g
i

)]
(1)

The first term calculates the total cost of power generation
from non-gas fired plants. The second term calculates the
cost of power generation from gas-fired plants. This cost
is determined directly from the amount of gas that is con-
sumed (i.e., the gas-grid coupling). While this separation is
unnecessary, such a separation (as is discussed later) helps
to ensure that our relaxation on the quadratic constraint that
relates gas consumption to power produced is tight. The
remaining terms model the costs for upgrading pipelines,
compressors, transmission lines and generators, respectively.
The 0 ≤ β ≤ 1 term is used to control the relative weighting
between expansion costs and operating costs.

2.3. Gas flow model
The gas flow model is based on the formulation proposed

in [7]. It uses integer variables to denote the flow direction of
the flow in each pipe. The first set of constraints of the CEGE
model handles the physics associated with gas systems and is
expressed as follows:

∑
ij∈Ag

xij −
∑

ji∈Ag

xji = si − di −Di, ∀i ∈ Ng, (2)

y
+

ij + y
−

ij = 1, ∀(i, j) ∈ Ag, (3)

zpij(y
+

ij − y
−

ij)(πi − πj) = Wijx
2
ij , ∀(i, j) ∈ Ap, (4)

−(1− y
+

ij)
∑

i∈Ng Si ≤ xij , ∀(i, j) ∈ Ag, (5)

xij ≤ (1− y
−

ij)
∑

i∈Ng Si, ∀(i, j) ∈ Ag, (6)

(1− y
+

ij)π ≤ πi − πj ≤ (1− y
−

ij)π, ∀(i, j) ∈ Ap, (7)

πiαij − (2− y
+

ij − zcij)(πiαij − πj) ≤ πj , ∀(i, j) ∈ Ac, (8)

πj ≤ πiαij + (2− y
+

ij − zcij)(πj − πiαij), ∀(i, j) ∈ Ac, (9)

πjαij − (2− y
−

ij − zcij)(πjαij − πi) ≤ πi, ∀(i, j) ∈ Ac,(10)

πi ≤ πjαij + (2− y
−

ij − zcij)(πi − πjαij), ∀(i, j) ∈ Ac,(11)

Di ≤ di ≤ Di, ∀i ∈ Ng, (12)
Si ≤ si ∈ Si, ∀i ∈ Ng, (13)
πi ≤ πi ∈ πi, ∀i ∈ Ng, (14)

y
+

ij , y
−

ij ∈ {0, 1}, ∀(i, j) ∈ Ag.(15)

Under this model, Eq. (2) enforces balance of flow at each
node. Eqs. (3) and (15) forces the flow of gas in one direction
along the pipes. Eq. (4) describes the Weymouth equations
for gas flow in a pipe. The (squared) flow of gas is related
to the (squared) pressure difference at either end of the pipe

and the pipe’s resistance characteristics (typically a function
of the pipe’s diameter, length, and other physical properties).
Eqs. (5) and (6) ensure that flow directionality is tied to the
sign of the flow. Eqs. (8)–(11) ensure that the compression
(pressure boost) falls within the compression ratio limits of the
compressors. Finally, Eqs. (12)–(14) ensure that consumption,
production, and pressure fall within limits.

In this formulation, the only source of non-convexity is
Eq. (4). Using recent results established by [7], part of the
non-convexity can be eliminated by substituting (tightly) λij

for (y
+

ij − y
−

ij)(πi − πj), where λij ∈ ⟨y+

ij − y
−

ij , πi − πj⟩Mc.
This replaces Eq. (4) with

zpijλij = Wijx
2
ij (16)

which is still non convex. However, [7] has shown that the
second-order cone relaxation

zpijλij ≥ Wijx
2
ij (17)

is very often tight in practice for expansion planning problems
and we use this formulation here. [7] also includes a number
of provably valid cuts on the integer variables that improve
performance as well as models of valves, resistors, and short
pipes that we also use. However, for simplicity and brevity,
we omit those details here.

2.4. AC-power flow model
The second set of constraints added to the CEGE model

describes the physics and operational decision points for the
power system. This model is based on the seminal second
order cone relaxations derived by [8]. For notional simplicity
and brevity, we omit the terms and constraints related to line
losses, currents, and shunt compensation. The networks in
our experimental results include some of these features and
interested readers are invited to consult [8] for the details on
how to incorporate these features.

