

Communicating Data-Parallel Tasks:
An MPI Library for HPF *

Tan T l+vder LULL I. IV”“Ul
David R. Kohr, Jr.

Mathematics and Computer SC. Div.
Argonne National Laboratory

Argonne, IL 60439
{foster,kohr}@mcs.anl.gov

RnliPsh Wrishn.aivcr AIIcyI>V”II “““““‘“‘J VI
Dept. of Electrical Engg. ‘& Computer SC.

Syracuse University
Syr&use, NY 13244
rakesh@cat .syr .edu

Alok Choudhary
ECE Dept., Technological Institute

Northwestern Univ., 2145 Sheridan Road
Evanston, Illinois 60208-3118

choudhar@cat.syr.edu

Abstract

High Performance Fortran (HPF) has emerged as a
standard dialect of Fortran for data-parallel computing.
However, HPF does not support task parallelism or het-
erogeneous computing adequately. This paper presents
a summary of our work on a library-based approach to
support task parallelism, using MPI as a coordination
layer for HPF. This library enables a wide variety of
applications, such as multidisciplinary simulations and
pipeline computations, to take advantage of combined
task and data parallelism. An HPF binding for MPI
raises several interface and communication issues. We
J.‘̂ ^_.^^ -IL _^_ I ̂ ^_^^ -...J .I...-IL. ^_._ 1-^-1^-^_-~^~:^- a‘sc’ass Laese zssu(Lcs ana LLCSC7~Z”t: “UT~ zmpIcmc1LLaLL”n
of an HPF/MPI library that operates with a commer-
cial HPF compiler. We also evaluate the performance
of our library using a synthetic communication bench-
mark and a multiblock application.

1. Introduction

High Performance Fortran (HPF) provides a
portable, high-level expression for data parallel algo-
rithms [5]. An HPF computation has a single threaded
control structure, global name space, and loosely syn-
chronous parallel execution. Many problems that need

‘This work was supported in part by NSF grants CCR-
9357840 and CCR-9509143.

high performance implementations are amenable to
data-parallel solutions.

However, HPF does not address task parallelism or
heterogeneous computing adequately. There are many
applications which are not easily expressed using H.PF
alone [4, 21. Examples of s,uch applications include:
multidisciplinary applications where different modules
represent different scientific disciplines and may be ex-
ecuted on different parallel machines, applications in-
volving irregularly structured data, and many image
processing applications whic.h are best structured as a
pipeline of data parallel tasks. These alpplications must
exploit both task and data parallelism for efficient exe-
cution on paraiiei machines cli- in a heterogeneous envi-
ronment. An integrated task/data-parallel framework,
where each task is a data-parallel colmputation, can
provide improved modularity and scalability.

In this paper, we describe our design and implemen-
tation of a library-based approach to provide integra-
tion of task- and data-parallelism. Programmers call
functions defined in the library for communication and
synchronization between tasks. This can he contrasted
with a language-based apprl3ach, where one uses ex-
plicit language constructs. Developing language exten-
sions involves defining new s,yntax and semantics, en-
hancing the compiler’s parsing and analysis phases to
handle the new language constructs, and building run-
time system support for them. In contrast, a libraty-
based approach is simpler, in that it requires only
that an appropriate applications programming inter-

O-8186-7557-8/96 $5.00 0 1996 IEEE
433

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

face (API) be defined and implemented. The tradeoff
is that the applications programmer needs to deal with
the synchronization and communication details, which
are handled automatically by the compiler when lan-
guage extensions are used.

We use the widely accepted message passing stan-
dard MPI [3] as a coordination layer for multiple HPF
tasks. Unlike the use of MPI for sequential languages,
here each MPI process is in fact an HPF task execut-
ing on several processors. Hence the library provides
an HPF binding for MPI. Note that MPI is used as
an interface definition here, and not (necessarily) as an
implementation tool.

Some important practical benefits of the HPF/MPI
approach are given below:

l The library enables one to write a wide variety of
SPMD style task parallel computations. Exam-
ples of such applications are multiblock codes and
pipeline computations.

l The library provides a portable mechanism for
transferring data between HPF computations and
programs which make use of external resources for
storage, data visualization, etc.

l It enables composition of new applications from
existing, independent HPF programs in a manner
..-..I ^_^..^ A,. TThTTV -:--- dllal”g”Us b” “IYkl p,pcs.

