
HAL Id: inria-00540578
https://inria.hal.science/inria-00540578

Submitted on 27 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Link-Heterogeneity vs. Node-Heterogeneity in Clusters
Olivier Beaumont, Arnold Rosenberg

To cite this version:
Olivier Beaumont, Arnold Rosenberg. Link-Heterogeneity vs. Node-Heterogeneity in Clusters. HIPC
– International Conference on High Performance Computing, 2010, IEEE – ACM Sigarch, Dec 2010,
Goa, India. �inria-00540578�

https://inria.hal.science/inria-00540578
https://hal.archives-ouvertes.fr


Link-Heterogeneity vs. Node-Heterogeneity in

Clusters

Olivier Beaumont
INRIA and Univ. of Bordeaux

33405 TALENCE Cedex, France

olivier.beaumont@labri.fr

Arnold L. Rosenberg
Colorado State University

Fort Collins, CO 80523, USA

rsnbrg@colostate.edu

Abstract—Heterogeneity in resources pervades all modern
computing platforms. How do the effects of heterogeneity depend
on which resources differ among computers in a platform? Some
answers are derived within a formal framework, by compar-
ing heterogeneity in computing power (node-heterogeneity) with
heterogeneity in communication speed (link-heterogeneity). The
former genre of heterogeneity seems much easier to understand
than the latter.

I. INTRODUCTION

We study the problem of scheduling a divisible workload

on a node-homogeneous, link-heterogeneous cluster, a com-

puting platform that consists of identical “worker” computers

(the node-homogeneity) that intercommunicate with different

speeds (the link-heterogeneity). A workload is divisible if it

can be divided among worker computers arbitrarily, i.e. as

any number of independent “pieces”; this corresponds to a

perfectly parallel job: all subtasks can be processed in parallel,

and on any number of workers. Divisible Load Scheduling

(the DLS model) idealizes applications that consist of large

numbers of identical, low-granularity computations.

We focus on scheduling an episode of worksharing, wherein

a master computer distributes a large divisible workload seri-

atim to worker computers, each of which executes its assigned

work, then returns its results to the master. This entire process

takes place within a fixed lifespan of L time units. In the most

general setting, each worker has a different computational

speed, and each master-worker link has a different bandwidth.

The scheduling problem is to determine: (1) how many units

of work the master should send to each worker; (2) in which

order the master should “serve” the workers their assigned

work units; (3) in which order workers should return their

results to the master. The goal is to maximize the amount of

work completed during the lifespan. In common with [1], we

call this the Cluster-Exploitation Problem (CEP).

The DLS model has been widely studied, especially after

having been popularized in [9]. From a theoretical standpoint,

the success of the model is due mostly to its analytical

tractability. In particular, within the context of star-shaped

networks without return messages, polynomial-time algorithms

and closed-form expressions exist for most scheduling prob-

lems. In particular, it is shown in [4], [9], [7] that, in an

optimal solution to the CEP: (i) all workers participate in

the computation; (ii) they never stop working after having

received their work from the master; (iii) they all terminate

executing their loads simultaneously; (iv) the best strategy

is to serve workers in nonincreasing order of bandwidth,

independent of their computing powers. These conditions on

optimal solutions enable one to find a closed-form formula

for the amount of work completed. Very few hardness results

are known within the context of DLS, except if latencies are

taken into account [24]; accounting for latencies makes many

resource selection problems NP-Complete.

The next step toward reality in the DLS model is to include

return messages, via which workers return results to the mas-

ter. In the context of divisible load scheduling, constant size

(e.g., boolean or YES-NO) return messages do not influence

the performance of a schedule, since initial loads are assumed

to be large in DLS-based studies, in order to avoid problems

related to rounding rational-size messages to integer-sizes.

Therefore, accommodating return messages is interesting only

for applications that produce significant-size results. In the

current study, the size of each worker’s result-message is linear

in the size of its work-specifying message; specifically, the

size of each return message is a constant fraction δ of the

size of the initial message. We assume here that δ ≤ 1: return

messages are no larger than work-distributing messages. One

can deal with the case δ > 1 by finding the optimal solution

with δ′ = 1/δ and then interchanging the orderings of the

initial and the return messages.

Related Work. Several authors have investigated the problem

of worksharing with return messages; cf. [1], [2], [3], [5],

[11], [12], [13], [19]; however, all the results obtained so

far focus on subcases of the general problem. The case of

return communications has also been considered in the case

of multi-round algorithms [23], [15], [14]. There are hints

in these sources that nontrivial return messages significantly

complicate the scheduling problem. The first hint lies in the

combinatorial space that could hold the best solution, since

two permutations have to determined instead of a single one.

Indeed, there is no reason to expect that the best ordering

of the work-distributing messages should be related in some

fixed way to the best ordering of the result-returning messages:

In some situations, a FIFO protocol (the worker first served

by the master is the first to return results, and so on) may

be best, because it provides a smooth and well-structured

pipelining scheme. In other situations, a LIFO protocol (first-

served workers are the last to return results) may provide better

results, because it has faster workers work for longer periods.



