
Program Analysis for Page Size Selection

E(. Gopinath & Aniruddha P. Bhutkar *
Department of Computer Science & Automation

Indian Institute of Science, Bangalore

Abstract

To support high performance architectures with mul-
tiple page sizes, it is necessary to assign proper page
sizes for array memory in order to improve TLB per-
formance as well OS reduce memory contention during
program execution. Typically, while Q smaller page size
causes higher TLB contention, a larger page size causes
higher memory contention and fragmentation but also
has the effect of prefetching pages required in future
thereby reducing the number of cold page faults. Each
array in a program contributes to these costs/benejits
depending upon how it is referenced in the program.
The page size assignment analysis determines a proper
page size for every array by analyzing memory refer-
ence patterns (which is shown to,be NP-hard). We dis-
cuss various policies that can be followed for page size
assignment in order to maximize performance along
with cost models and present algorithms for page size
selection.

which TLB size can be increased depends upon whether
we use a physically or virtually tagged cache but both
have negative effects. A second solution is to use a
larger page size, so that TLEis can map a larger frac-
tion of the main memory without having to hold more
number of entries; however, this increases fragmenta-
tion and the size of the working sets of the program.
[TKH 921 show that increasing the page size from 4
KB to 32 KB causes a significant increase in the work-
ing set size (namely 60%) but a reduction in TLB’s
contribution to the CPI by a factor of eight.

Another solution, the sub-iect of this paper, is the
use of multiple page sizes. Tb effectively use multiple
page sizes available in an architecture for improving
overall system performance, a, proper page-size assign-
ment policy is needed. We need to solve two problems
in an OS or compiler: how is the the address space of
the program to be divided into different regions and
what criterion to apply to assign a particular page size
to each region. We consider only the problem of page
size selection by static program analysis and do not
consider the OS-based approaches.

1. Introduction
2. Page Size Assignment is NP-Hard

As memories get larger and cycles per instructions
(CPI) of processors get smaller, the time spent in TLB
miss handling can become a performance bottleneck. A
decade ago, machines had relatively smaller memories
and hence the TLB could map a substantial fraction
of main memory. The programs at that time also had
smaller working sets; hence, the TLBs missed less fre-
quently. On architectures with inverted page tables or
hash tables, such as PowerPC, the cost of a TLB miss
is even much greater.

There are many ways in which one can improve the
performance by reducing the time spent on TLB miss
handling: it can be in hardware, compilers or operat-
ing systems. One solution is to make the TLB larger
to hold more number of entries. However the extent to

*Author for correspondence: gopiQcsa.iisc.ernet.in

Let n be the number of arrays in the program and
let m page sizes be available on the machine. With
each assignment of a page size to an array, we asso-
ciate some cost (memory contention) and some profit
(TLB savings and prepaging). These costs cannot be
computed from memory access patterns alone as the
memory contention caused by other arrays in turn de-
pends upon the page sizes assigned to them. Hence,
in general, it might be necessary to consider all com-
binations of arrays and page sizes rather than treating
each array independently ancl compute the minimum
cost. Given thus a collection of n sets with each el-
ement of the set containing 7n tuples with each tuple
having pagesize (p) , cost (e) and memory used (w) as
components, the page size assignment problem (PSA)
is then to select one tuple from each set such that total

189
0-8186-7557-8/96 $5.00 0 1996 IEEE

weight is less than W where W is the main memory
size and the total cost is minimized.

The decision problem for PSA is as follows: Given n
sets, each of m elements, is it possible to choose one el-
ement from each set such that total weight is less than
W, and total value is greater than a given number V,?
This problem can be proved to be NP-hard by reduc-
tion to the Knapsack decision problem (KNAP): Given
n elements, is it possible to select a set of elements
whose weight is less than W k and value greater than
vk? From an instance K of decision problem KNAP, we
construct an instance P of the decision problem PSA
such that K has a solution if P has a solution. For
simplicity, we take m = 2 (only 2 page sizes) in the
following reduction.

K: Given a set S = { a l , a2, .., a,} and W k and &,
does there exist a subset S’ such that CarESj W,, 5

Construct P with n sets

Wb, = 1 for each b i , W, = W k , and v, = v k $. n.

wk and E,,gS: vu, 2 vk?

{al , h}, {a2, b}, .., {an, b , } where vb, = 1 and

If there exists a solution set S” = {cl, c2, ..., e,.} for
P (with ci = ai or ci = bi), satisfying CclES,: W,, 5
W, and CcrESff V,, 2 V,, remove those cl’s that are
not al’s to give a new set S”’.

