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Abstract 

To support high performance architectures with mul- 
tiple page sizes, it is necessary to assign proper page 
sizes for array memory in order to improve TLB per- 
formance as well OS  reduce memory contention during 
program execution. Typically, while Q smaller page size 
causes higher TLB contention, a larger page size causes 
higher memory contention and fragmentation but also 
has the effect of prefetching pages required in future 
thereby reducing the number of cold page faults. Each 
array in a program contributes to these costs/benejits 
depending upon how it is referenced in the program. 
The page size assignment analysis determines a proper 
page size for every array by analyzing memory refer- 
ence patterns (which is shown to,be NP-hard). We dis- 
cuss various policies that can be followed for page size 
assignment in order to maximize performance along 
with cost models and present algorithms for page size 
selection. 

which TLB size can be increased depends upon whether 
we use a physically or virtually tagged cache but both 
have negative effects. A second solution is to use a 
larger page size, so that TLEis can map a larger frac- 
tion of the main memory without having to hold more 
number of entries; however, this increases fragmenta- 
tion and the size of the working sets of the program. 
[TKH 921 show that increasing the page size from 4 
KB to 32 KB causes a significant increase in the work- 
ing set size (namely 60%) but a reduction in TLB’s 
contribution to the CPI by a factor of eight. 

Another solution, the sub-iect of this paper, is the 
use of multiple page sizes. Tb effectively use multiple 
page sizes available in an architecture for improving 
overall system performance, a, proper page-size assign- 
ment policy is needed. We need to solve two problems 
in an OS or compiler: how is the the address space of 
the program to be divided into different regions and 
what criterion to apply to assign a particular page size 
to each region. We consider only the problem of page 
size selection by static program analysis and do not 
consider the OS-based approaches. 

1. Introduction 
2. Page Size Assignment is NP-Hard 

As memories get larger and cycles per instructions 
(CPI) of processors get smaller, the time spent in TLB 
miss handling can become a performance bottleneck. A 
decade ago, machines had relatively smaller memories 
and hence the TLB could map a substantial fraction 
of main memory. The programs at  that time also had 
smaller working sets; hence, the TLBs missed less fre- 
quently. On architectures with inverted page tables or 
hash tables, such as PowerPC, the cost of a TLB miss 
is even much greater. 

There are many ways in which one can improve the 
performance by reducing the time spent on TLB miss 
handling: it can be in hardware, compilers or operat- 
ing systems. One solution is to make the TLB larger 
to hold more number of entries. However the extent to  

*Author for correspondence: gopiQcsa.iisc.ernet.in 

Let n be the number of arrays in the program and 
let m page sizes be available on the machine. With 
each assignment of a page size to an array, we asso- 
ciate some cost (memory contention) and some profit 
(TLB savings and prepaging). These costs cannot be 
computed from memory access patterns alone as the 
memory contention caused by other arrays in turn de- 
pends upon the page sizes assigned to them. Hence, 
in general, it might be necessary to consider all com- 
binations of arrays and page sizes rather than treating 
each array independently ancl compute the minimum 
cost. Given thus a collection of n sets with each el- 
ement of the set containing 7n tuples with each tuple 
having pagesize ( p ) ,  cost ( e )  and memory used (w) as 
components, the page size assignment problem (PSA) 
is then to select one tuple from each set such that total 
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weight is less than W where W is the main memory 
size and the total cost is minimized. 

The decision problem for PSA is as follows: Given n 
sets, each of m elements, is it possible to  choose one el- 
ement from each set such that total weight is less than 
W, and total value is greater than a given number V,? 
This problem can be proved to be NP-hard by reduc- 
tion to the Knapsack decision problem (KNAP): Given 
n elements, is it possible to select a set of elements 
whose weight is less than W k  and value greater than 
vk? From an instance K of decision problem KNAP, we 
construct an instance P of the decision problem PSA 
such that K has a solution if P has a solution. For 
simplicity, we take m = 2 (only 2 page sizes) in the 
following reduction. 