If we mandate the use of a FIFO or a LIFO protocol, then

only the initial ordering of workers has to be determined;

it is shown in [6] that the optimal initial ordering can be

determined in polynomial time; it is also shown there that in

some cases, the optimal protocol is neither LIFO nor FIFO!

When there are result-returning messages, it is also known [5]

that in some cases, not all workers should be enrolled in

the computation by the master—even in the case of FIFO

orderings; this differs strongly from the situation when there

are no result-returning messages. Finally, for clusters that are

node-heterogeneous but link-homogeneous1, it is shown in [1]

that all FIFO schedules are equally productive and that they

are optimal, in that no other protocol outperforms them. For

master-worker systems that are organized as star networks,

even simple FIFO protocols have not yet been analyzed.

To the best of our knowledge, the computational com-

plexity of the DLS problem remains open; we conjecture

that the problem is NP-Complete. The result of [1] in the

case of link-homogeneous communication fabrics such as bus

networks suggests that the complexity does not result from

the heterogeneity of the processing resources; and the results

known for the LIFO and FIFO protocols suggest that the

problem becomes easier once the respective orderings of initial

and return communications have been fixed. Therefore, to

make a step toward determining the actual complexity of the

scheduling problem, we concentrate in this paper on the case

of homogeneous computers and heterogeneous communication

resources—but we do not fix a priori the respective orderings

of initial and return communications. Theoretically, this cor-

responds to the “simplest” version of the scheduling problem

whose complexity is still unknown. On the practical side, it

corresponds to the case of identical computers participating in

a volunteer computing network, such as Seti@home [21] or

Folding@home [16].

Main contributions. We adapt the node-heterogeneous, link-

homogeneous framework of [1] to link-heterogeneous, node-

homogeneous clusters (Section III). We show that this setting

is much more complex to analyze than is the setting of

[1], wherein FIFO protocols provably dominate all others. In

the current setting, neither the LIFO nor the FIFO protocol

always dominates the other: we exhibit both situation in which

LIFO protocols are more productive than FIFO protocols

(Theorem 3(b) and 4), and situations in which the opposite

domination holds (Theorem 3(a)). Our main result shows,

nonetheless, that FIFO protocols are quite special in the

current setting, albeit in a weaker sense than in [1]: With

node-homogeneous, link-heterogeneous clusters, the work pro-

duction of FIFO protocols is always at least a predictable

fraction of the optimal work production (Theorem 5). Finally,

for one scenario—when each unit of work produces very small

results (Section V-B); i.e., δ << 1—we provide a polynomial-

time algorithm that determines an optimal protocol for a given

node-homogeneous, link-heterogeneous cluster.

1This case includes clusters whose computers intercommunicate over a bus
network

II. PLATFORM DESCRIPTION AND NOTATION

Platform Model. We have access to n + 1 computers: the

server C0 and a cluster C of n workers, C1, . . . , Cn. The

Ci are identical in computing powers: We have a uniform

workload, and each Ci can complete one unit of work in ρ
time units. But the Ci can differ drastically in communication

speeds: The time to send a packet either from the server C0

to a worker Ci or from Ci to C0—all of our communications

are of one of these forms—is τi time units; and, each τi can

differ greatly from each other τj .

The Cluster-Exploitation Problem. C0 has W units of work

comprising mutually independent tasks of equal sizes and

complexities.2 (Such workloads arise in diverse applications,

e.g., data smoothing, pattern matching, ray tracing, Monte-

Carlo simulations, chromosome mapping [21], [17], [22].) The

tasks’ (common) complexity can be an arbitrary function of

their (common) size. C0 distributes a “package” of work to

each Ci ∈ C, in a single message. Each unit of work produces

0 ≤ δ < 1 units of results; each Ci returns the results from

its work, in one message, to C0. At most one intercomputer

message can be in transit at a time. We study the following

simple problem.

The Cluster-Exploitation Problem (CEP). C0 must complete as

many units of work as possible on cluster C within a given

lifespan of L time units.

A unit of work is “complete” once C0 has sent it to a Ci and

Ci has computed the unit and returned results to C0. We call

a schedule for the CEP a worksharing protocol.

The formal framework of [1] studies the CEP within the

context of node-heterogeneous, link-homogeneous clusters.

Two worksharing protocols, LIFO and FIFO, have attractive

structure and provide intuitively appealing solutions to the

CEP. It was surprising to learn that LIFO protocols do not

solve the CEP optimally [19] and even more surprising to

learn that FIFO protocols solve the CEP optimally [1].

III. WORKSHARING PROTOCOLS AND WORK PRODUCTION

A. The Architectural Model [10]

We assume that C’s computers are (architecturally) identi-

cal: every one of of the workers’ subsystems (memory, I/O,

etc.) operate at the same speed—which we encapsulate by

the shared computation rate of ρ time units per unit of work.

In our worksharing protocols, all communications consist

of C0 sending work to some worker Ci or some worker

Cj sending its results to C0. Consequently, the only inter-

computer communication rates that we care about involve C0

and some Ci; each of these communications is over a network

with a transit rate of τi time units per transmitted unit of work.

(In our setting, it is more convenient to use the transit rate of

a network to measure complexity of communication than to

use its reciprocal, the bandwidth.)