θδ0 = 0, (18)∑
j∈Γi

pgj − PLi =
∑

(i,j)∈Ae

p̂ij , ∀i ∈ Ne, (19)∑
j∈Γj

qgj −QLi =
∑

(i,j)∈Ae

q̂ij , ∀i ∈ Ne, (20)

p̂ij = gijv
2
i − gijvivj cos(θi − θj)

−bijvivj sin(θi − θj), ∀(i, j) ∈ Ae,(21)
q̂ij = −bijv

2
i + bijvivj cos(θi − θj)

−gijvivj sin(θi − θj), ∀(i, j) ∈ Ae,(22)

p̂2ij + q̂2ij ≤ |S̃ij |2, ∀(i, j) ∈ Ae,(23)
−θuij ≤ θi − θj ≤ θuij , ∀(i, j) ∈ Ae,(24)

zgi PGi
≤ pgi ≤ zgi PGi, ∀i ∈ Ω, (25)

zgi QGi
≤ qgi ≤ zgi QGi, ∀i ∈ Ω, (26)

V i ≤ vi ≤ V i, ∀i ∈ Ne. (27)

Eq. (18) sets a swing bus reference phase angle to 0.
Kirchhoff’s Current Law equations (flow conservation) for
real and reactive power are described in Eqs. (19) and (20),



respectively. The real and reactive power flow on each line
(Ohm’s Law) are stated with Eqs. (21) and (22). Eqs. (23)
and (24) state operational limits of, respectively, the thermal
line loading and the phase angle difference |θi − θj |. Finally,
Eqs. (25)–(27) impose active power generation, reactive power
generation and voltage magnitude limits at each bus.

The main difficulties in this second set of constraints (AC-
power flow model) arise from the non-convexities in Eqs. (21)
and (22). In this paper we use the result of [8] to relax these
equations to the following set of convex constraints:

p̂ij = gij v̌ij − gijw̌cij − bijw̌sij , ∀(i, j) ∈ Ae, (28)
q̂ij = −bij v̌ij + bijw̌cij − gijw̌sij , ∀(i, j) ∈ Ae, (29)

čsij ∈ ⟨cos(θi − θj)⟩R , ∀(i, j) ∈ Ae, (30)

šij ∈ ⟨sin(θi − θj)⟩R , ∀(i, j) ∈ Ae, (31)

v̌i ∈
⟨
v2
⟩R

, ∀i ∈ Ne, (32)

w̌ij ∈ ⟨vi, vj⟩Mc , ∀(i, j) ∈ Ae, (33)

w̌cij ∈ ⟨w̌ij , čsij⟩Mc , ∀(i, j) ∈ Ae, (34)

w̌sij ∈ ⟨w̌ij , šij⟩Mc , ∀(i, j) ∈ Ae, (35)

where

⟨cos(θ)⟩R ≡

{
čs ≥ cos(θu)

čs ≤ 1− 1−cos(θu)
(θu)2 θ2

and

⟨sin(θ)⟩R ≡
{

š ≥ cos(θu/2)(θ − θu/2)− sin(θu/2)
š ≤ cos(θu/2)(θ − θu/2) + sin(θu/2)

We next introduce on/off constraints to model whether
or not lines are built (these are analogous to the switching
variables of [8]). We first define some large constants:

Mθ =
∑

ij∈Ee

θu (36)

Mθ =
∑

ij∈Ee

−θu (37)

V V ij = V i ∗ V j (38)
V V ij = V i ∗ V j (39)

WRij = V V ij (40)
WRij = V V ij ∗ cos(−θu) (41)

WIij = V V ij ∗ sin(θu) (42)
WIij = V V ij ∗ sin(−θu) (43)

The expansion planning model is now now stated as:

V 2
i z

t
ij ≤ v̌ij ≤ V

2

i z
t
ij , ∀(i, j) ∈ Ee, (44)

v̌i − (1− ztij)V
2

i ≤ v̌ij ≤ v̌i − (1− ztij)V
2
i ∀(i, j) ∈ Ee, (45)

θi − θj ≥ −θuijz
t
ij +Mθ(1− ztij), ∀(i, j) ∈ Ee, (46)

θi − θj ≤ θuijz
t
ij +Mθ(1− ztij), ∀i ∈ Ne, (47)

sin(−θuij)z
t
ij ≤ šiij ≤ sin(θuij)z

t
ij , ∀(i, j) ∈ Ee, (48)

šiij − cos(
θuij
2
)(θi − θj) ≤(

sin(
θuij
2
)− cos(

θuij
2
)
θuij
2

)
ztij

+
(
cos(

θuij
2
)Mθ

)
(1− ztij), ∀(i, j) ∈ Ee, (49)

