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Abstract

The impact of alternative network subsystem design for
realizing low end–to–end latencies and high network
throughput in a switched LAN are studied in detail through
simulation.  These alternatives include choices in the
disposition of the network interface card (NIC), DMA
priorities and OS services.  Our simulation model captures
the delays of OS services/software layers, message copying
DMAs and, in addition, models non–network related traffic
on the I/O and memory buses introduced by paging and
on–chip cache misses.    In a conventional setup, with the
NIC placed on the I/O bus, we show that changing traffic
priorities on the memory bus to speed up the transfers
between the NIC and the DRAM has little impact on overall
latency and network throughput as the offered network
traffic increases.  Improving the speed of the I/O bus
produces some performance gains.  These performance
gains are shown to be quite limited until message
demultiplexing capabilities are added to the NIC.  The best
performance comes from the use of dual–ported DRAMs,
with a dedicated connection between the NIC and the added
port.

1. Introduction

Significant advances have been made in the world of
networking hardware over the recent years – these include
high speed transmitters and receiver chips, cheaper, high
speed media and connectors and high speed switches and
routers. It is a well–known fact that the high speeds of these
networking hardware do not translate into commensurate
performance at the level of applications. These disparities
have been well–documented in [1] and [18].   The reason for
this disparity between the seemingly available performance
and the actual or delivered performance can be traced to the
complex interplay between the hardware and software
related to networking, the operating system, the nature and
functionality of the network interface card (NIC, network
adapter), the hardware of the host system  and, of course, on
the  characteristics of the application.  The goal of this paper
is to undertake a simulation based study of exactly some of
these tradeoffs.
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Let us first quickly review the message flow from an
application running on one node to an application on another
to illustrate where the various hardware and software
components play a role in message passing.  We assume that
the NIC has very simple capabilities, in particular, the NIC is
not capable of message demultiplexing – a fact that is true of
virtually all NICs in use today.  In conventional systems, the
NIC is a device on the I/O bus, as shown in Figure 1.  Sending
and receiving messages thus involves data transfers on both
the memory bus and the I/O bus to move data between the
main memory and the NIC.
The NIC, as well as message buffers in the system have to be
protected from the individual applications.  Consequently,
the data movement in message passing involve the crossing
of protection domains.  These cross domain transfers have to
be co–ordinated by the operating system (OS) after
performing the required authentication checks.  These
checks and the data movement are generally initiated
through system calls.  In the process of moving the message
from the source application to the destination application,
additional software delays are incurred due to buffer
management and the protocol stack.  Delays are also
introduced in the physical transfer paths, such as the
memory bus, the I/O bus and the hardware artifacts on the
way (the NICs at both ends, propagation delays in the links
and switches/routers etc.).  Optimizing the performance of
the network thus requires careful consideration of the
hardware and software tradeoffs, the functionalities of the
NICs as well as the consideration of the physical interface of
the NIC, including the physical disposition of the NIC
within the system. The various delays in the way indicate
that improving the raw speed of the network is of little use
unless changes are made in the design of the rest of the
hardware and software components in the network
subsystem.
The goal of this paper is to study the impact of various
software and hardware innovations made to promote
efficient networking on a comparative basis.  We employ a
simulation model, driven by synthetic traces to study the
effect of the following changes within the network
subsystem:
• The impact of enhancing the DMA capabilities within the

NIC
• The impact of changing priorities of DMA traffic on the

I/O bus.
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Figure 1.   The organization of a conventional
network interface

• The impact of adding more functionality to the NIC itself
(“smart NICs”)

• The impact of changes made to the network subsystem
software, including modifications to the OS kernel.

• The impact of alternative placements of the NIC within a
system that promotes efficient transfers between the NIC
and the memory.  These include a dedicated bus (or
connection) between the NIC and the memory and the use
of separate buses for the NIC and other I/O devices.

Although our main focus is to study the impact of these
changes on the end–to–end message passing latencies, we
also analyze their influence on the overall performance of
the system, in particular network throughput, CPU
utilization and the utilization of the buses.
A recent study was undertaken to analyze the impact of
network subsystem design alternatives in fine–grain
message transport on the overall performance of parallel
message passing scientific applications [15].  Our study
focuses on the impact of the network subsystem design
choices on the end–to–end latency and other performance
metrics for general network applications that use larger
messages and also rely on the use of higher–level APIs (such
as TCP/IP).  More importantly, we consider delays in the
software message passing layers and traffic introduced on
the memory bus due to cache misses, as well as paging traffic
on the memory and I/O buses. Our goal is not to propose new
solutions for speeding up network interfaces, but rather to
do a comparative study of existing techniques under a
common framework, taking into account both hardware and
software latencies.
The rest of the paper is organized as follows.  In Section 2,
we describe the reasons for the various delay components in
traditional message passing.  In Section 3, we review
hardware and software techniques for reducing end–to–end
delays followed by the description of the alternative
placements of the NIC within the host to cut down the
latency of message passing.  Section 4 describes our
simulation strategy.  The results are presented and discussed
in Section 5, followed by our conclusions in Section 6.