As ~ , , E S , , , W,, 5 W,, it follows that
CCfES,,, W,, 5 wk, and as CcrES,l, K l 2 V, - n, it
also follows that E,, E S l l / Vel 2 V k .

Hence S”’ satisfies K. 0

3. Page Size Assignment Policies

3.1. An Operating System Approach

Page clustering considers faulting of clusters of small
pages combined with TLB miss tracking by the OS to
determine benefit of allocating a larger page size. Tal-
luri et al. [TKH 921 divide the address space into var-
ious regions and then assign proper page sizes to each
region. During the execution of the program, the OS
maintains a list of all blocks accessed in the last T ref-
erences (around 10 million). The decision to promote
a chunk to a large page depends upon the number of
blocks accessed within the window of the last T refer-
ences. If all the blocks in a chunk have been accessed,
then the chunk should certainly be mapped as a large
page. If only one block has been accessed, then the
chunk remains mapped as a small page. The thresh-
old used to promote the page size is whether half or
more blocks in a chunk have been accessed, so that, at
the worst, the working set size is only doubled (and of
course the TLB performance is similar or better than
if only small pages are used). This policy uses the

inherent spatial locality in the programs without the
compiler or OS taking care to align the data struc-
tures on the page boundaries. This policy increases
the working set size from 1% to 20% but TLB perfor-
mance improves by a factor of 3 to 8 [TKH 921 with 2
pages of 4 and 32 KB.

However, there are certain costs to the approach.
Page promotion can be costly, especially as it is invari-
ably associated with copying the smaller pages into a
larger page. Another point to note is that many archi-
tectures do not support small increments in page sizes
(say 4-32K). For example, the increment can be as large
as 256K (HP-PA) to 4MB (SuperSparc) from one page
size to the next. In this situation especially, the copy
costs can make the promotion strategy impractical.

In addition, many programs can be divided into vari-
ous segments with each segment having a characteristic
behaviour; it is more logical to observe the behaviour
in each segment and then determine which page size
will be more suitable for a particular array consider-
ing all program segments than the behaviour in last T
references during the program execution.

3.2. A Compiler Approach

A compiler can analyze the loop structureof program
(given by the abstract syntax tree-AST) and the array
references with their subscript expressions) to find the
memory reference pattern of the arrays. Then it can
determine the optimum page sizes for the arrays that
will improve TLB performance without much increase
in the working set size by minimizing the overall cost
due to TLB contention and memory contention. Sys-
tem calls have to be added in the code to inform the
OS about aligning the pages and assigning page sizes to
the arrays. Let us consider various criteria that can be
used for page-size assignment, starting from the sim-
plest ones.

Stride: The stride of an array reference inside a
loop is the distance between the two elements of the
array accessed in successive iterations. Assume that
there are only two page sizes. Then for an array refer-
ence inside a nested loop, if the stride is greater than
the small page size and less than the larger page size
(and the memory utilization is also acceptable), then
the array should be given the large page size since every
iteration of the loop will need a new TLB entry thereby
causing very high TLB contention. If the total size of
the array is less than the small page size, or if the total
address space of the array needed to be accessed within
the entire execution of the loop is less than the small
page size, then the array should not be considered for
assigning large page size. Further analysis is needed if

190

these simple conditions do not hold.
Array Reference Patterns: If an array is re-

ferred at two or more different places in the program
and these reference patterns are very different, differ-
ent page sizes may be necessary. Unlike the case where
the OS decides the page sizes, a compiler can determine
how many times page size promotion and demotion are
needed. However, promoting the page size of an ar-
ray has certain costs associated with it as given below
[TKH 921: these costs are somewhat complex to deter-
mine as even the TLB miss penalty varies depending
on whether 1 or more page sizes exist'.

1: Cost of updating the mapping data structures
and invalidating TLB entries for the small pages. This
is about 20-50 cycles for each entry for TLB misses
handled in software.

2: Copying the small pages already in memory to
one large page. This can be from 3-20 cycles per word
depending on the architecture, caching, memory laten-
cies and the care with which the routines are written
(especially, software pipelining). This is by far the
largest cost. Hence dynamically changing page sizes
has to be carefully evaluated: this is one reason why
compile-time analyses may be better in many situa-
tions. Page coloring (see Section 4.3) or similar tech-
niques may mitigate the expense of this cost and may
be necessary for it to be useful. For the same reason,
page size promotion handled by the compiler (provid-
ing different page sizes at different points in the pro-
gram depending on the reference patterns) also has to
be carefully evaluated.