−šiij + cos(
θuij
2
)(θi − θj) ≤(

sin(
θuij
2
)− cos(

θuij
2
)
θuij
2

)
ztij

+
(
cos(

θuij
2
)Mθ

)
(1− ztij), ∀(i, j) ∈ Ee, (50)

cos(−θuij)z
t
ij ≤ čsij ≤ ztij , ∀(i, j) ∈ Ee, (51)

čsij +
1− cos(θuij)

(θuij)
2

(θi − θj)
2 ≤ ztij

+(1− ztij)(
Mθ

2
(1− cos(θuij))

(θuij)
2

), ∀(i, j) ∈ Ee, (52)

V V ijz
t
ij ≤ w̌ij ≤ V V ijz

t
ij , ∀(i, j) ∈ Ee, (53)

WRijz
t
ij ≤ w̌cij ≤ WRijz

t
ij , ∀(i, j) ∈ Ee, (54)

WIijz
t
ij ≤ w̌sij ≤ WIijz

t
ij , ∀(i, j) ∈ Ee. (55)

Eqs. (44) and (45) state the power flow disjunction to
account for the off-configuration of the line where p̂ = q̂ = 0.
Eqs. (46)–(48) imposes bounds on the phase angle differ-
ence and the convex sine relaxation, respectively. Eqs. (49)–
(50) and (51)–(52) state the off-restrictions of the convex
envelopes on the sine and cosine constraints, respectively.
Finally, Eqs. (53)–(55) forces relaxation variables to 0 when
transmission lines are not built. McCormick Eqs. (33), (34),
and (35) are also modified so that they are only active when
the lines are built (see [8]).

2.5. Coupling and design constraints
The coupling constraint between the gas and electricity

network systems is given by the inequality:

di ≥ Hγi

1 +Hγi

2 pgγi +Hγi

3 pg2γi
,∀i ∈ T (56)

which relaxes the equality condition which is non-convex.
Eq. (56) imposes the coupling constraint on the gas-fired
power plants and gas terminals where the power grid and
the gas system share a common location. This constraint
defines the heat rate curve based on a gas consumption d
in mmBTU/h, power output pg in MW, and gas fuel rate
coefficients Hi

1, H
i
2, and Hi

3 at generator γi for peaking and
shoulder plants. Note that the H0 cost coefficient can be
viewed as a no-load cost, i.e., a spinning cost. As mentioned,
this constraint is expressed as an inequality in order to preserve



convexity. In general, this constraint is tight due to the cost
associated with consuming gas. When it is not tight, the
constraint can be interpreted physically as throwing gas away.
This can occur to maintain feasibility of pressure constraints
and indicates the need for storage or other pressure regulating
controls in this part of the system.

Finally, Eqs. (57)–(60) below state that the base network
components of the CEGE system remain unchanged (z = 1)
during the optimization process:

zpij = 1, ∀(i, j) ∈ Ap \ ΛP , (57)
zcij = 1, ∀(i, j) ∈ Ac \ ΛC , (58)
ztij = 1, ∀(i, j) ∈ Ee \ ΛT , (59)
zgi = 1, ∀i ∈ Ω \ Λg. (60)

3. Test System Descriptions
In this paper we utilize two integrated gas-grid test systems

for demonstrating the performance of our approach. First we
adopt the model of [14] that combines the IEEE 14 test system
with the Belgian natural gas network (see Fig.2). Table 4
shows the technical details of proposed expansion plans for
the underlying CEGE system.

Table 4: Technical details of the combined electricity-gas expan-
sion system based on the integration of the IEEE 14-bus power
system and the Belgian gas transmission network.

IEEE 14-bus Belgian system
Buses 14 Nodes 22

Generators 5 Compressors 3
Base lines 80 Base pipelines 24

Candidate lines 80 Candidate pipes 24
Gas-fired generators 2 Sources 6

Terminals 10

Figure 2: Schematics of the integrated IEEE 14 bus and Belgian-
gas network where gas-fired power generators 2 and 3 in the power
grid are coupled with gas terminals 4 and 12 in the gas system.

Second, we develop a new test system for integrated power
grid and natural gas pipeline simulation studies and imple-
ment the test system assuming a coincident peak case for
both natural gas and electricity demand (similar in nature
to what was observed in the U.S. northeast in the winter
of 2013/14). Our test system is based on the architecture
of the northeastern U.S. power grid and natural gas pipeline
infrastructure. It captures, roughly, the geographic area from
Pennsylvania northeast to New England, and incorporates

natural gas and electrical interconnections with the Canadian
provinces of Ontario, Quebec and Nova Scotia. A schematic of
the test system is shown in Fig. 3. Table 5 shows the network
components of the CEGE system for the New England case.