2. Message passing in traditional systems

We now examine the sources of delays in message passing
from one application to another on a different node.  We
assume a very traditional NIC and a  traditional software
layers.

2.1 Message sending

The sending application typically calls a library routine
(such as a write to a socket or a “send”), specifying a channel
or a socket id and the variable containing the message.  This
call eventually makes a system call that copies the message
from the variable into a kernel level buffer after performing
an authentication check.  The authentication check verifies
that the application has the appropriate rights to send the
message on the specified channel or socket, using the
process id of the application maintained within kernel–level
data structures. Control returns to the application after the
message has been copied into kernel level buffers.  The
protocol layers add appropriate headers to the message, form
a message descriptor for the message in a kernel level queue
of descriptors for outgoing messages. From the kernel level
buffer the protocol layers, through the OS (or some
appropriate daemon  process) initiate the DMA of the
message directly (or indirectly) into  raw buffers within the
NIC, from where it is eventually transmitted on  its way to
the destination.
The delays in sending a message out from the source node
thus consist of the following components:
a) System call overhead for performing the authentication

check and copying the message from the variable in the
user’s address space to  the system level buffers.

b) Protocol stack delays.
c) Delays in DMA–ing the message from the system–level

buffers to the buffer within the NIC.
d) Potential waiting in the buffers within the kernel and the

NIC  and  delays  introduced due to buffer management
overhead.  This  is especially acute for the uniprocessor
systems with single–threaded kernel.

We will see later that techniques exist for cutting down most
of these delay components.

2.2 Message transport

After the outgoing message has been transmitted, it may go
across several links and switches on the way.  The potential
delays in this part are waiting delays within the switches,
propagation delays within the switch and propagation delays
in the media.

2.3 Receiving a message

On receiving a message, the NIC DMAs this message into a
global system level buffer, since it cannot perform any



message demultiplexing and since it is generally not
possible for the systems software to read the header of the
message on the NIC buffer.  If the NIC is not a bus master,
this generally involves the generation of an interrupt from
the NIC on message arrival.  The service of this interrupt
results in the initiation of a DMA transfer to the global
memory buffer from the raw buffer within the NIC. From the
global buffer, system–level routines (or daemons) perform
the necessary message demultiplexing, copying messages to
appropriate per–channel or socket buffers.  An application
executes a primitive (such as “receive” or a socket read) to
have the message copied from the per–channel or socket
buffers into appropriate variables in the application’s
address space.  This library call again  results in a system call
that performs authentication checks and the atomic copying
of the message into the variable.
The delays in receiving a message thus consist of the
following components:
a) Time needed for message demultiplexing
b) Delay in DMA–ing the message from the  NIC  to  the

global system–level buffer.
c) Protocol stack delays
d) Copying overhead between various buffers.
e) Delays in waiting in various buffers, including the delays

incurred in buffer management.
f) The  system  call  overhead  for a “receive” or socket read

primitive.
Again, we will look at some solutions that have been
proposed and implemented for cutting down on one or more
of these delay components.

3.  Reducing end–to–end delays

A fair number of solutions have been proposed over the
recent years to close the difference between the available
network hardware performance and the application level
performance.  These include the following:

3. 1. Innovations within the NIC

These solutions enhance the functional capabilities of the
NIC in an effort to implement functions that are traditionally
implemented within the OS and the communication
libraries. Examples of solutions in this category are:
• Bus master NIC, multiple DMA channels: here the NIC is

the master of the I/O bus, allowing it  to DMA in an
incoming packet into the global system level buffer when a
message comes in.  Another relatively simple innovation is
to support multiple, multiplexed DMA transfers between
the NIC and the memory.  Yet another improvement to
reduce buffer management overhead is to build in
gather–scatter support within the NIC to allow DMA
transfers between the NIC and a series of non–contiguous
memory locations.  Most modern high–end NICs have
these capabilities.