3: Paging in/zeroing the small pages not resident
in the memory. This cost can be considerable as it
involves, in addition, a disk access; this access, how-
ever, is typically masked in multiprogramming envi-
ronments. The cost of a full context switch with disk
access masked is around 20000 cycles for SPARC. In
batch environments, the full cost of paging has to be
absorbed unless it is masked by multithreading.

Because of the expense of the copy costs, a static
analysis that determines the page size at compile time
is preferable.

Programming Environment: In a batch envi-
ronment (large scientific applications), then the TLB
state and the memory state will be governed by the
program alone. We need information about the differ-
ent references that conflict (and hence affect page size
decisions of one another), so that the conditions im-
posed by them on one another can be formulated in
the form of constraints to minimize the cost. A differ-
ent analysis is needed for the multiprogramming case

lFor Sparc, with 2 page sizes, the miss handling is 25% longer
in code [TKH 921.

(section 4.2.1.)
Structure of Program: The memory and TLB

contention costs associated with an array reference de-
pend also on the loop nestin,g level of the array refer-
ence in the program.

In this work, we take all of the above concerns into
account but placing the highest importance to program
structure. We introduce tile trees for analysing pro-
gram structure in the next section and formulate the
PSA problem in the context (of tile trees.

4. Tile Trees and PSA

The concept of tile tree was first introduced by
Callahan [CK 911 for exposing a program's loop and
conditional structure and for better placement of spill
code in register allocation. Although the intuitive con-
cept of tile tree used here is similar, it has been modi-
fied substantially for the page size assignment problem.
In the register allocation problem, the tile tree is con-
structed using the control flow graph of the program
with the elements of a tile being basic blocks. Here,
the tile consists of various array references which are
in the same loop nest. The tile tree is constructed from
the AST of a program.

A tile tree groups references together and eases the
compiler's task of formulating constraints for the con-
flicting references. It can also be used for page size
promotion and demotion so that page size assignment
is sensitive to the program structure. The page size
promotion and demotion code can be places iin infre-
quently executed portions of the program and at the
same time satisfying the page size requirements of the
various regions.

4.1. Preliminaries

Let R be the set of all array references in tlhe pro-
gram. For simplicity, we consider only structured
loops. Let T be a collection of sets t l , t 2 , ... t , of refer-
ences which covers the set R. We call T a tile tree and
each element ti of T a tile if the following conditions
hold:

1: Each pair of sets in T is either disjoint or one is
proper subset of the other. If there exist two tiles ti
and t j such that ti c t j , then i i j is an ancestor of t i . If
there is no tile t such that ti c t and t c t j , then ti is a
child of t j , and t j is the parent, of t i . Define the re f (t)
to be the set of those references which belong to tile t
but do not belong to any child tile o f t .

2: There is a special tile (the root tile) which con-
tains all the references in R.

191

for(i=O;i<nl;i++)

d[i]b] = 5;
i

hlj+i][k] = 1024+c[i][k+j];

1
J I

t=d[5*i+lOO][i];
a[i][i+l]=k;
for(j=o;j<n4;j++) I

g[il lil=alil [~I*Y [il[i+jl;
{

to

t l

4

t3

t6

t4 r

Figure 1. Division of a Program into Tiles

3: Tile t; is a child of tile t j iff there exist two it-
erative nodes’ NI and N2 in the AST such that N2 is
nested inside N I , and r e f (t j) contains all but no more
than the references in the statements that belong to
the body of N I but not to the body of N2 and r e f (t i)
contains all but no more than the references in the
statements that belong to the body of N 2 .

In our definition, there is only one tile tree possible
for a given program but it is not so for the approach
described in [CK 911. If a loop is tightly nested within
another, r e f (t) of the tile corresponding to the outer
of the two loops is empty. The depth of a tile in a tile
tree gives the nesting level of the references in that tile.
Consider the program in Figure 1. Root tile tO has t l
(with arrays a,d) and t 2 (g , e , d , x) subtiles. t l has t 3
(d , e , f) and t4(a,y,g). t 2 has t5 (c , e ,g) . t3 has t6(c,h).

Every tile in the tile tree corresponds to a loop and,
in an implementation, contains the nesting level of all

2in our AST implementation: DOJUODE, DO-WHILE or
REPEAT-WHILE

the references in the tile, the bounds of the iterative
variables for the current loop and the encompassing
loops, a pointer to the child tile, a pointer to the sibling
tile with the leftmost child followed by the right siblings
and the linked list of references. Every reference in the
tile tree contains a pointer to the symbol table entry
for the array referred, memory reference expressions
for the reference with the affine subscript expressions
linearized, and a pointer to the next reference in the
tile. We currently do not handle array references that
are non-affine or with array bounds that are not known
at compile time.