Table 5: Network components of the integrated IEEE 36-bus and
Pennsylvania-To-Northeast New England expansion system.

IEEE 36-bus Penn-To-Northeast system
Buses 36 Nodes 125

Generators 252 Compressors 29
Base lines 121 Base pipelines 93

Candidate lines 121 Candidate pipes 93
Gas-fired generators 36 Sources 12

Other-fuel generators 216 Terminals 37
Control valves 21

Figure 3: Network structure schematic for the New England (CEGE)
model: The 36-bus grid system and the Pennsylvania-to-Northeast
gas system.

To our knowledge, this is the first such test system that
has been developed based on publicly available data for U.S.
energy systems. We emphasize that our test system is meant
to be reflective of the structure of the modeled systems within
the northeastern U.S. and portions of Canada and is missing
detail. At this stage the test system cannot (and is not meant to)
reproduce observed market or system behaviors in either the
power grid or the gas transmission network with a high degree
of precision. The integrated gas-grid test system is, however,
under continuous improvement and refinement.

The electric transmission portion of the test system is
taken directly from the 36-bus NPCC model in [21], with a
few modifications. At this stage of model development, our
power grid model is a pure AC system, so DC elements in
the 36-bus NPCC model are ignored. Rather than utilizing
the locational price (bid) data provided in [21], we utilize
marginal costs for coal, nuclear, hydro, wind, oil and refuse
generation as reported in [22]. Our marginal cost figures for
gas-fired power plants utilize average wintertime natural gas
prices paid by power plants, as reported to the U.S. Energy
Information Administration, for the states covered by our test
system (Pennsylvania, New Jersey, New York and the six



New England States). We translate those natural gas prices
into generator marginal costs assuming a heat rate of 8,000
BTU/kWh for all gas-fired power plants in our test system.
This efficiency assumption regarding gas-fired power plants
will be relaxed in a future version of the test system, to allow
for heterogeneity in gas turbine technology (e.g., combined-
cycle versus combustion turbines). Generator marginal costs
are shown in Table 6.

Table 6: Generator marginal costs ($MWh).

Coal 20.76
Nuclear 16.50

Natural Gas 89.36
Oil 127.35

Hydroelectric 10
Refuse 50
Wind 20

We construct a representation of the interstate natural gas
transmission system in the northeastern U.S. using publicly
available data from the relevant gas transmission companies.
Unlike the electricity sector, the gas transmission network
consists of assets owned and controlled by a large number
of separate entities, even within the same geographic area.

A list of data sources utilized for the construction of a gas
transmission network is shown in Table 7. By and large, data
from the pipeline system maps published by gas transmission
companies (some of which are quite detailed) and informa-
tional postings (similar to the OASIS system utilized in the
electricity sector) were utilized to determine network structure.
Data gathered from these sources includes basic pipeline
topology and length estimates, flow constraints, approximate
locations of compressor stations, pipeline diameters, locations
of off-take points for end-use consumers, interchanges with
other pipeline systems, or local gas distribution companies.
In some cases, data from informational postings can be used
to determine withdrawal magnitudes for specific customer
types. Compressor stations are modeled as branches of length
zero, rather than being modeled as nodes. This allows us to
determine inlet and outlet pressures at the compressor stations.

We define several gas sources in the northeastern gas trans-
mission test system. First, gas deliveries from outside of the
geographic area (e.g., from the Gulf region or from Canada)
are modeled as bulk injections into the gas transmission system
at our geographic boundary. For example, deliveries into the
northeastern region along the Williams Transco system are
modeled as injections at the Transco gas node corresponding
to the Pennsylvania border. Second, the Marcellus shale is
modeled as a bulk injection into the relevant gas transmission
systems (Transco, Columbia and Dominion) in Pennsylvania.
Third, identifiable gas storage areas (principally along the
northern tier of Pennsylvania and in southern New York) are
modeled as bulk injections at locations identified in pipeline
system maps of the relevant transmission companies. (In
other words, we model storage as equivalent to a natural gas
production field and we do not consider capacity, withdrawal
or replenishment constraints on gas storage, nor do we assume
that withdrawals from gas storage happen in any economically
optimal way.) LNG terminals in the Boston area and the

Maritimes are also modeled as supply sources. In all cases,
we do not differentiate between constraints on supply sources
and constraints on local pipeline capacity, i.e., we assume that
any supply source in our model can produce enough to fill the
pipeline to which it is directly connected.

