
Parallel Interactive Virtual Machining on Shared Memory Multiprocessors

N. Mahesh and S. Manohar

Department of Computer Science and Automation
Indian Institute of Science

Bangalore, INDIA

Abstract
Interactive sculpting is the process by which a designer

can impose free-form shape changes on the object being de-
signed. It has potential applications in the fields like com-
puter aided geometric design arid rapid prototyping. Our
approach to interactive sculpting is through the intermedi-
ate step of interactive virtual nlachining (IVM). IVM is a
subset of interactive sculpting in that the degrees offreedom
available to the sculptor are reduced. The goal of our work
is to demonstrate the feasibility of interactive virtual ma-
chining on a shared memo? multiprocessor workstation.
Our prototype IVM system uses a voxel based approach.
I t provides common machining tools to the user and uses
Minkowski operations to implement those tools.

Parallel implementation of the virtual machining tools
has shown that sculpting with 2S63 voxel array is possible
with frame rate of around 20 frameshec. We present the
parallel algorithms for virtual machining tools and the re-
sults of implementation on a shared memory multiprocessor
environment.

1 Introduction
Interactive sculpting is the process by which a designer

can impose free-form shape changes on the object being de-
signed. It has potential applications in the fields like com-
puter aided geometric design and rapid prototyping. Criti-
cal problems associated with interactive sculpting are:

The design of powerful user interfaces necessary to
enable a designer to modify a 3-D object using a 2-D
display.

0 The design of efficient algorithms for performing the
sculpting operations at interactive rates. and

is provided with simple sculpting tools, resembling real life
machining tools, like milling, turning and thread cutting.
This simplifies the user interface requirements while reduc-
ing the range of shapes that can be created. However, un-
like in real machining, the designer need not have to worry
about the real life constraints like tool colliding with the
block or require that the object should be cylindrical for
turning etc. Hence a much richer range of shapes can be
created by IVM.

So far, voxel based modeling and sculpting have not re-
ceived sufficient attention due to the prohibitive memory
and computational costs associated with it. But with the de-
creasing hardware costs and progressing research in high
performance computing, these problems are fading away.
Hence, we have chosen a voxel based approach which sim-
plifies the computational difficulty of virtual machining op-
erations. Minkowski operations [I] are used in implement-
ing the virtual machining tools. To achieve interactive
rates however, we need to resort to parallel implementation
which is the focus of this paper.

The last problem of displaying the results of sculpting
at interactive rates can be tackled with a dedicated render-
ing pipeline for the computed volume buffer and/or resort-
ing to parallel volume rendering [2] and we assume these in
our results. Research in hardware support for volume ren-
dering is progressing rapidly 131 and we expect real time
volume rendering to become available as a standard part of
commercial workstations in the near future.

We explain Minkowski operations in section 2. Sequen-
tial algorithms for virtual machining tools are dealt with in
section 4 and their parallel versions are dealt with in sec-
tion 5. Section 6 gives the implementation details and re-
sults. The final section outlines the areas of ongoing re-
search.

2 Minkowski operations
Minkowski operations [11 is the basic algorithmic tool

used in implementing the virtual machining tools . Brief
description of them is as follows.
Minkowski addition of two sets A and B in Rd is defined as

0 Displaying the results of sculpting at interactive rates.

We attempt to overcome these problems by approaching
interactive sculpting through the intermediate step of inter-
active virtual machining (IVM). IVM is a subset of interac-
tive sculpting in that the degrees of freedom available to a
designer are reduced. In other words, in IVM the designer

1094-7256/97 $10.00 0 1997 IEEE
54

the union of sets obtained by positioning one of them, say
B, at every point of the other, say A. i.e. the set of points
obtained by vectorially adding each point in A with each
point in B.(Fig 1)
Mathematically, if Ap denotes the translate of a set .A by the
vector p, i.e., Ap = A @ (p}, then,

which is same as,

where @ stands for Minkowski addition.
Minkowski decomposition of two sets A and B in Rd is
defined as

where e stands for Minkowski decomposition operation.
The set B‘ = (-b : b E B } is generally known as tlhe sym-
metrical set of B with respect to the origin.

3 Virtual machining tools

the following virtual machining tools.
Our prototype IVM system provides the designer with

Simple Milling : This operation refers to
the cutting/pasting with the tool along a straight line
segment from/to clay.

If C is the clay and S is the swept volume of the tool
along the line segment, then

(1)
C - S
C‘ U S

for cut operation
for paste operation Result =

Contour Milling : This tool refers to, cutting/pasting with
the tool along the contours- curves, from/to c1a.y. Con-
tours are represented using B-Spline curves.