K: Given a set S = { a l ,  a2, .., a,} and W k  and &, 
does there exist a subset S’ such that CarESj W,, 5 

Construct P with n sets 

Wb, = 1 for each b i ,  W, = W k ,  and v, = v k  $. n. 

wk and E,,gS: vu, 2 vk? 

{al ,  h},  {a2, b}, .., {an, b , }  where vb, = 1 and 

If there exists a solution set S” = {cl,  c2, ..., e,.} for 
P (with ci = ai or ci = bi), satisfying CclES,: W,, 5 
W, and CcrESff V,, 2 V,, remove those cl’s that are 
not al’s to  give a new set S”’. 

As ~ , , E S , , ,  W,, 5 W,, it follows that 
CCfES,,, W,, 5 wk, and as CcrES,l, K l  2 V, - n,  it 
also follows that E,, E S l l /  Vel 2 V k .  

Hence S”’ satisfies K. 0 

3. Page Size Assignment Policies 

3.1. An Operating System Approach 

Page clustering considers faulting of clusters of small 
pages combined with TLB miss tracking by the OS to 
determine benefit of allocating a larger page size. Tal- 
luri et al. [TKH 921 divide the address space into var- 
ious regions and then assign proper page sizes to each 
region. During the execution of the program, the OS 
maintains a list of all blocks accessed in the last T ref- 
erences (around 10 million). The decision to  promote 
a chunk to a large page depends upon the number of 
blocks accessed within the window of the last T refer- 
ences. If all the blocks in a chunk have been accessed, 
then the chunk should certainly be mapped as a large 
page. If only one block has been accessed, then the 
chunk remains mapped as a small page. The thresh- 
old used to  promote the page size is whether half or 
more blocks in a chunk have been accessed, so that,  at  
the worst, the working set size is only doubled (and of 
course the TLB performance is similar or better than 
if only small pages are used). This policy uses the 

inherent spatial locality in the programs without the 
compiler or OS taking care to  align the data  struc- 
tures on the page boundaries. This policy increases 
the working set size from 1% to 20% but TLB perfor- 
mance improves by a factor of 3 to  8 [TKH 921 with 2 
pages of 4 and 32 KB. 

However, there are certain costs to  the approach. 
Page promotion can be costly, especially as it is invari- 
ably associated with copying the smaller pages into a 
larger page. Another point to  note is that many archi- 
tectures do not support small increments in page sizes 
(say 4-32K). For example, the increment can be as large 
as 256K (HP-PA) to  4MB (SuperSparc) from one page 
size to the next. In this situation especially, the copy 
costs can make the promotion strategy impractical. 

In addition, many programs can be divided into vari- 
ous segments with each segment having a characteristic 
behaviour; it is more logical to observe the behaviour 
in each segment and then determine which page size 
will be more suitable for a particular array consider- 
ing all program segments than the behaviour in last T 
references during the program execution. 

3.2. A Compiler Approach 

A compiler can analyze the loop structureof program 
(given by the abstract syntax tree-AST) and the array 
references with their subscript expressions) to  find the 
memory reference pattern of the arrays. Then it can 
determine the optimum page sizes for the arrays that 
will improve TLB performance without much increase 
in the working set size by minimizing the overall cost 
due to  TLB contention and memory contention. Sys- 
tem calls have to  be added in the code to  inform the 
OS about aligning the pages and assigning page sizes to  
the arrays. Let us consider various criteria that can be 
used for page-size assignment, starting from the sim- 
plest ones. 