4. Numerical results
As described in the previous section, our first set of results

considers the problem discussed in [14] where a CEGE
infrastructure is defined based on the IEEE-14 bus power
system and the Belgian gas transmission network. Expansions
are restricted to pipes and power lines in parallel with existing
components. We use pipeline expansion costs defined in [23].
For electric power line expansion costs we consider three
scenarios, (Cost Scenario 1) one where all power lines cost
the same as the cheapest pipe, (Cost Scenario 2) one where
all power lines cost the same as the most expensive pipe,
and (Cost Scenario 3) one where they all cost the same as
the average pipe. We then consider three stresses for this
problem, (Stress Type 1) one where we uniformly increase
the demand and production for gas, (Stress Type 2) one where
we uniformly increase the demand for power and generation
capacity, and (Stress Type 3) one where we simultaneously
increase the demand and production for both power and gas.
Since the IEEE 14-bus system does not contain line limits, we
introduced line limits that were 10% more than their baseline
usage. For generation costs, we also used generation costs
defined in the Matpower implementation of the model (directly
applying the cost coefficients to gas usage at gas-fired plants).

Our second set of results focuses on the baseline demand
profile of our New England (northeastern) model. All the
experiments were conducted on an 8.00GB, Intel(R) Xeon(R),
2.80GHz CPU under a 64-bit Windows-7 OS. The model
for the combined electricity-gas expansion (CEGE) planning
described above is solved by applying AMPL/Cplex 12.6 [24].
CPU times are provided in seconds, optimality gaps are
provided when the optimal solution is not found after 24 hours
of computation.

Table 8: Nomenclature used in the result Tables 9–15.

ID Description Units
sf Stress factor %
co Operating costs $× 103

cu Upgrade costs $× 106

pb Pipelines built int
tb Transmission lines built int

Trp Total (real) power produced MW
rp (Real) power produced

by gas-fired power generators MW
gp Total gas production MMSCF/d

CPU Solver CPU time – Note: Optimality seconds
gap (%) is reported when reaching
a time limit of 86400s

IEEE 14 bus and Belgian-gas network The numerical results
obtained from the studies of Stress Types 1, 2 and 3 are shown
in Tables 9–11 for the 14 bus/Belgian-gas network.

There are number of interesting observations to make when
considering the results of these tables. First, in all cases, as



Table 7: Data sources for the northeastern gas transmission test system.

Williams (Transco and Laser) www.1line.williams.com
Tennessee pipeline.kindermorgan.com

Millennium millenniumpipeline.com/navigates
Dominion escript.dom.com/jsp/info post.jsp?&company=dt
Iroquois www.iroquois.com/interactive-map.asp
Portland www.gasnom.com/ip/pngts/

Texas East www.spectraenergy.com/Operations/US-Natural-Gas-Pipelines/Texas-Eastern-Transmission/
Algonquin www.spectraenergy.com/Operations/US-Natural-Gas-Pipelines/Algonquin-Gas-Transmission/

Table 9: 14-bus/Belgian-gas case: Results on Stress Type 1 (Cost
Scenarios 1, 2 and 3) with induced gas demand stress.

sf co cu pb tb Trp rp gp CPU
Cost Scenario - 1

0% 6978.0 72.3 0 1 261.2 261.2 45.5 18
25% 6978.0 1351.7 1 1 261.2 261.2 56.5 18
50% 6978.0 1351.7 1 1 261.2 261.2 67.6 13
75% 6978.0 1691.2 2 1 261.2 261.2 78.6 14

100% 6978.0 1769.5 3 1 261.2 261.2 89.6 27
Cost Scenario - 2

0% 7297.2 0.0 0 0 261.4 253.4 45.4 2
25% 7297.2 1279.5 1 0 261.4 253.4 56.5 2
50% 7297.2 1279.5 1 0 261.4 253.4 67.5 1
75% 7297.2 1618.9 2 0 261.4 253.4 78.6 3

100% 7297.2 1697.2 3 0 261.4 253.4 89.6 1
Cost Scenario - 3

0% 7297.2 0.0 0 0 261.4 253.4 45.4 2
25% 7297.2 1279.5 1 0 261.4 253.4 56.5 2
50% 7297.4 1279.5 1 0 261.4 253.4 67.5 3
75% 7297.4 1618.9 2 0 261.4 253.4 78.6 2

100% 7297.2 1697.2 3 0 261.4 253.4 89.6 3
Cost Scenarios - 1, 2 and 3

125% inf inf − − − − − 2

Table 10: 14-bus/Belgian-gas case: Results on Stress Type 2 (Cost
Scenarios 1, 2 and 3) with induced electric power demand stress.

