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Abstract 

High Performance Fortran (HPF) has emerged as a 
standard dialect of Fortran for data-parallel computing. 
However, HPF does not support task parallelism or het- 
erogeneous computing adequately. This paper presents 
a summary of our work on a library-based approach to 
support task parallelism, using MPI as a coordination 
layer for HPF. This library enables a wide variety of 
applications, such as multidisciplinary simulations and 
pipeline computations, to take advantage of combined 
task and data parallelism. An HPF binding for MPI 
raises several interface and communication issues. We 
J.‘̂ ^_.^^ -IL _^_ I ̂ ^_^^ -...J .I...-IL. ^_._ 1-^-1^-^_-~^~:^- a‘sc’ass Laese zssu(Lcs ana LLCSC7~Z”t: “UT~ zmpIcmc1LLaLL”n 
of an HPF/MPI library that operates with a commer- 
cial HPF compiler. We also evaluate the performance 
of our library using a synthetic communication bench- 
mark and a multiblock application. 

1. Introduction 

High Performance Fortran (HPF) provides a 
portable, high-level expression for data parallel algo- 
rithms [5]. An HPF computation has a single threaded 
control structure, global name space, and loosely syn- 
chronous parallel execution. Many problems that need 
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high performance implementations are amenable to 
data-parallel solutions. 

However, HPF does not address task parallelism or 
heterogeneous computing adequately. There are many 
applications which are not easily expressed using H.PF 
alone [4, 21. Examples of s,uch applications include: 
multidisciplinary applications where different modules 
represent different scientific disciplines and may be ex- 
ecuted on different parallel machines, applications in- 
volving irregularly structured data, and many image 
processing applications whic.h are best structured as a 
pipeline of data parallel tasks. These alpplications must 
exploit both task and data parallelism for efficient exe- 
cution on paraiiei machines cli- in a heterogeneous envi- 
ronment. An integrated task/data-parallel framework, 
where each task is a data-parallel colmputation, can 
provide improved modularity and scalability. 

In this paper, we describe our design and implemen- 
tation of a library-based approach to provide integra- 
tion of task- and data-parallelism. Programmers call 
functions defined in the library for communication and 
synchronization between tasks. This can he contrasted 
with a language-based apprl3ach, where one uses ex- 
plicit language constructs. Developing language exten- 
sions involves defining new s,yntax and semantics, en- 
hancing the compiler’s parsing and analysis phases to 
handle the new language constructs, and building run- 
time system support for them. In contrast, a libraty- 
based approach is simpler, in that it requires only 
that an appropriate applications programming inter- 
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face (API) be defined and implemented. The tradeoff 
is that the applications programmer needs to deal with 
the synchronization and communication details, which 
are handled automatically by the compiler when lan- 
guage extensions are used. 

We use the widely accepted message passing stan- 
dard MPI [3] as a coordination layer for multiple HPF 
tasks. Unlike the use of MPI for sequential languages, 
here each MPI process is in fact an HPF task execut- 
ing on several processors. Hence the library provides 
an HPF binding for MPI. Note that MPI is used as 
an interface definition here, and not (necessarily) as an 
implementation tool. 

Some important practical benefits of the HPF/MPI 
approach are given below: 

l The library enables one to write a wide variety of 
SPMD style task parallel computations. Exam- 
ples of such applications are multiblock codes and 
pipeline computations. 

l The library provides a portable mechanism for 
transferring data between HPF computations and 
programs which make use of external resources for 
storage, data visualization, etc. 

l It enables composition of new applications from 
existing, independent HPF programs in a manner 
..-..I ^_^..^ A,. TThTTV -:--- dllal”g”Us b” “IYkl p,pcs. 

The next section discusses issues which arise when 
developing a library to support communicating data- 
parallel tasks. Section 3 illustrates the usage of the 
HPF/MPI library with an example program. The de- 
tails of the library design and implementation are dis- 
cussed in Sections 4 and 5. Experimental results show- 
ing the overheads of the library and other application 
performance results are presented in Section 6. Finally, 
Sections 7 and 8 review related work and present our 
conclusions. 

2. Issues involved in data transfer 

Efficient data transfer between data parallel tasks 
is a nontrivial problem. Sending and receiving tasks 
may execute on different numbers of processors and 
use different data distributions for communicated data 
structures. Tasks may execute on different computers 
connected by various types of networks such as Ether- 
net or ATM. The data to be transferred may be fully 
distributed, using block or cyclic distributions in one or 
more dimensions, or may be replicated. Finally tasks 
may perform a series of transfers using the same data 
distributions, in which case, it is useful to pre-compute 
and reuse communication schedules. 

Direct Communication 

Figure 1. An efficient strategy for data transfer 
that relies on direct communication between 
senders and receivers. In this example, there 
are 4 processors on the sender side and 2 on 
the receiver side. 