Stride: The stride of an array reference inside a 
loop is the distance between the two elements of the 
array accessed in successive iterations. Assume that 
there are only two page sizes. Then for an array refer- 
ence inside a nested loop, if the stride is greater than 
the small page size and less than the larger page size 
(and the memory utilization is also acceptable), then 
the array should be given the large page size since every 
iteration of the loop will need a new TLB entry thereby 
causing very high TLB contention. If the total size of 
the array is less than the small page size, or if the total 
address space of the array needed to  be accessed within 
the entire execution of the loop is less than the small 
page size, then the array should not be considered for 
assigning large page size. Further analysis is needed if 
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these simple conditions do not hold. 
Array Reference Patterns: If an array is re- 

ferred at  two or more different places in the program 
and these reference patterns are very different, differ- 
ent page sizes may be necessary. Unlike the case where 
the OS decides the page sizes, a compiler can determine 
how many times page size promotion and demotion are 
needed. However, promoting the page size of an ar- 
ray has certain costs associated with it as given below 
[TKH 921: these costs are somewhat complex to deter- 
mine as even the TLB miss penalty varies depending 
on whether 1 or more page sizes exist'. 

1: Cost of updating the mapping data structures 
and invalidating TLB entries for the small pages. This 
is about 20-50 cycles for each entry for TLB misses 
handled in software. 

2: Copying the small pages already in memory to 
one large page. This can be from 3-20 cycles per word 
depending on the architecture, caching, memory laten- 
cies and the care with which the routines are written 
(especially, software pipelining). This is by far the 
largest cost. Hence dynamically changing page sizes 
has to be carefully evaluated: this is one reason why 
compile-time analyses may be better in many situa- 
tions. Page coloring (see Section 4.3) or similar tech- 
niques may mitigate the expense of this cost and may 
be necessary for it to be useful. For the same reason, 
page size promotion handled by the compiler (provid- 
ing different page sizes at  different points in the pro- 
gram depending on the reference patterns) also has to 
be carefully evaluated. 

3: Paging in/zeroing the small pages not resident 
in the memory. This cost can be considerable as it 
involves, in addition, a disk access; this access, how- 
ever, is typically masked in multiprogramming envi- 
ronments. The cost of a full context switch with disk 
access masked is around 20000 cycles for SPARC. In 
batch environments, the full cost of paging has to be 
absorbed unless it is masked by multithreading. 

Because of the expense of the copy costs, a static 
analysis that determines the page size at  compile time 
is preferable. 

Programming Environment: In a batch envi- 
ronment (large scientific applications), then the TLB 
state and the memory state will be governed by the 
program alone. We need information about the differ- 
ent references that conflict (and hence affect page size 
decisions of one another), so that the conditions im- 
posed by them on one another can be formulated in 
the form of constraints to minimize the cost. A differ- 
ent analysis is needed for the multiprogramming case 

lFor Sparc, with 2 page sizes, the miss handling is 25% longer 
in code [TKH 921. 

(section 4.2.1.) 
Structure of Program: The memory and TLB 

contention costs associated with an array reference de- 
pend also on the loop nestin,g level of the array refer- 
ence in the program. 

In this work, we take all of the above concerns into 
account but placing the highest importance to program 
structure. We introduce tile trees for analysing pro- 
gram structure in the next section and formulate the 
PSA problem in the context (of tile trees. 

4. Tile Trees and PSA 

The concept of tile tree was first introduced by 
Callahan [CK 911 for exposing a program's loop and 
conditional structure and for better placement of spill 
code in register allocation. Although the intuitive con- 
cept of tile tree used here is similar, it has been modi- 
fied substantially for the page size assignment problem. 
In the register allocation problem, the tile tree is con- 
structed using the control flow graph of the program 
with the elements of a tile being basic blocks. Here, 
the tile consists of various array references which are 
in the same loop nest. The tile tree is constructed from 
the AST of a program. 

A tile tree groups references together and eases the 
compiler's task of formulating constraints for the con- 
flicting references. It can also be used for page size 
promotion and demotion so that page size assignment 
is sensitive to the program structure. The page size 
promotion and demotion code can be places iin infre- 
quently executed portions of the program and at  the 
same time satisfying the page size requirements of the 
various regions. 