4.2. Optimization Problem Formulation

To compute the cost of a page size being assigned
to an array, we have to compute costs and profits for
all references in the program. At different points in
the program, the costs may be different and we have
to give weightage to each reference depending upon
its frequency of execution. We first consider the case
without page promotion. We later relax this condition
for the batch case.

4.2.1 Multiprogramming Environment

The CPU time spent in handling the TLB misses can
be directly computed from the number of TLB misses,
since it takes a fixed number of machine cycles to
handle a TLB miss. However, the CPU time wasted
due to page faults in a multiprogramming environ-
ment depends also on the process scheduling policy, the
scheduling quantum, the size of physical memory, the
number of applications currently active, etc. It is likely
that these factors also have a non-linear behaviour. If
we assume that all the above are kept constant and
that the process scheduling policy schedules the pro-
cesses so as to keep resources like main memory fully
utilized, then under these simplifying assumptions, ev-
ery extra page required in an application will cause
a corresponding page fault in another and every extra
TLB entry allotted to an application causes a TLB miss
in another. Hence the TLB contention cost is propor-
tional to the number of TLB entries required and the
memory contention cost is proportional to the amount
of memory consumed. Let

t i j = TLB entries required by a particular reference
when a page size i is assigned to array j,

mij = Memory required by a particular reference
when a page size i is assigned to array j ,

x;j = 1 if page size i is assigned to array j , else 0
t = total TLB requirement in a tile,
m = total memory requirement in a tile,

192

ct = cost of TLB contention in a tile,
c, = cost of memory contention in a tile,
c = overall contention cost for a tile.
w = weightage assigned to a particular tile.
Then,

j=1 i=l

and
n 1

m = C m i j x i j

j=1 i = l

Since the TLB contention cost is proportional to
the number of TLB entries required and memory con-
tention cost is proportional to the amount of memory
required, we have

ct = k l * t , and
c, = k2 * m, and
c = w * (ct + c,)

where k l and k2 are constants. These constants have
to be measured in a real environment but we can make
the following estimates: k l can be taken to be cost of
handling a TLB miss and k2 is the cost of a full context
switch per page size plus the cost of DMA/zeroing per
word (assuming that the disk 1/0 is fully masked). We
assume kl to be about 20 cycles and k2 to be about 5
cycles per extra word.

xij = 1 for all j and
minimize Cc over all the tiles gives us the optimal page
size assignment. As this is an integer programming
formulation, it can take exponential time in ,the worst
case but heuristics can be used to solve it in reasonable
time.

The xij’s that satisfy

4.2.2 Batch Environment

In this case, the cost of TLB (memory) contention for
an array reference is not proportional to number of
TLB entries (amount of memory space) needed for that
reference, but also depends upon the contention due to
other references in that tile. The page sizes of conflict-
ing references also determine the cost of TLB (memory)
contention. The TLB (memory) cost can be related to
the number of TLB entries (amount of address space)
by a function which can assumed to be piecewise lin-
ear, as an increase in the TLB entries does not increase
TLB contention much until a limit is reached. Past this
limit, however, there is a cost for every additional TLB
entry needed. Similar is the case with memory con-
tention. To solve this non-linear integer programming
problem, we introduce integers 61, 62, S3 and 64 which
hold values 0 or 1 depending upon whether the above
mentioned limit is exceeded or not.

The total TLB and
can be given as:

t =

and

m =

memory requirement for a tile

Here, the TLB and memory contention costs are not
proportional to the number of entries required, but are
given by:

Ct = 61 * t l * Ctl + S2 * (t 2 * Ct2 + a t)

c, = 63 * m l * cm1 + 64 * (m2 * cm2 + am)
c = Ct + c,

61t 5 t to t , the needed number of TLB entries
S2t > t t
S3m 5 mto t , the needed amount of memory
S 4 m > m t

t l = t , t 2 = t - ttot

m l = m, 1 n 2 = m - mtot
at = ttot * Ctl, am = m o t * cmlt and

c t l , ct2, cm1, c,2 are the cost coefficients of the TLB
and memory contention in the two regions of the piece-
wise approximation.