Before injecting a message M into the network, Ci packages

M (e.g., packetizes, compresses, encodes) at a rate of π time

units per work unit. When Cj receives M, it unpackages it, also

2“Size” quantifies specification; “complexity” quantifies computation.



at a rate of π time units per work unit.3 We ignore the fixed

costs associated with transmitting M—the end-to-end latency

of the first packet and the set-up cost—because their impacts

fade over long lifespans L. A final important feature: At most

one inter-computer message can be in transit at any moment,

in each direction.

We thus envisage an environment (workload plus platform)

in which the cost of transmitting work grows linearly with

the total amount of work performed: there are constants κ, κ′

such that transmitting w units of work takes κw time units,

and receiving the results from that work takes κ′w time

units. These relationships allow us to measure both time and

message-length in the same units as work.

B. Worksharing Protocols [1]

One worker. C0 shares w units of work with a single Ci via

the process summarized in the action/time diagram of Fig. 1.

Multiple workers. Two ordinal-indexing schemes for C’s

computers help orchestrate communications while solving

the CEP. The startup indexing specifies the order in which

C0 transmits work within C; it labels these computers

Cs1 , . . . , Csn , to indicate that Csi receives work—hence,

begins working—before Csi+1
. Dually, the finishing indexing

labels these computers Cf1 , . . . , Cfn , to specify the order in

which they return their results to C0. Protocols proceed as

follows.

1) Transmit work. C0 prepares and transmits ws1 units of

work for Cs1 . It immediately prepares and sends ws2

units of work to Cs2 via the same process. Continuing

thus, C0 supplies each Csi with wsi units of work

seriatim—with no intervening gaps.

2) Compute. Upon receiving work from C0, Ci unpackages

and performs the work.

3) Transmit results. As soon as Ci completes its work, it

packages its results and transmits them to C0.

We remark that if we set the processing speed to π+ρ+δπ, we

come back to the traditional DLS model (without packaging

and unpackaging). Hence, all the results proved in this paper

also apply to the more traditional model. We choose work-

allocations wi so that, with no gaps, C’s computers:

• receive work and compute in the startup order Σ =
〈s1, . . . , sn〉;

• complete work and transmit results in the finishing order

Φ = 〈f1, . . . , fn〉;
• complete all work and communications by time L.

We choose to have all computing by the server C0—

which consists of its packaging work for C’s computers and

unpackaging their results—take place offline, so that we can

focus solely on a worksharing episode as it appears to C’s

computers.

The described protocol is summarized in Figs. 2 and 3. In

Fig. 2, Σ and Φ are reversed: (∀i)[fi = sn−i+1], to specify

the LIFO protocol. In Fig. 3, Σ and Φ coincide: (∀i)[fi = si],

3Equating packaging and unpackaging times is consistent with most actual
architectures.

to specify the FIFO protocol. Neither relationship is true of

general protocols; cf. [1].

To enhance the legibility of complicated expressions, we

employ the abbreviations in Table I for quantities that recur

in our analyses.

IV. LINK-HETEROGENEOUS, NODE-HOMOGENEOUS

CLUSTERS

As in [1], the work productions of any worksharing protocol

can be calculated by solving a system of linear equations.

A. The LIFO Worksharing Protocol

Fig. 2 illustrates that the LIFO protocol greedily supplies

as much work as possible to faster workers. The protocol’s

asymptotic4 work-allocations, w
(L)
1 , . . . , w

(L)
n , are specified

by the following system of linear equations.

C
(L) ·




w
(L)
1

w
(L)
2
...

w
(L)
n−1

w
(L)
n




=




L
L
...

L
L




(1)

where

C
(L) =




R + τ̃1 0 · · · 0 0
τ̃1 R + τ̃2 · · · 0 0
...

... · · ·
...

...

τ̃1 τ̃2 · · · R + τ̃n−1 0
τ̃1 τ̃2 · · · τ̃n−1 R + τ̃n




It is not hard to find explicit expressions for the LIFO

protocol’s work allocations and its aggregate completed work.

By inspecting the first equation in system (1), plus all pairs

of “adjacent” equations, we find that

w
(L)
1 =

1

R + τ̃1
· L

w
(L)
k =

R

R + τ̃k
· w

(L)
k−1 for each k ∈ {2, . . . , n}. (2)

Three conclusions are immediate.

Theorem 1: Consider a cluster C with communication pro-

file Π = 〈τ1, . . . , τn〉. Under the LIFO protocol: (a) For each

k ∈ {1, . . . , n}, the amount of work completed by C’s kth

computer in L time units is

w
(L)
k =

Rk−1

(R + τ̃1) · · · (R + τ̃k)
· L. (3)

(b) The aggregate amount of work, w
(L)
1 + · · · + w

(L)
n , com-

pleted by C in L time units is

W (L)(C;L) = L ·

n∑

k=1

Rk−1

(R + τ̃1) · · · (R + τ̃k)
. (4)

4Throughout, asymptotic means “as L grows without bound.”



C0 packages work is Ci receives Ci computes Ci packages results are C0 receives
work for Ci in transit the work the work its results in transit the results

πw τiw πw ρw πδw τiδw πδw

Fig. 1. The generic worksharing protocol for one worker (not to scale).