sf co cu pb tb Trp rp gp CPU
Cost Scenario - 1

0% 6978.1 72.3 0 1 261.2 261.2 45.5 15
25% 9044.5 361.3 0 5 326.8 326.8 45.8 21
50% 10724.9 867.2 0 12 392.1 392.1 46.1 802
75% 13236.5 1300.8 0 18 457.4 457.4 46.5 37

100% 15229.8 1878.9 0 26 523.1 504.6 46.7 32
Cost Scenario - 2

0% 7297.3 0.0 0 0 261.4 253.4 45.4 2
25% 9127.7 7878.3 0 4 327.5 305.5 45.7 24
50% 11841.0 17726.1 0 9 393.8 329.6 45.8 155
75% 13673.3 27573.9 0 14 457.5 401.4 46.2 41

100% 16340.2 39391.3 0 20 523.4 438.7 46.4 27
Cost Scenario - 3

0% 7297.3 0.0 0 0 261.4 253.4 45.4 2
25% 9127.7 2361.6 0 4 327.5 305.5 45.7 18
50% 10940.6 6494.4 0 11 392.7 381.2 46.1 137
75% 13150.5 9446.4 0 16 457.9 446.1 46.4 24

100% 15652.0 12988.8 0 22 522.7 486.5 46.6 23
Cost Scenarios - 1, 2 and 3

125% inf inf − − − − − 3

the level of stress increases, the combined cost of operations
and expansion increases. This is not unexpected, as intuitively,
increased demand for resources increases the cost of those
resources. Second, given the relatively small cost associated
with the natural gas generators, they provide roughly 90% of

Table 11: 14-bus/Belgian-gas case: Results on Stress Type 3 (Cost
Scenarios 1, 2 and 3) with induced electric power and gas demand
stress.

sf co cu pb tb Trp rp gp CPU
Cost Scenario - 1

0% 6978.1 72.3 0 1 261.2 261.2 45.5 17
25% 9044.5 1640.8 1 5 326.8 326.8 56.8 18
50% 10724.9 2146.6 1 12 392.1 392.1 68.2 675
75% 13236.7 2919.7 2 18 457.4 457.4 79.6 41

100% 15229.9 3576.2 3 26 523.1 504.6 90.9 40
Cost Scenario - 2

0% 7297.3 0.0 0 0 261.4 253.4 45.4 2
25% 9127.7 9157.7 1 4 327.5 305.5 56.7 40
50% 11841.0 19005.5 1 9 393.8 329.6 67.9 72
75% 13673.2 29192.8 2 14 457.5 401.4 79.3 36

100% 16340.2 41088.5 3 20 523.4 438.7 90.6 25
Cost Scenario - 3

0% 7297.3 0.0 0 0 261.4 253.4 45.4 2
25% 9128.9 3641.1 1 4 327.6 305.7 56.7 11
50% 10940.9 7773.9 1 11 392.7 381.5 68.2 113
75% 13150.5 11065.3 2 16 457.9 446.1 79.6 20

100% 15651.8 14686.1 3 22 522.7 486.4 90.8 33
Cost Scenarios - 1, 2 and 3

125% inf inf − − − − − 2

all power and are used at near maximum capacity. So, at the
coupling points between the system, there is only flexibility to
decrease interactions through reduction of gas-fired generator
output.

Table 9 provides a number of interesting insights into the
structure of the problem. First, the pipe solutions are not
sensitive to the cost of the expansion in the power system.
The power line solutions are sensitive to the cost of the power
lines. In cost scenario 1, the cost of power lines is sufficiently
small so that a line is built to reduce operating costs. Second,
the solutions are not able to utilize the ability to shed natural
gas generator load to eliminate the need for expansion. Either
it is not cost effective to do so, or the induced demands are
so large that the gas generators can continue to use excess
capacity in newly built pipes.

Similar observations are also seen in Table 10. In this
set of problems, only electric power experiences increases
in demand. Here there are no expansions performed in the
natural gas network. The power system is able to ask for
any gas it needs without causing problems in the gas system.
Thus, the only response we see to changes in power line
costs is a tradeoff between operations cost (using existing
expensive generation capacity to meet new power demand)
and expansion cost (build additional power lines to allow
more cheap generation to be used). We see a similar effect in



Table 12: Induced electric power demand stress on the integrated
14 bus/Belgian gas network for varying β values: {0.2, 0.4, 0.6, 0.8}
(Cost Scenario - 1).