Then the xij’s that satisfy Cy=1 xij = 1 for all j ,
and which minimize Cc over all the tiles, gives the op-
timal page size assignment.

subject to the condition that

where,

4.3. Page Size Promotion

In this case, we have the choice of assigning differ-
ent page sizes to the same array in different regions
of the program, if references at different regions need
different page sizes. We order the tiles according to
their frequency of execution and assume that the cost
of promoting a page size for an array is prolportional
to the factor by which page size is increased (as those
many pages will have to be copied into a single page).
As discussed earlier, the cost of page promotion can
be considerable due to the copy costs and hence this
optimization has to be carefully evaluated. Page pro-
motion may be advantageous if the page size increment
is small or techniques like page coloring are used that
reduce copy costs as contiguous virtual pages also are
often contiguous in physical space. We assume that
one of these techniques is in use when page promotion
is attempted.

3Page coloring attempts to maintaina constant offset between
VPN and PPN in the interests of reducing variance in execution
times[TDF 901.

193

A similar analysis holds for page size demotion but
the cost of demoting a page is less as there is no copying
involved and only page table and TLB entries have to
be appropriately changed ‘.

4.3.1 Conflicting Tiles

The tiles that have the same parent and will be ex-
ecuted one after another conflict with one another.
When selecting page sizes for a tile, we have to con-
sider the page sizes in the conflicting tiles also.

Consider a tile tree with 8 as root. 8 has 6,7 as
subtiles with 6 having 1,2,3 and 7 having 4,5 as subtiles.
Tiles 1 and 6 do not conflict because tile 1 is clearly
nested inside tile 6 with higher weightage and hence
the page size assignment for tile 6 is after that for 1,
2 and 3 . Also tiles 3 and 4 do not conflict: if tiles 3
and 4 require different page sizes for the arrays, then
the page promotion code will be placed in tile 8, which
is less frequently executed. Hence while considering
tile 4, there is no need to consider tile 3. Tiles 3 and
4 are weakly linked. When page sizes in tiles 1 and
2 are different, the promotion code will be placed in
tile 6. Hence tiles 1 and 2 are also not weakly linked.
In summary, tiles (172)7 (2 , 3) , (1,3), (4,5) and (6 ,7)
conflict whereas tiles (1,6) and (3,4) do not.

4.3.2 A Greedy Algorithm

In the first phase (see Figure a), we visit the most fre-
quently executed tile and determine its optimal page
size assignment. Then we visit its conflicting tiles and
find their page sizes. In the second step, the algorithm
traverses internal nodes in the tile tree bottomup to
locate those arrays which are not referenced in their
children but referenced in the node itself and allocate
page sizes depending upon the reference patterns as in
step 1.

5 . Conclusions and Further Work

In this paper, we have shown that PSA is an NP-
hard problem and presented integer programming for-
mulations. A greedy algorithm in the context of page
promotion and demotion has been also presented.

Compiler directed preloading of the TLB can also be
attempted by this analysis. For example, if an architec-
ture supports only a single page size and some array
is found to require a page size larger than the only
page size available, then the the pages corresponding
to the rest of the larger page can be preloaded the first

4This suggests an overall policy of providing a slightly larger
page size than needed and an one-time demotion if appropriate.

for each level in the tile tree do
while there is any unvisited tile do
begin

Select the unvisited tile ti with the

Find optimal page size assignment AS; for ti
Mark ti as visited
Make a queue of tiles that conflict with t; and

for each tile t j from the queue do
begin

highest execution freq

order it by execution frequency

1.Find optimal page size assg AS,,, for t j
without considering AS;. Add to it the
cost of promoting AS; to Asopt. Also
if there is any other tile t k that conflicts
with t j and is marked ‘visited’, add the
cost of promoting ASopt to Ask.

2.Find the cost of assigning AS; to t j .
3.Find the cost of assigning ASk to t j .

Select the AS from above three with
minimum cost and assign it to ASj.
Mark t j as visited.
Add to the queue all the tiles that conflict
with t j and are not visited and sort
the queue by frequency of execution.

end
end
end

Figure 2. Algorithm for page size selection
using page size promotion and demotion

time the first part is brought in. Similarly, for an ar-
chitecture supporting multiple page sizes whose sizes
are wide apart, a similar preloading may be attempted
by assuming that other page sizes are available and
proceeding with the analysis. This can be useful as
RISCs are beginning to provide hardware support for
cache-line prefetch and some OSs are starting to ex-
periment with more sophisticated pagers that accept
preload hints.

References

[CK 911 Callahan D., Koblenz B., “Register Allo-
cation via Hierarchical Graph Coloring”,
PLDI’S1.

[TKH 921 Talluri M., et al “Tradeoffs in Supporting
Two Page Sizes” , ISCA’92.

[TDF 901 George Taylor et a1,“The TLB slice,”
ISCA’SO.

194