The next section discusses issues which arise when
developing a library to support communicating data-
parallel tasks. Section 3 illustrates the usage of the
HPF/MPI library with an example program. The de-
tails of the library design and implementation are dis-
cussed in Sections 4 and 5. Experimental results show-
ing the overheads of the library and other application
performance results are presented in Section 6. Finally,
Sections 7 and 8 review related work and present our
conclusions.

2. Issues involved in data transfer

Efficient data transfer between data parallel tasks
is a nontrivial problem. Sending and receiving tasks
may execute on different numbers of processors and
use different data distributions for communicated data
structures. Tasks may execute on different computers
connected by various types of networks such as Ether-
net or ATM. The data to be transferred may be fully
distributed, using block or cyclic distributions in one or
more dimensions, or may be replicated. Finally tasks
may perform a series of transfers using the same data
distributions, in which case, it is useful to pre-compute
and reuse communication schedules.

Direct Communication

Figure 1. An efficient strategy for data transfer
that relies on direct communication between
senders and receivers. In this example, there
are 4 processors on the sender side and 2 on
the receiver side.

Different strategies can be adopted to perform the
data transfer between a pair of tasks. The important
factors to be taken into account include total commu-
nicated data volume, number of messages, the distribu-
tion on each side and the amount of buffering required
in each processor.

An efficient strategy is to first exchange data distri-
bution information and then perform the data transfer
between the senders and receivers directly. Note that,
in general, each processor on the sending side needs
to communicate with a subset of processors on the re-
ceiving side and vice versa. Algorithms developed for
array redistribution can be used to compute an efficient
communication schedule. This strategy is illustrated in
Figure 1.

3. HPF/MPI library

The basic execution model is one in which a compu-
tation consists of a collection of tasks. Each task is an
HPF program executing on one or more processors. A
task can also be considered as a logical MPI process.
Tasks communicate and synchronize with each other
using standard MPI functions for performing point-
to-point or collective communication operations. The
communicated data might have different HPF distribu-
tions in the participating tasks. It is the responsibility
of the library to perform the data transfer between the
processors involved, conforming to these distributions.

We illustrate the use of the HPF/MPI library using a
simple pipelined 2D-FFT code. In this example, there
is a series of 2 dimensional arrays (or images) flowing in
a pipeline. For each array, we perform 1D FFTs along
the columns followed by 1D FFTs along the rows. This
pipeline computation can be designed to be executed
as two tasks as illustrated in Figure 2. The first task
performs the column FFTs; the modified array is then
communicated to the second task which executes the
row FFTs on the intermediate results. An HPF/MPI

434

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

Figure 2. 2D-FFT pipeline structured as 2
tasks.

implementation of this computation is shown in Figure
3. The array has a column-wise distribution in task
0, and row-wise distribution in task 1 so that the 1D
FFTs do not involve any communication.

The function MPI-COMMSIZE returns the total num-
ber of tasks (in this case, 2) and MPI-COMM-RANK pro-
vides the task ID of the current task among all the
tasks. The functions MPISEND and MPIRECV are used
for communication of the array between the two tasks.
The programmer needs to specify, in an implementa-
tion dependent manner, the number of processors ex-
ecuting each task (for example, 2 processors executing
task 0 and 3 processors executing task 1).

4. Details of the library

We use the direct communication strategy to per-
form the data transfer between the sending and re-
ceiving processors in a point-to-point HPF/MPI com-
munication operation. The steps involved in.a typical
operation are as follows:

1. Each processor that belongs to a sender or receiver
task determines the distribution of the communi-
cated array. This distribution information is ex-
changed between the senders and the receivers.

2. Using the FALLS algorithm [7], each processor
computes a set of point-to-point communication
operations to be performed.

3. Each processor performs the actual set of commu-
nications computed in the previous step.

This scheme has the following benefits:

l Due to optimality of FALLS, only minimum data
is transmitted between processors.