4.1. Preliminaries 

Let R be the set of all array references in tlhe pro- 
gram. For simplicity, we consider only structured 
loops. Let T be a collection of sets t l ,  t 2 ,  ... t ,  of refer- 
ences which covers the set R. We call T a tile tree and 
each element ti of T a tile if the following conditions 
hold: 

1: Each pair of sets in T is either disjoint or one is 
proper subset of the other. If there exist two tiles ti 
and t j  such that ti c t j ,  then i i j  is an ancestor of t i .  If 
there is no tile t such that ti c t and t c t j ,  then ti is a 
child of t j ,  and t j  is the parent, of t i .  Define the re f  ( t )  
to be the set of those references which belong to  tile t 
but do not belong to any child tile o f t .  

2: There is a special tile (the root tile) which con- 
tains all the references in R. 
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for(i=O;i<nl;i++) 

d[i]b] = 5; 
i 

hlj+i][k] = 1024+c[i][k+j]; 

1 
J I 

t=d[5*i+lOO][i]; 
a[i][i+l]=k; 
for(j=o;j<n4;j++) I 

g[il lil=alil [~I*Y [il[i+jl; 
{ 

to 

t l  

4 

t3  

t6 

t4 r 

Figure 1. Division of a Program into Tiles 

3: Tile t; is a child of tile t j  iff there exist two it- 
erative nodes’ NI and N2 in the AST such that N2 is 
nested inside N I ,  and r e f ( t j )  contains all but no more 
than the references in the statements that belong to  
the body of N I  but not to the body of N2 and r e f ( t i )  
contains all but no more than the references in the 
statements that belong to  the body of N 2 .  

In our definition, there is only one tile tree possible 
for a given program but it is not so for the approach 
described in [CK 911. If a loop is tightly nested within 
another, r e f ( t )  of the tile corresponding to the outer 
of the two loops is empty. The depth of a tile in a tile 
tree gives the nesting level of the references in that tile. 
Consider the program in Figure 1. Root tile tO has t l  
(with arrays a,d) and t 2  ( g , e , d , x )  subtiles. t l  has t 3  
( d , e , f )  and t4(a,y,g). t 2  has t5  ( c , e ,g ) .  t3  has t6(c,h). 

Every tile in the tile tree corresponds to  a loop and, 
in an implementation, contains the nesting level of all 

2in our AST implementation: DOJUODE, DO-WHILE or 
REPEAT-WHILE 

the references in the tile, the bounds of the iterative 
variables for the current loop and the encompassing 
loops, a pointer to the child tile, a pointer to the sibling 
tile with the leftmost child followed by the right siblings 
and the linked list of references. Every reference in the 
tile tree contains a pointer to  the symbol table entry 
for the array referred, memory reference expressions 
for the reference with the affine subscript expressions 
linearized, and a pointer to  the next reference in the 
tile. We currently do not handle array references that 
are non-affine or with array bounds that are not known 
at compile time. 

4.2. Optimization Problem Formulation 

To compute the cost of a page size being assigned 
to an array, we have to  compute costs and profits for 
all references in the program. At different points in 
the program, the costs may be different and we have 
to give weightage to each reference depending upon 
its frequency of execution. We first consider the case 
without page promotion. We later relax this condition 
for the batch case. 

4.2.1 Multiprogramming Environment 

The CPU time spent in handling the TLB misses can 
be directly computed from the number of TLB misses, 
since it takes a fixed number of machine cycles to  
handle a TLB miss. However, the CPU time wasted 
due to  page faults in a multiprogramming environ- 
ment depends also on the process scheduling policy, the 
scheduling quantum, the size of physical memory, the 
number of applications currently active, etc. It is likely 
that these factors also have a non-linear behaviour. If 
we assume that all the above are kept constant and 
that the process scheduling policy schedules the pro- 
cesses so as to  keep resources like main memory fully 
utilized, then under these simplifying assumptions, ev- 
ery extra page required in an application will cause 
a corresponding page fault in another and every extra 
TLB entry allotted to an application causes a TLB miss 
in another. Hence the TLB contention cost is propor- 
tional to the number of TLB entries required and the 
memory contention cost is proportional to  the amount 
of memory consumed. Let 

t i j  = TLB entries required by a particular reference 
when a page size i is assigned to array j, 