C0 sends sends sends receives results
work to C1 work to C2 work to C3

τ1w1 τ2w2 τ3w3

C1 waits processes results

(π + ρ+ δπ)w1 τ1δw1

C2 waits waits processes results

(π + ρ+ δπ)w2 τ2δw2

C3 waits waits waits processes results

(π + ρ+ δπ)w3 τ3δw3

Fig. 2. A schematic of the 3-worker LIFO protocol (not to scale).

C0 sends sends sends receives results
work to C1 work to C2 work to C3

τ1w1 τ2w2 τ3w3

C1 waits processes results

(π + ρ+ δπ)w1 τ1δw1

C2 waits waits processes results

(π + ρ+ δπ)w2 τ2δw2

C3 waits waits waits processes results

(π + ρ+ δπ)w3 τ3δw3

Fig. 3. A schematic of the 3-worker FIFO protocol (not to scale).

TABLE I
ABBREVIATIONS FOR RECURRING QUANTITIES

Quantity Definition Meaning

π̃ (1 + δ)π the per-unit, “round-trip,” (un)packaging rate for each worker

R π̃ + ρ the common processing rate of nodes: this is the per-unit,
“round-trip,” time-cost for
[work-unpackaging + work-performing + result-packaging]
for each C0-worker pairing

τ̃i (1 ≤ i ≤ n) (1 + δ)τi the per-unit, “round-trip,” communication rate for worker Ci

(c) W (L)(C;L) is maximized by using a startup order Σ =
〈s1, . . . , sn〉 for which τs1 ≤ · · · ≤ τsn , i.e., by serving

workers in nondecreasing order of their link speeds.

The optimality of the serve-faster-links-first startup order

(part (c) of the theorem) is validated by noting that this proto-

col makes all of the denominators in (4) as small as possible,

while not affecting the numerators. Moreover (cf. (2)), this

protocol makes each successive w
(L)
k as large as possible,

given that it is the kth allocation.

B. The FIFO Worksharing Protocol

Fig. 3 illustrates that the FIFO protocol moderates the

LIFO protocol’s greediness with a modicum of “fairness.”

The protocol’s work-allocations, w
(F)
1 , . . . , w

(F)
n , are specified

asymptotically by the following system of linear equations.

C
(F) ·




w
(F)
1

w
(F)
2
...

w
(F)
n−1

w
(F)
n




=




L
L
...

L
L




(5)

where

C
(F) =




R + τ̃1 δτ2 · · · δτn−1 δτn
τ1 R + τ̃2 · · · δτn−1 δτn
...

... · · ·
...

...

τ1 τ2 · · · R + τ̃n−1 δτn
τ1 τ2 · · · τn−1 R + τ̃n






Theorem 2: Consider a cluster C with communication pro-

file Π = 〈τ1, . . . , τn〉. Under the FIFO protocol: (a) For each

k ∈ {2, . . . , n}, the amount of work completed by C’s kth

computer in L time units is

w
(F)
k = w

(F)
1 ·

k−1∏

j=1

R + δτj
R + τj+1

= w
(F)
1 ·

k−1∏

j=1

(π̃ + ρ) + δτj
(π̃ + ρ) + τj+1

. (6)

(b) The amount of work completed by C’s first computer (the

one with index k = 1) in L time units is

w
(F)
1 =


(R + τ̃1) +

n∑

k=2

δτk ·

k−1∏

j=1

R + δτj
R + τj+1




−1

· L. (7)

(c) The aggregate amount of work completed by C under the
FIFO protocol is

W (F)(C;L) =

(
(R + τ̃1) +

n∑

k=2

δτk ·

k−1∏

j=1

R + δτj

R + τj+1

)
−1

·

(
1 +

n∑

k=2

k−1∏

j=1

R + δτj

R + τj+1

)
· L.

(8)

Proof: Determining the work allocations. By combining

adjacent equations in (5), we find that, for all k ∈ {2, . . . , n},

w
(F)
k =

R + δτk−1

R + τk
·w

(F)
k−1 =

(π̃ + ρ) + δτk−1

(π̃ + ρ) + τk
·w

(F)
k−1. (9)

Unrolling the recurrence yields (6). We determine w
(F)
1 by

combining the first equation of (5), namely,

(R + τ̃1)w
(F)
1 + δτ2w

(F)
2 + · · ·+ δτnw

(F)
n = L.

with the values for each higher-index w
(F)
k from (9). We

thereby find that

w
(F)
1 ·


(R + τ̃1) +

n∑

k=2

δτk ·

k−1∏

j=1

R + δτj
R + τj+1


 = L,

whence equation (7).

Determining the work production. We compute the aggre-

gate work production, w
(F)
1 + · · · + w

(F)
n , under the FIFO

protocol by combining (6) and (7) to yield (8):

W
(F)(C;L) = w

(F)
1 ·

(
1 +

n∑

k=2

k−1∏

j=1

R + δτj

R + τj+1

)

=

(
(R + τ̃1) +

n∑

k=2

δτk ·

k−1∏

j=1

R + δτj

R + τj+1

)
−1

·

(
1 +

n∑

k=2

k−1∏

j=1

R + δτj

R + τj+1

)
· L.