sf co cu pb tb Trp rp gp CPU
β = 0.2

0% 7297.5 0.0 0 0 261.4 253.4 45.4 1
5% 7479.0 72.3 0 1 274.2 274.2 45.5 7

10% 7984.0 144.5 0 2 287.2 287.2 45.6 4
25% 9044.5 361.3 0 5 326.8 326.8 45.8 8
50% 10941.0 794.9 0 11 392.7 381.5 46.1 138
75% 13150.5 1156.3 0 16 457.9 446.1 46.4 18

100% 15353.0 1662.1 0 23 523.2 488.1 46.6 12
β = 0.4

0% 6978.0 72.3 0 1 261.2 261.2 45.5 10
5% 7479.3 72.3 0 1 274.2 274.2 45.5 8

10% 7984.3 144.5 0 2 287.2 287.2 45.6 4
25% 9044.5 361.3 0 5 326.8 326.8 45.8 22
50% 10724.8 867.2 0 12 392.1 392.1 46.1 249
75% 13236.5 1300.8 0 18 457.4 457.4 46.5 27

100% 15229.8 1878.9 0 26 523.1 504.6 46.7 10
β = 0.6

0% 6978.2 72.3 0 1 261.2 261.2 45.5 8
5% 7479.2 72.3 0 1 274.2 274.2 45.5 8

10% 7984.2 144.5 0 2 287.2 287.2 45.6 4
25% 9044.5 361.3 0 5 326.8 326.8 45.8 13
50% 10724.8 867.2 0 12 392.1 392.1 46.1 193
75% 13236.7 1300.8 0 18 457.4 457.4 46.5 20

100% 15209.2 1951.2 0 27 523.0 506.4 46.7 17
β = 0.8

0% 6978.1 72.3 0 1 261.2 261.2 45.5 8
5% 7479.1 72.3 0 1 274.2 274.2 45.5 8

10% 7984.3 144.5 0 2 287.2 287.2 45.6 3
25% 9044.5 361.3 0 5 326.8 326.8 45.8 8
50% 10724.9 867.2 0 12 392.1 392.1 46.1 199
75% 13236.5 1300.8 0 18 457.4 457.4 46.5 38

100% 15120.5 2095.7 0 29 522.7 506.3 46.7 21
∀β values & Cost Scenario - 1

125% inf inf – – – – – 2

Table 11 where there is insensitivity in the gas system solutions
to changes in the power system expansion costs.

Finally, the computational requirements for solving these
problems are modest. The CPU requirement is no more than
3 minutes in 43 out of 45 instances (typically much smaller).
IEEE 14 bus and Belgian-gas network: cost variance
Here, we consider electric power demand stress experiments
(Scenario Type 2) on the integrated IEEE 14 bus and Belgian-
gas network for β = {0.2, 0.4, 0.6, 0.8}. There are two gas-
fired plants (nodes 2 and 3) that are coupled to gas nodes 4 and
12, respectively (see Fig.2). We modified the generation cost so
that generator 2 is cheaper than generator 3. We also artificially
tightened the pressure lower bound at gas node 4. As are in
seen in these results, the solution changes as a function of β,
i.e. the solution begins to favor adding additional power lines
to take advantage of cheaper generation cost at generator 2.
New England case In this section we present the results
on the integrated 36-bus/Pennsylvania-To-Northeast network
(Tables 13–16) based on each stress type and cost scenario as
described in the previous section. In all cases β = 0.5. This
is a large scale instance; however, solutions (with optimality
gaps) are obtained within the one day time limit imposed on
the computation.

Table 13: New England case: Results on Stress Type 1 (Cost
Scenarios 1, 2 and 3) with induced gas demand stress.

sf co cu pb tb T
(∗)
rp r

(∗)
p gp CPU

Cost Scenario - 1
0% 11078.6 0.0 0 0 140.7 119.6 96.4 43

200% 11078.0 0.0 0 0 140.7 119.6 267.4 20137
225% 11078.0 475.0 6 0 140.7 119.6 288.8 99%
250% 11053.9 391.4 7 0 142.2 119.1 312.9 94%
275% 11078.0 739.4 7 0 140.7 119.6 331.5 89%
300% 9433.9 1097.9 14 0 141.9 86.9 350.8 86%

Cost Scenario - 2
0% 11078.6 0.0 0 0 140.7 119.6 96.4 176

200% 11078.0 412.7 5 0 140.7 119.6 267.4 99%
225% 10392.6 121.7 3 0 141.8 110.4 290.5 50574
250% 11109.6 630.2 10 0 141.1 120.0 311.3 98%
275% 8250.4 718.3 9 0 141.6 55.6 323.3 94%
300% 11137.0 1003.0 12 0 141.4 120.3 353.5 86%