• Parallelism within the NIC: Concurrent engines for DMA
transfers and/or concurrent transmit/receive engines
within the NIC, as implemented in the Afterburner NIC [4]
and [7], can also improve the raw performance of the NIC
and help in cutting down on the end–to–end latency.

• Partial hardware support for message demultiplexing:
Here, the NIC allows the network–related software
components to read the header of the incoming message
and let software set up DMA to an appropriate buffer in
memory, thus resulting in a hardware–assisted, but
software controlled message demultiplexing, as suggested
for the x–Chip [3].

• Message demultiplexing by the NIC:  Here, facilities are
incorporated within the NIC to perform message
demultiplexing, as in the  U–Net project [18] or the Illinois
Fast message implementation on a Lanai Myrinet card
[16], the MAGIC chip for FLASH [9] and several other
systems along similar lines [7].

• Snooping logic within the NIC to pick up data being
written to a memory area designated as a send buffer and
eventually transmitting that data, as implemented in the
SHRIMP prototype [2].  The DEC Memory channel
prototype [8] uses a similar mechanism that implements
reflective memory to propagate the writes to a memory
area designated as the send buffer to a buffer in a memory
area on a remote node that serves as the receive buffer.

• Enhanced flow control support within the NIC, as in the
Telegraphos prototype [11].

• Hardware support for barrier synchronization within the
NIC, as implemented in the ParaStation prototype [19] and
[7].

• Logic, circuit design and other implementation techniques
for speeding up the NIC, including the use of
micropipelining, highly integrated transmitter and
receiver chips and fast implementation technologies, such
as GaAs.

3.2.  OS modifications and innovations

In a traditional system, the role  of the OS in the context of
networking is to provide protected access to  the shared NIC
and associated networking software, to provide buffering
facilities and implement message multiplexing and
demultiplexing.
Examples of OS/Protocol layer improvements and
modifications made in this respect are:
• Reducing the number of copying steps in the message flow

path between the raw buffer within the NIC and the
application level buffer: Several solutions under this
category have been used to reduce the end–to–end
message passing latency, namely sharing virtual pages,
page remapping [6], copy–on–write semantics and fast
buffers (fbufs) mechanism [5].



• Reducing the time needed for invoking OS services:
Protected message passing requires authentication checks,
in the least, when a message send is requested.  The usual
overhead of making an explicit system call can be avoided
by streamlining the system call interface.  One approach,
as used in U–Net [18], is to use trap instructions that cause
handcrafted system code to be executed.  GLUnix,
developed for the NOW project at Berkeley [1] provides
similar facilities.  Another approach, as used and
implemented in [7], for fast message passing in a Solaris
environment, is to force an exception and modify the
first–level interrupt handler in the OS to perform an
authentication check based on the known physical address
of the system–supplied trusted code implementing the
send.  This, in effect, implements a very low overhead
system call for performing the authentication check.

• Reducing delays in the protocol stack:  Any end–to–end
protocol operating over a high–speed network must be
able to rapidly process and update state information in
order to keep up with the higher network speeds.  This
requirement has resulted in light–weight protocols,
state–exchange protocols, rate–controlled protocols,
NACK based protocols  and source / receiver controlled
protocols into our proposed courses.

3.3.  Application–level techniques

A variety of techniques have been used to reduce the
network latency at the application level.  The concept of
active messages [14] is an example.  Each incoming
message specifies the address of an appropriate handler for
the message, thus saving critical time in locating such a
handler.   Other application level techniques to reduce
message passing latencies include application–level buffer
management and alternative semantics for message passing.

3.4.  Alternative placements of the NIC

All of the techniques discussed above are generally
oblivious to the physical disposition of the NIC within the
system.  In conventional systems, the NIC is located on the
I/O bus, as shown in Figure 1. For this particular placement,
data transfers between the NIC and the main memory have to
go through both the I/O bus and the memory bus.  Since the
I/O bus generally operates at a lower frequency than the
memory bus,  this placement can have an adverse impact on
the message passing latency.
An alternative will be to place the NIC on the memory bus.
This, however, may not be an acceptable solution, since the
network traffic introduced on the memory bus can adversely
impact the miss handling time for the on–chip caches,
resulting in poor CPU (and overall) performance.  A solution
that avoids this problem is depicted in Figure 2.  Here, the
NIC is placed on a dedicated bus (called the “NIC bus”),
operating at (or in excess) of the speed of the I/O bus.
Dual–ported memory modules are connected to both the

memory bus and the NIC bus, removing the need for explicit
transfers between these two buses.  The dual ported memory
modules, of course, have to be large enough to implement all
of the network buffers.  Clearly, for this arrangement to
make sense, a page remapping scheme (or the fbufs) scheme
have to be used to avoid copying across the boundary of the
domains for the kernel and the applications.  Note that this
scheme still requires the message to be DMAed between the
dual–ported buffer RAMs and the raw buffer on the NIC.
The resulting scheme is thus not a true zero–copy interface.
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Figure 2.  The organization of a network 
interface with the NIC on a dedicated bus