The theorem follows.

It is shown in [6] that W (F)(C;L) may decrease as n
increases; i.e., adding a worker to cluster C can actually

decrease the aggregate amount of work that C completes.

Somewhat mitigating this fact, one can use (8) to decide which

subset of C’s computers optimizes work production. To wit,

order C’s n computers in some way, and for m ≤ n, let

W
(F)
m (C;L) denote the amount of work C completes in L time

units using only computers C1, . . . , Cm. If we let

Nm =

(
1 +

m∑

k=2

k−1∏

j=1

R + δτj

R + τj+1

)
· L

Dm =

(
(R + τ̃1) +

m∑

k=2

δτk ·

k−1∏

j=1

R + δτj

R + τj+1

)

X =

m∏

j=1

R + δτj

R + τj+1
,

then W
(F)
m (C;L) = Nm/Dm, and W

(F)
m+1(C;L) = (Nm +

X)/(Dm + δτm+1X). We find, therefore, that:

Proposition 1: [W
(F)
m+1(C;L) > W

(F)
m (C;L)] if and only if

[W
(F)
m (C;L) < 1/(δτm+1)].
Henceforth, assume that we have “pruned” C so that all of

its computers enhance productivity.

C. Lessons Learned

The FIFO protocol is fairer than LIFO.

Proposition 2: The FIFO work allocations are more fair

than the LIFO ones, in that they come closer to allocating

work in proportion to link speeds. Specifically,

R + δτk−1

R + τk
=

w
(F)
k

w
(F)
k−1

>
w

(L)
k

w
(L)
k−1

=
R

R + τ̃k

Under both protocols, faster links enhance productivity.

Proposition 3: Consider two link-heterogeneous, node-

homogeneous clusters, C1 and C2, having respective com-

munication profiles 〈τ11, . . . , τ1n〉 and 〈τ21, . . . , τ2n〉. If each

τ1k ≤ τ2k, with at least one inequality strict, then C1 completes

more work under both the LIFO and FIFO protocols:

[W (L)(C1;L) > W
(L)(C2;L)] and [W (F)(C1;L) > W

(F)(C2;L)].

Proof: The LIFO protocol. Consider expression (4) spe-

cialized to C1 and C2. The assumed relationship between

the communication profiles of C1 and C2 implies that every

denominator in the expression for W (L)(C2;L) is at least as

big as the corresponding denominator in the expression for

W (L)(C1;L), and at least one denominator is strictly bigger.

The numerators are unaffected by the sizes of the τ -values.

The FIFO protocol. Focus on expressions (6), (7) for C’s

work allocations, and consider how allocations change when

one decreases τk0
: Each allocation whose index is strictly

smaller than k0 is unaffected by the change, but each of the

other allocations is increased. The second fact results from the

following inequality with ε > 0.

A+ δ(τ − ε)

A+ τ − ε
<

A+ δτ

A+ τ
.



D. Link-Heterogeneous Clusters with Two Computers

We illustrate the LIFO and FIFO protocols “in action” by

focusing on the case n = 2 (where they are the only protocols).

Focus on a cluster C with communication profile 〈τ1, τ2〉.
LIFO work production. Specializing (1) to the case n = 2, we

find that

W (L)(C;L) =
2R + τ̃2

(R + τ̃1)(R + τ̃2)
· L. (10)

FIFO work production. Specializing (5) to the case n = 2, we

find that

W (F)(C;L) =
2R + τ2 + δτ1

(R + τ̃1)(R + τ̃2)− δτ1τ2
· L (11)

Lessons from the case n = 2. In the node-heterogeneous,

link-homogeneous model of [1], no protocol ever outper-

forms the FIFO protocol. In our link-heterogeneous, node-

homogeneous model, the situation is more complicated.

Theorem 3: (a) When τ1 ≥ τ2, so that C’s slower link is

served before its faster one, the FIFO protocol outperforms

the LIFO protocol: W (F)(C;L) > W (L)(C;L).
(b) When τ1 < τ2, so that C’s faster link is served before its

slower one:

1) If τ1 is only slightly smaller than τ2, then the

FIFO protocol’s “advantage” persists: W (F)(C;L) >
W (L)(C;L).

2) If τ1 is significantly smaller than τ2, then the “ad-

vantage” passes to the LIFO protocol: W (L)(C;L) >
W (F)(C;L).

Proof: (a) Compare expressions (10) and (11). The latter

(FIFO) expression’s denominator is smaller than the (LIFO)

former’s, and its numerator is at least as large.

(b) The persistence of FIFO’s advantage when τ1 is only

slightly smaller than τ2 being obvious, we focus only on

when a switch in “advantage” occurs. Consider the difference

∆(τ1)
def

= W (F)(C;L)−W (L)(C;L), viewed as a function of

τ1—i.e., when τ1 varies while all other parameters (π, ρ, τ2)

remain fixed. Easily,

• ∆ is continuous (in fact, differentiable) in the interval

[0, τ2] = {ξ | 0 ≤ ξ ≤ τ2};

• [∆(0) < 0] while [∆(τ2) > 0].