Turning : This tool refers to, cutting/pasting with the tool
along circular paths, from/to clay.

Thread Cutting : This tool refers to, cutting/pastiing with
the tool along helical paths, from/to clay. It will useful
in creating screws/nuts like shapes.

Sequential version of our prototype IVM system has been
implemented. Fig 2 shows some of the sculpted objects.
Both octree based [4] and voxel array based IVM systems
have been implemented. We limit our discussion to the
voxel array based implementation of IVM.

4 Sequential algorithms for virtual machin-
ing tools

For the following discussion assume that

Clay - 3-D array of booleans of size C , x C , x C ,
Tool - 3-D array of booleans of size T, x T, x T,

‘Clay’ is the object voxel array being sculpted and ‘Tool’ is
the tool voxel array used for sculpting.
4.1 Simple Milling

From equation (1) it is clear that the problem is to find
the swept volume ‘S’ of the tool along a straight line seg-
ment. Computing this volume boils down to the computa-
tion of the Minkowski sum of the tool with the line segment.
Because of our choice of voxel based modeling this com-
putation is greatly simplified. Summary of the algorithm is
given below.

dosimple-milling(Clay, Tool, line-segment, operation)

S = compute_;l weep(Tool, line-segment)
if(operation is cut)

Result = Clay - S = Clay - (Clay n S)
else //operation is paste

Result = Clay U S

{

1
Note: Boolean operations like union and intersection are
trivial on voxel arrays.

computesweep(Tool, line-segment)

Result = //Empty voxel array
for(each boundary voxel V=(Vx, Q, Vz) in Tool)

{

S = computesweep-for-orie-voxel(line-segment)
Result = Result U S

1

1
I

{
computesweep-for_one-voxel(Y line-segment)

Result = 4
for(each point (lx,ly,lz) on line-segment)

//Empty voxel array

1

1

Vshafted = (VxtvyrvZ) 4- (k l Y , k)
Result = Result U VJhafted

1
4.2 Contour Milling, Turning, and Thread Cut-

ting
For all these tools, the curves involved are divided into

smaller line segments and simple milling is applied to each
segment to get the result.

55

Figure 1: An example of Minkowski Addition

I (a) Sculptured Butterfly (b) Part of a sculptured knuckle joint assembly
Resolution : 256x16~256 Resolution : 51x65~134

Figure 2: Examples of objects sculpted using our prototype IVM system

5 Parallel version of algorithms for virtual
machining tools

Parallelism exists at various levels in the algorithms ex-
plained in the previous section. These parallelisms are
listed below in the decreasing order of grain size.

1. In contourmilling: Each line segment can be cudpaste
from/to the clay independent of other line segments.

2. In computesweep(): Computing and inserting the
sweep of a boundary voxel of the tool is independent
of other boundary voxels of the tool.

3. In computesweep-for-one-voxel(): Processing for
each point on the line segment is independent of the
other points on the line.

We shall limit our discussion to the first two cases as we
believe that the third case is too fine grained and the over-
heads involved may outweigh the benefits of paralleliza-
tion. Summary of the parallel algorithms for the first two
cases is given below.

doparallel-contourmilling(Clay, Tool, Contour)

* Divide the contour in to a set of line segments L
such that the lengths of the line segments are
nearly equal

{

* Partition L as equally as possible among the

* Each processor has to perform do-simple-milling()
processors available

for each of the line segments assigned to it
1

parallelxomputesweep(Tool, line-segment

* Partition the boundary voxels of ‘Tool’ as equally

* Each processor has to perform

{

as possible among the processors available

computesweep-for-one-voxel() for each
of the boundary voxels assigned to it

1
Note that, because of the shared memory implementa-

tion, all the processors operate directly on the clay and
hence no phase is required for combining the results from
all the processors.

6 Implementation details and results
Virtual machining tools library has been implemented in

C on a SGI Powerchallenge shared memory multiproces-
sor machine with 16 RlOOOO CPUs (194/196 MHz), and 3
GB main memory.

Table 1 shows the frame rates possible for two cases:
one with the clay size of 2563 and the other with 51 Z 3 . We
assume that a dedicated rendering pipeline is available for

56

(a) N P r o c s Vs S p e e d u p - c256ic8

1 4

10-
2
8 8 -
U

Q
v)

6 - /

OL I

0 5 10 15 20

(b) N P r o c s Vs Speedup - c 2 5 6 t l 6
16 . . .