mij = Memory required by a particular reference 
when a page size i is assigned to array j ,  

x;j = 1 if page size i is assigned to  array j ,  else 0 
t = total TLB requirement in a tile, 
m = total memory requirement in a tile, 
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ct = cost of TLB contention in a tile, 
c, = cost of memory contention in a tile, 
c = overall contention cost for a tile. 
w = weightage assigned to a particular tile. 
Then, 

j=1  i=l 

and 
n 1  

m = C m i j x i j  

j=1 i = l  

Since the TLB contention cost is proportional to 
the number of TLB entries required and memory con- 
tention cost is proportional to the amount of memory 
required, we have 

ct = k l  * t ,  and 
c, = k2 * m, and 
c = w * (ct + c,) 

where k l  and k2 are constants. These constants have 
to be measured in a real environment but we can make 
the following estimates: k l  can be taken to be cost of 
handling a TLB miss and k2 is the cost of a full context 
switch per page size plus the cost of DMA/zeroing per 
word (assuming that the disk 1/0 is fully masked). We 
assume kl to be about 20 cycles and k2 to be about 5 
cycles per extra word. 

xij = 1 for all j and 
minimize Cc over all the tiles gives us the optimal page 
size assignment. As this is an integer programming 
formulation, it can take exponential time in ,the worst 
case but heuristics can be used to solve it in reasonable 
time. 

The xij’s that satisfy 

4.2.2 Batch Environment 

In this case, the cost of TLB (memory) contention for 
an array reference is not proportional to number of 
TLB entries (amount of memory space) needed for that 
reference, but also depends upon the contention due to 
other references in that tile. The page sizes of conflict- 
ing references also determine the cost of TLB (memory) 
contention. The TLB (memory) cost can be related to 
the number of TLB entries (amount of address space) 
by a function which can assumed to be piecewise lin- 
ear, as an increase in the TLB entries does not increase 
TLB contention much until a limit is reached. Past this 
limit, however, there is a cost for every additional TLB 
entry needed. Similar is the case with memory con- 
tention. To solve this non-linear integer programming 
problem, we introduce integers 61, 62, S3 and 64 which 
hold values 0 or 1 depending upon whether the above 
mentioned limit is exceeded or not. 

The total TLB and 
can be given as: 

t =  

and 

m =  

memory requirement for a tile 

Here, the TLB and memory contention costs are not 
proportional to the number of entries required, but are 
given by: 

Ct = 61 * t l  * Ctl + S2 * ( t 2  * Ct2 + a t )  

c, = 63 * m l  * cm1 + 64 * (m2 * cm2 + am) 
c = Ct + c, 

61t 5 t to t ,  the needed number of TLB entries 
S2t > t t  
S3m 5 mto t ,  the needed amount of memory 
S 4 m  > m t  

t l  = t ,  t 2  = t - ttot 

m l  = m, 1 n 2  = m - mtot 
at = ttot * Ctl, am = m o t  * cmlt and 

c t l ,  ct2, cm1, c,2 are the cost coefficients of the TLB 
and memory contention in the two regions of the piece- 
wise approximation. 

Then the xij’s that satisfy Cy=1 xij = 1 for all j ,  
and which minimize Cc over all the tiles, gives the op- 
timal page size assignment. 

subject to the condition that 

where, 

4.3. Page Size Promotion 

In this case, we have the choice of assigning differ- 
ent page sizes to the same array in different regions 
of the program, if references at  different regions need 
different page sizes. We order the tiles according to 
their frequency of execution and assume that the cost 
of promoting a page size for an array is prolportional 
to the factor by which page size is increased (as those 
many pages will have to be copied into a single page). 
As discussed earlier, the cost of page promotion can 
be considerable due to the copy costs and hence this 
optimization has to be carefully evaluated. Page pro- 
motion may be advantageous if the page size increment 
is small or techniques like page coloring are used that 
reduce copy costs as contiguous virtual pages also are 
often contiguous in physical space. We assume that 
one of these techniques is in use when page promotion 
is attempted. 