Different strategies can be adopted to perform the 
data transfer between a pair of tasks. The important 
factors to be taken into account include total commu- 
nicated data volume, number of messages, the distribu- 
tion on each side and the amount of buffering required 
in each processor. 

An efficient strategy is to first exchange data distri- 
bution information and then perform the data transfer 
between the senders and receivers directly. Note that, 
in general, each processor on the sending side needs 
to communicate with a subset of processors on the re- 
ceiving side and vice versa. Algorithms developed for 
array redistribution can be used to compute an efficient 
communication schedule. This strategy is illustrated in 
Figure 1. 

3. HPF/MPI library 

The basic execution model is one in which a compu- 
tation consists of a collection of tasks. Each task is an 
HPF program executing on one or more processors. A 
task can also be considered as a logical MPI process. 
Tasks communicate and synchronize with each other 
using standard MPI functions for performing point- 
to-point or collective communication operations. The 
communicated data might have different HPF distribu- 
tions in the participating tasks. It is the responsibility 
of the library to perform the data transfer between the 
processors involved, conforming to these distributions. 

We illustrate the use of the HPF/MPI library using a 
simple pipelined 2D-FFT code. In this example, there 
is a series of 2 dimensional arrays (or images) flowing in 
a pipeline. For each array, we perform 1D FFTs along 
the columns followed by 1D FFTs along the rows. This 
pipeline computation can be designed to be executed 
as two tasks as illustrated in Figure 2. The first task 
performs the column FFTs; the modified array is then 
communicated to the second task which executes the 
row FFTs on the intermediate results. An HPF/MPI 
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Figure 2. 2D-FFT pipeline structured as 2 
tasks. 

implementation of this computation is shown in Figure 
3. The array has a column-wise distribution in task 
0, and row-wise distribution in task 1 so that the 1D 
FFTs do not involve any communication. 

The function MPI-COMMSIZE returns the total num- 
ber of tasks (in this case, 2) and MPI-COMM-RANK pro- 
vides the task ID of the current task among all the 
tasks. The functions MPISEND and MPIRECV are used 
for communication of the array between the two tasks. 
The programmer needs to specify, in an implementa- 
tion dependent manner, the number of processors ex- 
ecuting each task (for example, 2 processors executing 
task 0 and 3 processors executing task 1). 

4. Details of the library 

We use the direct communication strategy to per- 
form the data transfer between the sending and re- 
ceiving processors in a point-to-point HPF/MPI com- 
munication operation. The steps involved in.a typical 
operation are as follows: 

1. Each processor that belongs to a sender or receiver 
task determines the distribution of the communi- 
cated array. This distribution information is ex- 
changed between the senders and the receivers. 

2. Using the FALLS algorithm [7], each processor 
computes a set of point-to-point communication 
operations to be performed. 

3. Each processor performs the actual set of commu- 
nications computed in the previous step. 

This scheme has the following benefits: 

l Due to optimality of FALLS, only minimum data 
is transmitted between processors. 

. It minimizes the total number of messages ex- 
changed, since each sender communicates only 
with those receivers which require data from it, 
and vice-versa. 

program two-dim-fft 
include 'mpihpf.h' 
parameter (N=256, NITER=lOO) 
complex a(N,N), b(N,N) 

!HPF$ processors pr(NumberJf-Processors()) 
!HPF$ distribute a(*,BLOCK), b(BLOCK,*) onto pr 

call MPI-Initcierr; 
call MPI~Comm~size~:MPI~COMM~WORLD, 

$ nprocs, ierr) 

!Determine which task am I: task 0 or task i 
call MPI~Comm~rank~~MPI~COMM~WORLD, 

$ myid, ierr) 

do k = 1, NITER 
if (myid .eq. 0) then ! column task 

forall(i=l:N, :l=l:N) a(i,j)=(l.O,O.O) 
!Perform the column ffts OIL array a 

call colfft(N,a) 
!Send the intermediate result to task 1 

call MPI~Send(a,N*N,MPI.~COMPLEX,l,SS, 
$ MPI-COMM-WORLD,ierr) 

else ! I am task 1: row task 
!Receive from task 0 onto array b 

call MPI~Recv(1~,N*N,MPI,~COMPLEX,O,99, 
$ MPI~CIIMM~WORLD, status,ierr) 

call rowfft(N,'o) ! Perform the rowffts 
call write-out:?ut(b) ! !jave the result 

endif 
end do 

Figure 3. HPF/MPI Implementatian of 2-D FFT 
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l It keeps buffering requirements low, since the send 
or receive buffer required on a processor need only 
be as large as the largest array portion sent or 
received by that processor. 