A true zero copy interface requires that the raw buffers on the
NIC be visible directly to the application.  Such an interface
has been implemented as part of the MINI project at Sarnoff
labs [13].  Here dual–ported RAMs are used on the NIC and
SIMM extenders are used to connect one port on these
RAMs to the normal RAM (SIMM) sockets on the memory
bus.  The existing MMU protection mechanism and page
remapping is used to realize end–to–end latencies of a few
microseconds.  In this scheme, a send amounts to a write into
the buffer space for the sending channel on the RAM on the
NIC, while receives amount to a read from the same RAM.

4.  Simulation methodology

To model the various delays associated with message
passing, including hardware delays, queueing delays and
delays in the software layers (specifically, delays for OS
services and copying delays), we constructed a simulator,
that was primarily driven with two synthetic inputs.  One
was the offered network load, which generated traffic on the
links, the I/O bus and the memory bus.  The other input to the
simulator was traffic on the memory bus generated due to
cache misses, which in turn could result in page faults and
trigger paging traffic on the memory and I/O buses.
To generate the interarrival  times of the  network packets
and cache miss requests, we   used the exponentially
distributed functions with the average determined by the



average  packet size, network throughput and the  cache hit
ratio  under consideration.  For simulations using variable
message sizes, the  packet sizes were also considered to be
exponentially distributed with upper and  lower bounds of
1500 and 64 bytes respectively and the  given average.
A limited form of flow control was incorporated into the
simulator  to prevent a node from sending  further packets
until the appropriate number of   acknowledgments has  been
received from  the destination.  This roughly mimics the
flow controls put into place in a real networking system.
The  end–to–end  latencies were   calculated by  keeping
track  of the latency of each individual packet within the
system.  Latencies were averaged based on the total number
of packets received.   On the I/O bus, paging traffic  was
always given lower priority to favor the reduction of the
end–to–end latency while  the  priorities of the incoming and
outgoing network traffic were rotated for the use of the
memory and I/O bus to avoid any starvation at high data
rates. Different combinations of priority assignments for the
packets on the memory bus  have been studied as explained
further. We also assumed that all necessary checksums
required by the protocol layers were computed during the
message transfer over the memory bus and did not thus
require additional copying.
We confined our studies to a 8–node system that is connected
using switched interconnection and point–to–point links as
shown in Figure 3. The 8x8 switch has a total capacity of
8Gbps that allows to maintain four 2Gbits/sec simultaneous
point–to–point connections with the switching latency of 12
microsec. per packet. 

Figure 3 .  The Configuration of the
Simulated System
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The processing nodes were assumed to be 200 MHz
superscalar CPUs capable of sustaining 2.5 issues per cycle
on the average. We considered 128 bits wide  memory bus,
operating at a clock rate of 100 MHz.  The I/O bus was
assumed to be 64 bits wide and two I/O bus clock rates were
studied: one was 33 MHz. and the other was 66 MHz.  The
DMA burst size for both the memory and I/O buses was
assumed as 32 bytes.  We assumed a cache line size of 32
bytes, allowing a cache miss to be handled by a single burst
on the memory bus.  An optimistic cache hit rate of 99% was
considered, but we also studied the impact of lower cache hit
rates, as reported later.  The page fault rate was assumed to be

one per  500,000 memory references, which is on the higher
side based on what is reported in [10], to deliberately
increase the paging traffic on the memory and I/O buses.
The page size was assumed as 8 Kbytes.  We did not
explicitly model the impact of caching message headers and
performance losses due to misaligned message headers.  (A
refined model that does this is under development.)
We now describe the software delays assumed in the
simulations.  The software latencies for the OS and protocol
layer delays, when the traditional NIC (which is incapable of
message demultiplexing) was in use were assumed as
follows, based on the fast authentication check technique
described in [7], and on the use of appropriate OS changes to
allow fast handler invocations, as described in [17]:
• Software delays during a ‘send’, excluding the copy

overhead (which is dependent on the data size and
characteristics of the DMA hardware, which are described
separately) is 6 µsecs. (for the 200 MHz. superscalar CPUs
assumed in the simulations.)  This is only the time to
perform authentication checks, buffer management,
system call and initiation of the DMAs for the copies.  The
actual time needed to copy the message was dependent on
the message size and any waiting delays – these were
accounted for explicitly in the simulation as DMA times
(memory–to–memory copy, DMA between NIC and
memory).