. It minimizes the total number of messages ex-
changed, since each sender communicates only
with those receivers which require data from it,
and vice-versa.

program two-dim-fft
include 'mpihpf.h'
parameter (N=256, NITER=lOO)
complex a(N,N), b(N,N)

!HPF$ processors pr(NumberJf-Processors())
!HPF$ distribute a(*,BLOCK), b(BLOCK,*) onto pr

call MPI-Initcierr;
call MPI~Comm~size~:MPI~COMM~WORLD,

$ nprocs, ierr)

!Determine which task am I: task 0 or task i
call MPI~Comm~rank~~MPI~COMM~WORLD,

$ myid, ierr)

do k = 1, NITER
if (myid .eq. 0) then ! column task

forall(i=l:N, :l=l:N) a(i,j)=(l.O,O.O)
!Perform the column ffts OIL array a

call colfft(N,a)
!Send the intermediate result to task 1

call MPI~Send(a,N*N,MPI.~COMPLEX,l,SS,
$ MPI-COMM-WORLD,ierr)

else ! I am task 1: row task
!Receive from task 0 onto array b

call MPI~Recv(1~,N*N,MPI,~COMPLEX,O,99,
$ MPI~CIIMM~WORLD, status,ierr)

call rowfft(N,'o) ! Perform the rowffts
call write-out:?ut(b) ! !jave the result

endif
end do

Figure 3. HPF/MPI Implementatian of 2-D FFT

435

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

l It keeps buffering requirements low, since the send
or receive buffer required on a processor need only
be as large as the largest array portion sent or
received by that processor.

4.1. FALLS algorithm

The communication of a distributed data structure
from one task to another can be considered as a redis-
tribution of data from one processor subset to another.
Th_e FAT T 5 (FAmiLy of Line Segments‘l al!zorithm uses ---1JL , ~-o.--.----- _---
an efficient representation of data distribution and uses
novel techniques to extract a minimal sequence of com-
munication operations to be performed to achieve this
redistribut,ion. It scales linearly with the number of di-
mensions and processors and handles all HPF data dis-
tributions. The communication pattern generat,ed can
be modeled as many-to-many communication between
the sending and receiving processors. More details can
be obtained from [7].

4.2. Optimizations

Many applications involve a series of data transfers
involving the same redistribution. For example, a 2D-
FFT pipeline involves communicating images with the
same distribution repeatedly from one task to another.
In such cases, the communication schedule generated
by the FALLS algorithm can be pre-computed. This
amortizes the cost of distribution information exchange
and schedule generation over a number of data trans-
fers.

We make use of the MPI persistent requests to
provide such hints to the HPF/MPI library. An
HPF program can define a persistent request using
MPISENDXNIT or MPI-RECV-INIT. Such a function
call causes the library to compute the communication
schedule for such a redistribution and cache the results.
The actual communication can then be performed mul-
tiple times by calling MPISTART.

5. Implementation

We have implemented a prototype HPF/MPI li-
brary that operates with pghpf(version 2.0), a commer-
cial HPF compiler, developed by the Portland Group,
Inc. We have defined an interface between our library
and pghpj which requires only minimal modifications
to PU~PPS runtime system. This makes it easy to port _I .”
our HPF/MPI library to other HPF compilers.

Most of the HPF/MPI library is written in SPMD-
style C code containing explicit message-passing calls.
Though HPF itself provides only a loosely-synchronous

data-parallel execution model, it contains an eztrin-
sic interface for performing calls to other, foreign lan-
guages which ma.y utilize ot.her styles of parallelism.
We use the HPF extrinsic interface to gain flexibility
in the implementation of our library, while retaining
portability across different HPF compilation systems.

The library is structured in a modular manner using
multiple levels. At the highest level, MPI calls in an
application invoke functions in an HPF module within
our library. Each polymorphic MPI function is repre-
sented as a Fortran 90 generic procedure. In turn, each
generic procedure is implemented by a number of differ-
ent HPF functions, one for each possible array rank and
element type (INTEGER, REAL, COMPLEX, etc.).
As an example, the blocking send operation is invoked
using a function with generic name MPISEND irrespec-
tive of the datatype of the array or its rank.