4.1. FALLS algorithm 

The communication of a distributed data structure 
from one task to another can be considered as a redis- 
tribution of data from one processor subset to another. 
Th_e FAT T 5  (FAmiLy of Line Segments‘l al!zorithm uses ---1JL , ~-o.--.----- _--- 
an efficient representation of data distribution and uses 
novel techniques to extract a minimal sequence of com- 
munication operations to be performed to achieve this 
redistribut,ion. It scales linearly with the number  of di- 
mensions and processors and handles all HPF data dis- 
tributions. The communication pattern generat,ed can 
be modeled as many-to-many communication between 
the sending and receiving processors. More details can 
be obtained from [7]. 

4.2. Optimizations 

Many applications involve a series of data transfers 
involving the same redistribution. For example, a 2D- 
FFT pipeline involves communicating images with the 
same distribution repeatedly from one task to another. 
In such cases, the communication schedule generated 
by the FALLS algorithm can be pre-computed. This 
amortizes the cost of distribution information exchange 
and schedule generation over a number of data trans- 
fers. 

We  make use of the MPI persistent requests to 
provide such hints to the HPF/MPI library. An 
HPF program can define a persistent request using 
MPISENDXNIT or MPI-RECV-INIT. Such a  function 
call causes the library to compute the communication 
schedule for such a  redistribution and  cache the results. 
The actual communication can then be performed mul- 
tiple times by calling MPISTART. 

5. Implementation 

We  have implemented a  prototype HPF/MPI li- 
brary that operates with pghpf(version 2.0), a commer- 
cial HPF compiler, developed by the Portland Group, 
Inc. We  have defined an interface between our library 
and pghpj  which requires only minimal modifications 
to PU~PPS runtime system. This makes it easy to port _I .” 
our HPF/MPI library to other HPF compilers. 

Most of the HPF/MPI library is written in SPMD- 
style C code containing explicit message-passing calls. 
Though HPF itself provides only a loosely-synchronous 

data-parallel execution model, it contains an eztrin- 
sic interface for performing calls to other, foreign lan- 
guages which ma.y utilize ot.her styles of parallelism. 
We  use the HPF extrinsic interface to gain flexibility 
in the implementation of our library, while retaining 
portability across different HPF compilation systems. 

The library is structured in a modular manner using 
multiple levels. At the highest level, MPI calls in an 
application invoke functions in an HPF module within 
our library. Each polymorphic MPI function is repre- 
sented as a Fortran 90 generic procedure. In turn, each 
generic procedure is implemented by a number of differ- 
ent HPF functions, one for each possible array rank and 
element type (INTEGER, REAL, COMPLEX, etc.). 
As an example, the blocking send operation is invoked 
using a function with generic name MPISEND irrespec- 
tive of the datatype of the array or its rank. 

These HPF library functions use HPF inquiry in- 
trinsic routines such as HPFDISTRIBUTION to deter- 
mine such attributes of arrays as the extent of their 
dimensions, the shape of the processor grid over which 
they are distributed, and the form of their distribution 
across processors. This information is then passed on 
to a lower level of the library, which is written in C and 
therefore invoked using the HPF extrinsic interface. 

At this level, the FALLS algorithm is used to com- 
pute a set of point-to-point communication operations 
to achieve the data transfer. Data to be transmit- 
ted must be first copied onto a contiguous buffer. In 
our implementation, for portability, we have used MPI 
as the actual transport mechanism. Nevertheless, the 
modular design of the HPF/MPI library makes it feasi- 
ble to use a communication substrate other than MPI. 

When MPI is used as the communication substrate, 
all processes in a computation are initiated in a man- 
ner specific to the MPI implementation. As part of 
HPF/MPI initialization, this set of processes is par- 
titioned into disjoint subsets using a configuration file 
prepared in advance by the user. As another part of ini- 
tialization, each HPF task is assigned a separate com- 
municator, which is to be used for all internal com- 
munication required by the data-parallel computation. 
In addition, the data transfer between each pair of 
tasks makes use of another communicator.  This pre- 
vents interference between communication related to 
task-parallel HPF/MPI calls and that related to data- 
parallel HPF computations. 

6. Experimental Results 

In this section, we present results from an evalua- 
tion of our implementation of the HPF/MPI library. 
These experiments were performed on Argonne’s IBM 
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Figure 4. Point-to-point communication times 
between 2 tasks for different task sizes. 4 
ping-2 pong denotes that 4 processors were 
assigned for task 0 and 2 processors for task 
1. 

SP system 

6.1. Synthetic ping-pong benchmark 

We used the well-known ping-pong method to mea- 
sure point-to-point communication times involving 2 
tasks. Task 0 executes a send operation (MPISEND) 
to task 1, which executes a corresponding receive 
(MPIRECV). Then task 1 immediately sends the same 
message back to task 0. The test program was executed 
a large number of times, and the mean one-way transfer 
time was used for interpreting the results. Each array 
transmitted using MPI-SEND has an HPF distribution 
of (* , BLOCK), and each array received using MPIRECV 
has a distribution of (BLOCK, *>. This data transfer 
pattern requires each sending process to communicate 
with all receivers. 