• Software delays during a ‘receive’ is 9 µsecs., which again
excludes the data size dependent copy overhead.  This
delay is essentially what is needed to serve the interrupt
from the NIC when a message is received, delays for buffer
management and initiating any copy.  Actual copying
delays were accounted for separately.

We implicitly assumed that address translations required by
the NIC were cached in the TLB (and translations performed
automatically, as in the SBUS protocols [Mason 94].   We
also assumed that all buffer pages are pinned in memory, so
that they are not swapped out.  The paging traffic on the
memory bus and I/O bus that was simulated thus do not
involve any message buffer pages.
We also studied the impact of using a modified handler for
authentication check with a smaller delay, in conjunction
with a NIC capable of performing message demultiplexing.
In this case, we assumed that the NIC could DMA in or out of
buffers remapped to the user’s address space, resulting in a
single–copy interface.  With this configuration, no
additional software delays are incurred in depositing an
incoming message into the receiver’s buffer.  The only thing
that the ‘receive’ primitive does is to initiate the copying of
the message from the buffer into a variable – this time was
assumed as 0.1 µ secs., based on the timings for our SNOW
prototype, scaled to a 200 MHz. clock rate.  (No access
checks are required on the receiving side, since the NIC has
done the demultiplexing on its own.)   On the sending side,
the software delay comes only from the software
components required for authentication checking and
initiating the DMA into the NIC on a ‘send’.  Based on our
experience with the SNOW prototype, we assumed this



delay as 1.6 µ  secs. (using the fast authentication checking
technique described in [7], with appropriate prescaling for
the CPU clock rates).
The simulation studies reported in this paper were confined
to the four different designs for the networking subsystem:
• Base system (B):  We assume that a traditional NIC

incapable of performing message demultiplexing is in use.
We also assume that this NIC has scatter–gather hardware
but  can support only one active DMA channel at any time
(given that only one set of DMA registers is incorporated
into the NIC).

• Base system augmented with multiple DMA channels
(BMDC):  This is identical to the base system, but multiple
DMA channels are supported by the NIC in either
direction.  We assume that the NIC supports up to 8 DMA
channels in either direction. The software associated with
the NIC uses two copies in moving the message between
the NIC and the user’s address space.

• Smart NIC on I/O bus (SNIO): This is a design that uses
a “smart” NIC capable of performing message
demultiplexing in addition to the capabilities of the
BMDC configuration.  We assume that the
hardware/firmware/software delay on the NIC for
performing message demultiplexing is a flat 2 µsecs.  The
hardware latency for message demultiplexing within the
NIC in our SNOW prototype [7]  is within this limit.  The
associated software allows the NIC to DMA messages
between user–space buffers.

• Smart NIC on dedicated bus (SNDB): This is a system
that uses a smart NIC as described above but uses a
dedicated bus to connect the NIC to dual–ported RAMs,
which are also connected on the memory bus (Figure 2).

For the configurations above, we varied the average
message size, the network offered load (that is equivalent to
network throughput in the absence of packet losses), the
priority of the network traffic vs. the traffic generated by the
cache misses, cache hit rate, and the speed of the I/O bus to
study their effect on the end–to–end latency, also noting the
effects on the CPU utilization and the utilizations of the
memory and I/O buses.
Most of the time, we compare SNIO and BMDC designs.
This is because most NICs support multiple DMA channels,
while placing the NIC on a dedicated bus, although being
one of the best and radical solutions, is quite expensive by all
means. Unless otherwise indicated, the frequency of the I/O
bus was assumed to be 33 MHz and the D–cache hit ratio –
99%.

5. Results

Figure 4 shows that not only the end–to–end latency
improves significantly when SNIO design is in use, but the
maximum sustainable throughput is substantially higher
than in both B and BMDC systems. One can also see that for
the SNDB design, the offered load practically does not effect
the end–to–end latency almost in the absence of queueing
delays. 