These HPF library functions use HPF inquiry in-
trinsic routines such as HPFDISTRIBUTION to deter-
mine such attributes of arrays as the extent of their
dimensions, the shape of the processor grid over which
they are distributed, and the form of their distribution
across processors. This information is then passed on
to a lower level of the library, which is written in C and
therefore invoked using the HPF extrinsic interface.

At this level, the FALLS algorithm is used to com-
pute a set of point-to-point communication operations
to achieve the data transfer. Data to be transmit-
ted must be first copied onto a contiguous buffer. In
our implementation, for portability, we have used MPI
as the actual transport mechanism. Nevertheless, the
modular design of the HPF/MPI library makes it feasi-
ble to use a communication substrate other than MPI.

When MPI is used as the communication substrate,
all processes in a computation are initiated in a man-
ner specific to the MPI implementation. As part of
HPF/MPI initialization, this set of processes is par-
titioned into disjoint subsets using a configuration file
prepared in advance by the user. As another part of ini-
tialization, each HPF task is assigned a separate com-
municator, which is to be used for all internal com-
munication required by the data-parallel computation.
In addition, the data transfer between each pair of
tasks makes use of another communicator. This pre-
vents interference between communication related to
task-parallel HPF/MPI calls and that related to data-
parallel HPF computations.

6. Experimental Results

In this section, we present results from an evalua-
tion of our implementation of the HPF/MPI library.
These experiments were performed on Argonne’s IBM

436

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

Figure 4. Point-to-point communication times
between 2 tasks for different task sizes. 4
ping-2 pong denotes that 4 processors were
assigned for task 0 and 2 processors for task
1.

SP system

6.1. Synthetic ping-pong benchmark

We used the well-known ping-pong method to mea-
sure point-to-point communication times involving 2
tasks. Task 0 executes a send operation (MPISEND)
to task 1, which executes a corresponding receive
(MPIRECV). Then task 1 immediately sends the same
message back to task 0. The test program was executed
a large number of times, and the mean one-way transfer
time was used for interpreting the results. Each array
transmitted using MPI-SEND has an HPF distribution
of (* , BLOCK), and each array received using MPIRECV
has a distribution of (BLOCK, *>. This data transfer
pattern requires each sending process to communicate
with all receivers.

Figure 4 shows the times for point-to-point com-
munication between two tasks for different processor
assignments in tasks 0 and 1. The best intertask
communication bandwidth achieved in this experiment
was 12.3 Mbytes/set. This performance is compara-
ble to that of other communication libraries which,
like HPFJMPI, incur extra overhead from extra buffer
copying.

The time spent in the different phases of the data
transfer were measured to identify the bottlenecks in-
volved. The different phases involved in a send opera-
tion are:

l Time spent in exchanging the data distribution
information.

l Time taken for computing the set of communica-
tion operations to be performed by each processor

Figure 5. Time spent in different phases of a
send operation.

(using the FALLS algorithm).

l Time spent in performing buffer copying.

l Time spent in performing the actuatl communica-
tion.

The mean total time taken by a proBcessor in each
phase is calculated by averaging over all t,he processors.

The break-down of the costs involved in a send op-
eration (for the 2 ping-2 pong configuration) are shown
in Figure 5. The time for perfbrming thle distribution
information exchange between tasks and schedule com-
putation are more or less constant. Foir large arrays,
the buffer copying is a large component of the over-
head. Currently, we are investigating ways to reduce
this, at least for the simple caszs when olnly contiguous
portions need to be transferred.

6.2. Multiblock Application

The multiblock code is an example of an application
involving irregularly structured data wh(ich is not effi-
ciently expressed in HPF. In t,his code, a complex ge-
ometry is decomposed into multiple simpler blocks. A
Poisson solver is run within ea#:h block and the bound-
ary data information is exchanged between blocks pe-
riodically.

In the HPF code, the Poisson solver is run on each
block one after another using all processors, whereas
in the HPF/MPI version, each task’hanldles one block,
and a variable number of pro:essors are allocated for
each task. The blocks werl? distributed in a (*,
block) fashion for both codes.