3Page coloring attempts to maintaina constant offset between 
VPN and PPN in the interests of reducing variance in execution 
times[TDF 901. 
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A similar analysis holds for page size demotion but 
the cost of demoting a page is less as there is no copying 
involved and only page table and TLB entries have to 
be appropriately changed ‘. 

4.3.1 Conflicting Tiles 

The tiles that have the same parent and will be ex- 
ecuted one after another conflict with one another. 
When selecting page sizes for a tile, we have to con- 
sider the page sizes in the conflicting tiles also. 

Consider a tile tree with 8 as root. 8 has 6,7 as 
subtiles with 6 having 1,2,3 and 7 having 4,5 as subtiles. 
Tiles 1 and 6 do not conflict because tile 1 is clearly 
nested inside tile 6 with higher weightage and hence 
the page size assignment for tile 6 is after that for 1, 
2 and 3 .  Also tiles 3 and 4 do not conflict: if tiles 3 
and 4 require different page sizes for the arrays, then 
the page promotion code will be placed in tile 8, which 
is less frequently executed. Hence while considering 
tile 4, there is no need to consider tile 3.  Tiles 3 and 
4 are weakly linked. When page sizes in tiles 1 and 
2 are different, the promotion code will be placed in 
tile 6. Hence tiles 1 and 2 are also not weakly linked. 
In summary, tiles (172)7 ( 2 , 3 ) ,  (1,3), (4,5) and (6 ,7)  
conflict whereas tiles (1,6) and (3,4) do not. 

4.3.2 A Greedy Algorithm 

In the first phase (see Figure a), we visit the most fre- 
quently executed tile and determine its optimal page 
size assignment. Then we visit its conflicting tiles and 
find their page sizes. In the second step, the algorithm 
traverses internal nodes in the tile tree bottomup to 
locate those arrays which are not referenced in their 
children but referenced in the node itself and allocate 
page sizes depending upon the reference patterns as in 
step 1. 

5 .  Conclusions and Further Work 

In this paper, we have shown that PSA is an NP- 
hard problem and presented integer programming for- 
mulations. A greedy algorithm in the context of page 
promotion and demotion has been also presented. 

Compiler directed preloading of the TLB can also be 
attempted by this analysis. For example, if an architec- 
ture supports only a single page size and some array 
is found to require a page size larger than the only 
page size available, then the the pages corresponding 
to  the rest of the larger page can be preloaded the first 

4This suggests an overall policy of providing a slightly larger 
page size than needed and an one-time demotion if appropriate. 

for each level in the tile tree do 
while there is any unvisited tile do 
begin 

Select the unvisited tile ti with the 

Find optimal page size assignment AS; for ti 
Mark ti as visited 
Make a queue of tiles that conflict with t;  and 

for each tile t j  from the queue do 
begin 

highest execution freq 

order it by execution frequency 

1.Find optimal page size assg AS,,, for t j  
without considering AS;. Add to it the 
cost of promoting AS; to  Asopt. Also 
if there is any other tile t k  that conflicts 
with t j  and is marked ‘visited’, add the 
cost of promoting ASopt to  Ask. 

2.Find the cost of assigning AS; to  t j .  
3.Find the cost of assigning ASk to t j .  

Select the AS from above three with 
minimum cost and assign it to ASj. 
Mark t j  as visited. 
Add to the queue all the tiles that conflict 
with t j  and are not visited and sort 
the queue by frequency of execution. 

end 
end 
end 

Figure 2. Algorithm for page size selection 
using page size promotion and demotion 

time the first part is brought in. Similarly, for an ar- 
chitecture supporting multiple page sizes whose sizes 
are wide apart, a similar preloading may be attempted 
by assuming that other page sizes are available and 
proceeding with the analysis. This can be useful as 
RISCs are beginning to  provide hardware support for 
cache-line prefetch and some OSs are starting to  ex- 
periment with more sophisticated pagers that accept 
preload hints. 
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