By Rolle’s Theorem, there is a ξ ∈ [0, τ2] at which ∆ vanishes.

It is not hard to verify that ξ is unique and, in fact, to calculate

ξ. Indeed, by equating expressions (10) and (11), we obtain ξ
as the unique root of a polynomial of degree 2 in the interval

[0, τ2]. The point ξ is where the switch in “advantage” between

the FIFO and LIFO protocols takes place.

We end with a significant contrast between the node-

heterogeneous, link-homogeneous clusters of [1] and our link-

heterogeneous, node-homogeneous clusters. Whereas startup

order does not affect FIFO work production in the former

setting, it does in the latter! (The same contrast between node-

heterogeneity and link-homogeneity is noted in [8].)

Proposition 4: When τ1 < τ2, the FIFO work production

is strictly greater when the faster link is served first.

V. TWO SPECIAL CASES

A. Computation-Dominated Instances of CEP

We now focus on an arbitrary worksharing protocol P for

a cluster C on which communication is much faster than com-

putation: the case R ≫ τi. For each worker Ci of C, denote

by Si the set of computers whose startup communications

are no later than Ci’s and by F i the set of computers whose

finishing communication are no earlier than Ci’s. Set Σ(i) = k
(resp., Φ(i) = k) if Ci is the kth worker to begin its startup

communication (resp., its finishing communication). For each

index i, we can express Ci’s work allocation wi under protocol

P in the form
∑

j∈Si

τjwj + Rwi +
∑

k∈Fi

δτkwk = L. (12)

Clearly, each wi ≤ L/R, so that when R ≫ τ ,

∑

j∈Si

τjwj + Rwi +
∑

k∈Fi

δτkwk = Rwi −O

(
L

R

)
,

(as L grows without bound); hence, wi = L/R + O
(
L/ρ2

)
.

Therefore,
∑

i wi = Ln/ρ−O
(
nL/ρ2

)
, which increases with

n, so that:

Proposition 5: For any protocol P , if processing times are

much larger than communication times, then it is always

worthwhile to enlist all workers in solving the CEP. Moreover,

P’s startup and finishing communication orderings influence

only second-order terms in work production.

Choose αi so that wi = L/R(1−αi/R). Focusing on second-

order terms, for each i,

αi =
∑

j∈Si

τj +
∑

k∈Fi

δτk

so that
∑

i

αi =
∑

j

(n+ 1− Σ(j))τj +
∑

k

Φ(k)δτk.

Clearly, then, when τ1 < τ2 < · · · < τn,
∑

i αi is minimized

by setting each Σ(i) = i and each Φ(i) = n + 1 − i. This

specifies the LIFO protocol! We thus have:

Theorem 4: Say that processing times are much larger than

communication times and that τ1 < · · · < τn. Then the LIFO

protocol has optimal work production, providing that workers

are served in increasing order of τ -values.

B. Computations that Produce Very Small Results

We focus now on the case δ ≪ 1, wherein each unit of

work produces a very small result-message. In contrast to our

other results, which expose the structure of optimal protocols,

we provide here a polynomial-time algorithm that determines

an optimal protocol for a given cluster C.

If computations produce no output (i.e., δ = 0) and if

τ1 < · · · < τn, then, easily, the optimal startup ordering of

C’s computers is given by Σ(i) = i: one serves workers in

decreasing order of link speed. (All workers finish together in



this case.) We begin to study the current scenario with this Σ,

and we seek the optimal finishing ordering Φ. For technical

reasons, we normalize the CEP by setting L ≡ 1. Importing

notation from Section V-A, we adapt expression (12) to the

current scenario:

for each i:
∑

j≤i

τjwj +Rwi + δ ·



∑

j∈Fi

τjwj


 = 1. (13)

Additionally, we denote by yi the amount of work allocated

to Ci when δ = 0, and we adapt this allocation to the current

scenario by denoting the current allocation to Ci as wi =
yi − δzi. The first-order approximation to (13) becomes:

for each i:
∑

j≤i

τjzj + Rzi =
∑

j∈Fi

τjyj , (14)

and our goal becomes the determination of sets F i for which

the sum
∑

zi is minimized.

(Note: As in Section V-A, since
∑

wi =
∑

yi − δ
∑

zi, and

since it is well known that all workers should participate in

the computation when δ = 0 (i.e.,
∑

yi always increases when

new workers are added), then all workers should participate

in the computation when δ is sufficiently small.)

Let us now employ the following notation:
T : the lower triangular matrix with (∀i ≥ j) Ti,j = 1
s: the vector with si =

∑
j∈Fi

τjyj
D: the diagonal matrix with Di,i = τi
I: the identity matrix of size n
11: the vector all of whose entries equal 1

Then, system (14) becomes
[(

RI + TD
)
z = s

]

or, equivalently,
[
z =

(
RI + TD

)−1

s

]
.

Thus,

n∑

i=1

zi = 11t z = 11t(RI + TD)−1s

=
(
(RI + TD)−t11

)t
s = uts,

where u is the solution of
(

RI + TD
)t
u = 11.