The graph in Figure 6 shows our results for three
different multiblock configurations. Each configuration
represents a geometry of three square blocks, where
the middle block has a smaller size than the other two

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

60

ci 50
$
.c_ 40

z
F 30

20

10

0 I I

4 6 8 10 12 14 16 18 20
Total number of processors

Figure 6. Execution time for HPWMPI and HPF
implementations of the multiblock code, as a
function of the number of processors.

hlnrlzc The timoc ronnrtd in the manh QPP olrne~rl VIVVI.". IsI- UAIII~U ‘vy”‘u”Y 111 “ALU b’“y” La&,, v’uy”vu

times to convergence. In the HPF code, in each itera-
tion, the boundary values corresponding to all blocks
are exchanged, and then each of the three blocks is pro-
cessed in turn. In the HPF/MPI code, at the start of
each iteration, each task independently communicates
with its neighboring tasks.

We can see that the HPF/MPI code performs bet-
ter than the HPF code in all cases. For the 192 and
256 configurations, communication becomes the bot-
tleneck with 18 processors and the best performance is
obtained with 9 processors.

7. Related work

There has been a lot of work on language-based ap-
proaches for supporting task parallelism. Foster et. al.
[I] present the language integration issues involved in
mixed paradigm programming. Language projects that
focus on the integration of task and data parallelism in-
clude BPF/FMI21. FX 141 and Onus 161 HPF/FM w- , ---L-J, --^ L-J, ---- ‘-T-I L -, - ̂ - - , - _. - -_ _
tends HPF with channels for intertask communication.
Fx creates parallel tasks that communicate by shar-
ing arguments during task creation and termination.
Opus, an extension of Fortran 90, provides a software
layer on top of data parallel languages. A program
executes as a system of tusks that interact by sharing
access to a set of shared data abstractions.

8. Conclusions and future work

We have developed an implementation of a library
based approach for supporting task parallel applica-

tions using HPF. The library opens up the possi-
bility for HPF applications which may be heteroge-
neous in nature. The use of portable features of
HPF in the library implementation eases the job of
porting our library to other compiler systems and
communication mechanisms. Empirical results show
that HPF/MPI applications demonstrate better per-
formance than equivalent pure HPF codes.

Initially, we have selected a small subset of the MPI
standard to be part of the HPF/MPI library. These
functions include point-to-point communication oper-
ations, enquiry functions such as MPI-COMMRANK and

MPI-COMMSIZE and functions that provide support for
persistent operations. Currently, we are investigat-
ing other MPI communication modes (such as buffered
mode, asynchronous mode etc.) for inclusion into the
library. Applications could also benefit from collective
operations involving tasks, dynamic task management,
use of MPI derived datatypes and the ability to han-
dle array sections. Finally, we are also looking at. ways
to further reduce the overheads associated with the ii-
brary through a tighter coupling with the pghpfs run-
time system.

References

[I] K. M. Chandy, I. Foster, C. Koelbel, K. Kennedy, and
C.-W. Tseng. Integrated support for task and data par-
allelism. International Journal of Supercomputer Appli-
cations, 8(2):80-98, 1994.

[2] I. Foster, B. Avalani, A. Choudhary, and M. Xu. A com-
pilation system that integrates High Performance For-
tran and Fortran M. In Proceedings of the 1994 Scalable
High-Performance Computing Conference, pages 293-
300, 1994.

[3] W . Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Processing with the Message-Passing
Interface. MIT Press, 1994.

[4] T. Gross, D. O’Hallaron, and J. Subhlok. Task par-
allelism in a High Performance Fortran framework.
IEEE Parallel & Distributed Technology, 2(2):16-26,
FaH 1994.

[5] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L.
Steele Jr., and M. E. Zosel. The High Performance
Fortran Handbook. MIT Press, 1994.

[6] P. Mehrothra and M. Haines. An overview of the opus
language and runtime system. ICASE Report 94-39,
Institute for Computer Applications in Science and En-
gineering, Hampton, VA, May 1994.

[7] S. Ramaswamy and P. Banerjee. Automatic genera-
tion of efficient array redistribution routines for dis-
tributed memory multicomputers. In Fifth Symposium
on the Frontiers of Massively Parallel Computation,
pages 342-349, McLean, VA, Feb. 1995.

438

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