Cost Scenario - 3
0% 11078.6 0.0 0 0 140.7 119.6 96.4 108

200% 11084.8 0.0 0 0 140.8 119.7 267.4 80801
225% 10526.0 158.7 4 0 142.4 112.0 291.3 99%
250% 11077.9 577.8 8 0 140.7 119.6 311.0 99%
275% 10360.0 850.9 9 0 141.7 110.0 333.4 92%
300% 11077.3 975.9 12 0 140.7 119.6 352.9 89%

Cost Scenarios - 1, 2 and 3
500% inf inf − − − − − 110

(∗) × 103

Table 14: New England case: Results on Stress Type 2 (Cost
Scenarios 1, 2 and 3) with induced electric power demand stress.

sf co cu pb tb T
(∗)
rp r

(∗)
p gp CPU

Cost Scenario - 1
0% 11078.6 0.0 0 0 140.7 119.6 96.4 48

30% 14315.8 9.8 0 1 182.7 154.4 103.3 358
40% 15312.4 19.6 0 2 196.7 165.3 105.9 134
45% 15825.8 29.4 0 3 203.6 170.8 107.3 494

Cost Scenario - 2
0% 11078.6 0.0 0 0 140.7 119.6 96.4 198

30% 14174.2 555.5 0 1 182.7 152.9 103.2 126
40% 15314.6 1110.9 0 2 196.8 165.3 106.2 145
45% 15813.8 1666.4 0 3 203.6 170.6 107.3 196

Cost Scenario - 3
0% 11078.6 0.0 0 0 140.7 119.6 96.4 85

30% 14313.2 118.3 0 1 182.7 154.4 103.5 498
40% 15312.6 236.6 0 2 196.7 165.3 105.9 169
45% 15993.4 354.9 0 3 203.7 172.9 107.5 343

Cost Scenarios - 1, 2 and 3
50% inf inf − − − − − 273

(∗) × 103

5. Conclusion

Increased penetration of natural generation in power systems
has led to increased economic and reliability risk in power
systems. This is particularly evident when both systems are
at their coincident peaks. One mechanism for alleviating this
risk relies on upgrading existing gas and power systems
to accommodate increased dependencies between gas and
electricity. In this paper we develop a tractable optimization
for upgrading and designing joint gas and electric systems to
reduce this risk. We have shown how this model is used under
a variety of different planning scenarios.

There are a number of directions for future work in this area.



Table 15: New England case: Results on Stress Type 3 (Cost
Scenarios 1, 2 and 3) with induced electric power and gas demand
stress.

sf co cu pb tb T
(∗)
rp r

(∗)
p gp CPU

Cost Scenario - 1
0% 11078.6 0.0 0 0 140.7 119.6 96.4 49

30% 14173.8 9.8 0 1 182.7 152.9 128.9 87
40% 15353.2 19.6 0 2 197.1 165.8 140.4 170
45% 15324.4 29.4 0 3 205.7 157.9 140.6 190

Cost Scenario - 2
0% 11078.6 0.0 0 0 140.7 119.6 96.4 197

30% 14174.2 555.5 0 1 182.7 152.9 128.9 381
40% 15312.6 1110.9 0 2 196.7 165.3 140.1 1024
45% 15993.2 1666.4 0 3 203.7 172.9 146.0 754

Cost Scenario - 3
0% 11078.6 0.0 0 0 140.7 119.6 96.4 87

30% 14320.4 118.3 0 1 182.7 154.5 129.0 133
40% 14966.0 236.6 0 2 200.5 159.9 145.5 471
45% 15813.4 354.9 0 3 203.6 170.6 145.8 168

Cost Scenarios - 1, 2 and 3
50% inf inf − − − − − 158

(∗) × 103

Table 16: Results on the New England case with induced electric
power and gas demands at 45% and 225% stress levels, respec-
tively, for Cost Scenarios 1, 2 and 3 (non-uniform Stress Type 3).

SCEN co cu pb tb T
(∗)
rp r

(∗)
p gp CPU

1 12968.8 200.2 2 3 205.0 115.6 288.4 85%
2 15990.9 1788.1 3 3 203.7 172.9 301.0 6%
3 16003.9 563.3 2 3 203.8 173.0 300.1 36%

(∗) × 103

First, the dependencies between the systems are inherently
influenced by exogenous factors such as extreme weather. It
will be interesting to expand this model to include resilience
criteria related to such events. Second, expansion decisions are
not typically performed all at once. They are often undertaken
over time in a staged approach. It will be important to extend
these results to a multi stage formulation. Finally, it will be
important to develop iterative approaches for refining these
relaxations when solutions are obtained that are not tight.
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