We solve this optimization problem by viewing it as a

scheduling problem, specifically, an instance of the Mini-

mum Weighted Sum of Completion Times on One Computer

(MWSCTOC) problem. (See the survey [18].) MWSCTOC

is the problem:

Given: jobs J1, . . . , Jn, where each Ji has a processing time

pi and a weight wi

Find: a non-preemptive schedule of the jobs on a single

machine (i.e., an ordering of the jobs) that minimizes
∑

i wici,
where ci is the completion time of Ji.

If we denote by J i the set of jobs that end no later than Ji
does, then the goal is to minimize

∑
i wi ·

∑
j∈J i

pi.

In our context: if we set wi = ui and pi = τiyi,
then minimizing

∑
zi is equivalent to solving an instance

of MWSCTOC. When there are no dependencies between

tasks—as in our setting—it is shown in [20] that jobs should

be scheduled by increasing value of τiyi/ui. Therefore, when

δ ≪ 1, the optimal ordering F of return communications can

be determined in polynomial time.

VI. THE FIFO PROTOCOL IS APPROXIMATELY OPTIMAL

In contrast to the node-heterogeneous, link-homogeneous

setting, within which the FIFO protocol is (asymptotically)

exactly optimal [1], we do not yet understand the structure

of protocols that solve the CEP optimally for our link-

heterogeneous setting. The main things that we have discov-

ered thus far are: neither of the well-structured LIFO and FIFO

protocols provides an optimal solution, and neither dominates

the other. In view of this, it is a meaningful goal to seek

solutions to the CEP that are approximately optimal, i.e., that

deviate from optimality by at most a predictable fraction. In

this spirit, we provide the following theorem, which is valid

for fully heterogeneous clusters, i.e., clusters whose computers

can differ in both communication and computation speed.

Focus on a link-heterogeneous, node-heterogeneous clus-

ter C with n computers, C1, . . . , Cn, whose communica-

tion profile is 〈τ1, . . . , τn〉 and whose computation profile

is 〈R1, . . . ,Rn〉: Each Ri is the value of R = π̃ + ρ that

is “personalized” for Ci. Let τmin = min{τ1, . . . , τn}, and

τmax = max{τ1, . . . , τn}.

Theorem 5: The FIFO protocol provides a polynomial-time

approximation algorithm for the CEP, with performance ratio

τmin/τmax. That is: if 〈w1, . . . , wn〉 are the work allocations to

cluster C’s computers under the FIFO protocol, and 〈z∗1 , . . . z
∗
n〉

are the analogous allocations under the optimal protocol, then,

W (F)(C;L) =
n∑

i=1

wi ≥
τmin

τmax

n∑

i=1

z∗i =
τmin

τmax
OPT.

Proof: We formulate the CEP using linear algebra and

permutation matrices. To this end, denote by S and F the

permutation matrices used for startup and finishing orders; e.g.,

for the LIFO protocol, S and F are the identity matrix, and

for the FIFO protocol, S is the identity matrix and F is the

reverse permutation (that maps i to n+1− i). Employing the

notation of Section V-B, and letting DR denote the diagonal

matrix whose (i, i) entry is Ri, we formulate our optimization

problem as follows.

Find permutation matrices S and F that maximize 11tw,

where w is the solution of5

(DRD
−1 + STSt + δFTF t)Dw = L11.

Conversely, consider the following optimization problem.

Find permutation matrices S and F that maximize 11ty,

where y is the solution of (DRD
−1+STSt+δFTF t)y = L11.

This linear system is equivalent to maximizing the number of

tasks on a platform for which τ ′i ≡ 1 and each ρi = Ri/τi.

5Mt denotes the transpose of matrix M .



Because this platform is homogeneous, we know that 11ty
is maximized by the FIFO protocol [1]! Therefore, choosing

the FIFO protocol for our optimization problem is equivalent

to maximizing 11ty = 11tDw, i.e., to maximizing the sum

V =
∑

wiτi. Of course, we wish to maximize the sum

W =
∑

wi rather than V , but we can obtain bounds on the

optimal value of W from the optimal value of V . Specifically,

we have

τmin

n∑

i=1

z∗i ≤

n∑

i=1

τiz
∗
i ≤

n∑

i=1

τiwi ≤ τmax

n∑

i=1

wi.

The theorem now follows, because

n∑

i=1

wi ≥
τmin

τmax

n∑

i=1

z∗i ≥
τmin

τmax
OPT.

VII. CONCLUSION

We have “flipped” the two characteristics that define

the clusters studied in [1], node-heterogeneity and link-

homogeneity, to initiate a study of node-homogeneous, link-

heterogeneous clusters. We continue to use the conceptually

simple Cluster-Exploitation Problem, the CEP, as the platform

for our study. We find that this “flip” has transformed a

problem for which we can succinctly describe the optimal

scheduling protocol to one that needs to be solved optimally

on a case-by-case basis. We show that this setting is much

more complicated than that of [1], since neither the LIFO

protocol nor the FIFO protocol always dominates the other;

indeed, we exhibit both situations in which LIFO protocols

are more productive than FIFO protocols and situations in

which the opposite domination holds. Our main result shows

that FIFO protocols are always approximately optimal: the

work production of FIFO protocols is always at least a

predictable fraction of the optimal work production. Finally,

for one scenario, when each unit of work produces very

small results, we provide a polynomial-time algorithm that

determines an optimal protocol for a given link-heterogeneous,

node-homogeneous cluster. We have thus made progress in

understanding heterogeneous computing platforms—but, even

within the context of the simple CEP problem, the complexity

of finding optimal schedules in the general case remains open.