Figure 5 depicts different behavior of the BMDC  and SNIO
designs for  medium and large packet sizes of 320, 640 and
960 bytes. In the case of a SNIO,  the smaller packets have
lower latency (under the same offered load), because the I/O
bus transfer time (that is accounted twice in a
message–passing) is comparable with the delays within the
NIC and delays in the software layers. For the BMDC
design, however, per–packet OS service time is a
dominating factor. The same trend can be seen for the
smaller packets for the SNIO system. Figure 6 demonstrates
that the faster I/O bus does not help to reduce the end–to–end
latency in the case of a BMDC configuration (slight
improvement comes only because of a faster transfers over
the I/O bus itself), since the major bottleneck really lies in
the presence of the OS calls, but it can significantly cut down
the delays in the case of a SNIO design. In fact, slow I/O bus
may reach the saturation point under high loads in the SNIO
design, as can be seen in the Figure 7.   
As Figure 8 shows, the network load may influence the
utilization of the CPU since CPU–memory traffic
experiences more contention for the use of the memory bus
that leads to the longer miss handling times. A drop of
several percentage points in the CPU utilization is observed
as the network traffic increases, and the drop rate is more
than doubles when cache hit ratio decreases from 99 to 90
percent.
Figure 9 illustrates the effect of changing the priorities of
network traffic and CPU–memory traffic. There is a
difference of several percentage points in the CPU
utilization and this difference is bigger for the BMDC
system since every network packet has to traverse the
memory bus twice and it thus creates more delays for the
cache miss packets when the higher priority is statically
assigned to the network traffic.
The end–to–end latencies for the two priority allocation
schemes have also been measured but the difference of the
observed results never exceeded 0.1 microsec. Indeed, for
the long packets, even several collisions on the memory bus
with the higher–priority cache miss packets, that are short
and are served very quickly, add just several more cycles to
the latency that is largely dominated by the OS service time,
NIC delays, I/O bus transfer time, wire transfer time and
switching delay.
Thus, especially for the long packets, statically assigning the
higher priority to the CPU–memory packets gains several
percents of the CPU utilization and practically does not
change the end–to–end latency.

6. Conclusions

This paper presents the comprehensive review of hardware
and software modifications and innovations (introduced
elsewhere) made to support a high bandwidth and low
latency message passing over the network of workstations.
We also  present and discuss the results of the simulation
modeling employed to study the impact of some of these
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Figure 4 . Total end–to–end latency and queueing delays ( µsec) vs. network offered load (Gbits/
sec) .    Average packet size – 640 bytes

B
BMDC SNIO

SNDB

��$� �'

��$&!"� !���"�� �!��

�
��
��
��
��
��
��

� � � � � � � 	 


B
BMDC

SNIO

SNDB

�%�%�� � ���'#

��$&!"� !���"�� �!��

�
��
��
��
��
��
��
	�

�

� � �

��$� �'

��$&!"� !���"�� �!��

��� �'$�#


�� �'$�#

�
� �'$�#

Figure 5 . Latency ( µsec) vs. network offered load (Gbits/sec) for different  packet sizes.
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Figure 6. Latency (microsec) vs. network offered load (Gbits/sec) for different I/O
bus speeds. Average packet size is 640 bytes
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Figure 7 . I/O bus utilization vs. network  offered load . Average packet size is 640 bytes
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techniques.  The various delays associated with message
passing including hardware delays, queueing delays and
delays in the software layers have been accounted for in the
simulator for various networking subsystem organizations.
In particular, we analyzed the impact of the average packet
sizes, traffic priorities, cache miss rate and the speed of the
I/O bus on the message passing latency, CPU utilization and
the utilization of the buses. Our results show that for a
conventional placement of the NIC on the I/O bus,  changing
traffic priorities on the memory bus to speed up the transfers

between the NIC and the DRAM has little impact on overall
latency and network throughput as the offered network
traffic increases.  Improving the speed of the I/O bus
produces some performance gains.  These performance
gains are shown to be quite limited until message
demultiplexing capabilities are added to the NIC.
Significant performance gains are realized with the use of
dual ported DRAM banks, and the use of a dedicated
connection between the NIC and these banks.
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Figure 8 . CPU and memory bus utilization vs. offered load for the SNIO system for
D–cache hit ratios of 99% and 90%. Average packet length is 640 bytes.
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Figure 9 . CPU utilization vs. D–cache hit ratio for the BMDC and SNIO configurations. Aver-
age packet length is 640 bytes. The network throughput is 2 Gbits/sec
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