. . . . 14:. :

12

10

-

-
Q

a - 2i
v)

6 -

4 -

2-

U

0 5 10 15 20
No. of p r o c e s s o r s No. of p r o c e s s o r s

(c) N P r o c s Vs Speedup - c 5 1 2 t c 8 (d) N P r o c s Vs S p e e d u p - c 5 1 2 t l 6

1 2 i

8 -

2-
8 6 -
U

Q. m

10

8

2-
8 6
U

Q. m

4

2

0
2 4 6 8 10 12

No. of p r o c e s s o r s

12 : . .
. . . . [i

Figure 3: Speedups achieved for turning operation on a SGI Powerchallenge - shared memory multipro-
cessor machine.

dotted-lines : ideal speedup
solid-lines : actual speedup
(a) clay : 2563 tool: cylinder r=8, h=8 Turning Radius=l20
(b) clay : 2563 tool: 163 Turning Radius=120
(c) clay : 5123 tool: cylinder r=8, h=8 Turning Radius=248
(d) clay : 5123 tool: 163 Turning Radius=248

57

Ta

10
11
12
13
14
15
16

0.075570 0.155718 13.23 6.42
0.07 1597 0.145033 13.97 6.89
0.065 1 SO 0.13538 1 15.35 7.39
0.060685 - 16.48 -

I 17.23 . I. 0.05 8045
0.053664 - 18.63 -

0.0495 18 - 20.19 -

le 1: Frame rates possible for the compute intensive cases in the corresponding cl

Computation Involved with clay size of 2563: Turning with radius = 120 units.
Computation Involved with clay size of 5 123: Turning with radius = 248 units
and the tool size is 163 in both the cases

the computed volume buffer. The results are for fairly com-
pute intensive turning operations with 163 tool size which
has 1352 boundary voxels. We can observe that frame rate
of20 framedsec is possible for 2563 clay size, with 16 pro-
cessors, which is close to interactive rates. We are working
on higher resolution voxel arrays. With the results available
so far, frame rate of around 7 framedsec is possible for 5 1 23
clay size, with 12 processors. Extrapolating the results, we
expect frame rate around IO- 12 framedsec, with 16 proces-
sors. The graphs in Fig 3 show the speedups for various
turning operations explained therein. From the graphs it is
clear that the speedup curves have not yet saturated. So, we
can expect higher frame sate by increasing the number of
processors.

Our on going experiments on parallel implementation
of other virtual machining tools on a SGI PowerChallenge
shared memory multiprocessor machine with 6 R8000
CPUs (90/75 MHz), and 1 GB main memory, show promis-
ing results. For simple milling speedup is in the range of 4.9
to 5.3.

7 Future Work
Our ongoing research focuses on

y sizes.

e Integrating the virtual machining tools with a real time
volume rendering system.

Improving upon the present implementation of virtual
machining tools to achieve better load balance and
hence better speedups.

ing, rotation and shearing.) on voxel arrays.
e Parallelizing general linear transformations (like scal-

8 Conclusion
We have approached interactive sculpting through the

intermediate step of interactive virtual machining (IVM),
in that the degrees of freedom available to the designer
are reduced. We have found that the sculpting operations
are the bottleneck for interactiveness. So, we have devel-
oped parallel algorithms for virtual machining tools like
milling, turning and thread cutting. Results of the parallel
implementation have shown that frame rate of around 20
framedsec is possible with a clay size of 2S(j3. Our future
work focuses on higher resolution voxel arrays.

Acknowledgments
We thank Dr. C.E. Prakash for running our code on a

SGI PowerChallenge shared memory multiprocessor ma-

58

chine with 16 R10000CPUs and thank Prof. A. Ehufmann,
SUNY, Stony Brook, for permitting the use of the machine.

References

[3] S. Manohar and C.E. Prakash, “Hardwarearchitecture
for voxelization based volume rendering of unstruc-
tured grids”, Tenth Eurographics Workshop on graph-
ics hardware, editor: W. Straber, pp. 103- 11 5 , Aug
1995. [I] P.K. Ghosh, “A Unijied Computational Framework

for Mittknwski Operations”, Computer & Graphics,
V01.17, N0.4, pp.357-378, 1993. [4] S.U. Sethia, “Interactive volume sculpting ”, Masters

project report, Department of Computer Science and
Automation, Indian Institute of Science, India, Jan
1996.

Philippe Lacroute, “Real-Time Volume Ren-
deritig oti Shared Memory Multiprocessors Usirig the
Shear- Warp Factorization ”, Parallel Rendering Sym-
posium ’95, pp. 15-22, October 1995.

59