Figure 4 shows the times for point-to-point com- 
munication between two tasks for different processor 
assignments in tasks 0 and 1. The best intertask 
communication bandwidth achieved in this experiment 
was 12.3 Mbytes/set. This performance is compara- 
ble to that of other communication libraries which, 
like HPFJMPI, incur extra overhead from extra buffer 
copying. 

The time spent in the different phases of the data 
transfer were measured to identify the bottlenecks in- 
volved. The different phases involved in a send opera- 
tion are: 

l Time spent in exchanging the data distribution 
information. 

l Time taken for computing the set of communica- 
tion operations to be performed by each processor 

Figure 5. Time spent in different phases of a 
send operation. 

(using the FALLS algorithm). 

l Time spent in performing buffer copying. 

l Time spent in performing the actuatl communica- 
tion. 

The mean total time taken by a proBcessor in each 
phase is calculated by averaging over all t,he processors. 

The break-down of the costs involved in a send op- 
eration (for the 2 ping-2 pong configuration) are shown 
in Figure 5. The time for perfbrming thle distribution 
information exchange between tasks and schedule com- 
putation are more or less constant. Foir large arrays, 
the buffer copying is a large component of the over- 
head. Currently, we are investigating ways to reduce 
this, at least for the simple caszs when olnly contiguous 
portions need to be transferred. 

6.2. Multiblock Application 

The multiblock code is an example of an application 
involving irregularly structured data wh(ich is not effi- 
ciently expressed in HPF. In t,his code, a complex ge- 
ometry is decomposed into multiple simpler blocks. A 
Poisson solver is run within ea#:h block and the bound- 
ary data information is exchanged between blocks pe- 
riodically. 

In the HPF code, the Poisson solver is run on each 
block one after another using all processors, whereas 
in the HPF/MPI version, each task’hanldles one block, 
and a variable number of pro:essors are allocated for 
each task. The blocks werl? distributed in a (*, 
block) fashion for both codes. 

The graph in Figure 6 shows our results for three 
different multiblock configurations. Each configuration 
represents a geometry of three square blocks, where 
the middle block has a smaller size than the other two 
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Figure 6. Execution time for HPWMPI and HPF 
implementations of the multiblock code, as a 
function of the number of processors. 
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times to convergence. In the HPF code, in each itera- 
tion, the boundary values corresponding to all blocks 
are exchanged, and then each of the three blocks is pro- 
cessed in turn. In the HPF/MPI code, at the start of 
each iteration, each task independently communicates 
with its neighboring tasks. 

We  can see that the HPF/MPI code performs bet- 
ter than the HPF code in all cases. For the 192 and 
256 configurations, communication becomes the bot- 
tleneck with 18 processors and the best performance is 
obtained with 9 processors. 

7. Related work 

There has been a lot of work on language-based ap- 
proaches for supporting task parallelism. Foster et. al. 
[I] present the language integration issues involved in 
mixed paradigm programming. Language projects that 
focus on the integration of task and data parallelism in- 
clude BPF/FMI21. FX 141  and Onus  161  HPF/FM w- , ---L-J, --^ L-J, ---- ‘-T-I L  -, - ̂  - - , - _. - -_ _  
tends HPF with channels for intertask communication. 
Fx creates parallel tasks that communicate by shar- 
ing arguments during task creation and termination. 
Opus, an extension of Fortran 90, provides a software 
layer on top of data parallel languages. A program 
executes as a system of tusks that interact by sharing 
access to a set of shared data abstractions. 

8. Conclusions and future work 

We  have developed an implementation of a library 
based approach for supporting task parallel applica- 

tions using HPF. The library opens up the possi- 
bility for HPF applications which may be heteroge- 
neous in nature. The use of portable features of 
HPF in the library implementation eases the job of 
porting our library to other compiler systems and 
communication mechanisms. Empirical results show 
that HPF/MPI applications demonstrate better per- 
formance than equivalent pure HPF codes. 

Initially, we have selected a small subset of the MPI 
standard to be part of the HPF/MPI library. These 
functions include point-to-point communication oper- 
ations, enquiry functions such as MPI-COMMRANK and 

MPI-COMMSIZE and functions that provide support for 
persistent operations. Currently, we are investigat- 
ing other MPI communication modes (such as buffered 
mode, asynchronous mode etc.) for inclusion into the 
library. Applications could also benefit from collective 
operations involving tasks, dynamic task management,  
use of MPI derived datatypes and the ability to han- 
dle array sections. Finally, we are also looking at. ways 
to further reduce the overheads associated with the ii- 
brary through a tighter coupling with the pghpfs run- 
time system. 
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