REFERENCES

[1] M. Adler, Y. Gong, and A.L. Rosenberg. On exploiting node-
heterogeneous clusters optimally. Theory of Computing Systems,
42(4):465–487, 2008.

[2] D. Altilar and Y. Paker. Optimal scheduling algorithms for communi-
cation constrained parallel processing. In Euro-Par 2002, LNCS 2400,
pages 197–206. Springer Verlag, 2002.

[3] G.D. Barlas. Collection-aware optimum sequencing of operations and
closed-form solutions for the distribution of a divisible load on arbitrary
processor trees. IEEE Trans. Parallel Distributed Systems, 9(5):429–441,
1998.

[4] S. Bataineh, T.Y. Hsiung, and T.G.Robertazzi. Closed form solutions for
bus and tree networks of processors load sharing a divisible job. IEEE

Transactions on Computers, 43(10):1184–1196, October 1994.

[5] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang.
Scheduling divisible loads on star and tree networks: results and open
problems. IEEE Transactions on Parallel and Distributed Systems,
16(3):207–218, 2005.

[6] O. Beaumont, L. Marchal, and Y. Robert. Scheduling divisible loads
with return messages on heterogeneous master-worker platforms. High

Performance Computing–HiPC 2005, pages 498–507.
[7] Olivier Beaumont, Henri Casanova, Arnaud Legrand, Yves Robert, and

Yang Yang. Scheduling divisible loads on star and tree networks:
results and open problems. IEEE Trans. Parallel Distributed Systems,
16(3):207–218, 2005.

[8] A. Benoit, Y. Robert, A. Rosenberg, and F. Vivien. Static worksharing
strategies for heterogeneous computers with unrecoverable failures. In
HeteroPar’09, 2009.

[9] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling

Divisible Loads in Parallel and Distributed Systems. IEEE Computer
Society Press, 1996.

[10] F. Cappello, P. Fraigniaud, B. Mans, and A.L. Rosenberg. An algorith-
mic model for heterogeneous hyper-clusters: Rationale and experience.
International Journal of Foundations of Computer Science, 16(2):195–
215, 2005.

[11] Maciej Drozdowski and Pawel Wolniewicz. Experiments with schedul-
ing divisible tasks in clusters of workstations. In Proceedings of Euro-

Par 2000: Parallel Processing, LNCS 1900, pages 311–319. Springer,
2000.

[12] A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe. Analysis
of Divisible Load Scheduling with Result Collection on Heterogeneous
Systems. IEICE Transactions on Communications, 91(7):2234–2243,
2008.

[13] A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe. SPORT:
An Algorithm for Divisible Load Scheduling with Result Collection
on Heterogeneous Systems. IEICE Transactions on Communications,
91(8):2571, 2008.

[14] D. Ghose, H.J. Kim, and T.H. Kim. Adaptive divisible load scheduling
strategies for workstation clusters with unknown network resources.
IEEE Transactions on parallel and distributed systems, pages 897–907,
2005.

[15] H. González-Vélez and M. Cole. Adaptive statistical scheduling of
divisible workloads in heterogeneous systems. Journal of Scheduling,
pages 1–15, 2009.

[16] S.M. Larson, C.D. Snow, M. Shirts, and V.S. Pande. Folding@ Home
and Genome@ Home: Using distributed computing to tackle previously
intractable problems in computational biology. 2009.

[17] J. Mache, R. Broadhurst, and J. Ely. Ray tracing on cluster computers.
In Proceedings of the International Workshop on Cluster Computing-

Technologies, Environments, and Applications (CC-TEA), 2000.
[18] M.E. Posner. Reducibility among single machine weighted completion

time scheduling problems. Annals of Operations Research, 26(1):90–
101, 1990.

[19] A. L. Rosenberg. Sharing partitionable workloads in heterogeneous
NOws: greedier is not better. In Cluster Computing 2001, pages 124–
131. IEEE Computer Society Press, 2001.

[20] W.E. Smith. Various optimizers for single-stage production. Naval

Research Logistics Quarterly, 3(1-2):59–66, 2006.
[21] D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson, and E. Korpela.

SETI@ HOMEmassively distributed computing for SETI. Computing

in Science and Engineering, 3(1):83, 2001.
[22] S.W. White and D.C. Torney. Use of a workstation cluster for the

physical mapping of chromosomes. SIAM NEWS, pages 14–17, 1993.
[23] Y. Yang, K. van der Raadt, and H. Casanova. Multiround algorithms

for scheduling divisible loads. IEEE Transactions on Parallel and

Distributed Systems, pages 1092–1102, 2005.
[24] Yang Yang, Henri Casanova, Maciej Drozdowski, Marcin Lawenda, and

Arnaud Legrand. On the Complexity of Multi-Round Divisible Load
Scheduling. Research Report RR-6096, INRIA, 2007.


