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Abstract duce offered as a service in the public cloud (e.g., Ama-
MapReduce has gained in popularity as a distributed datZon Elastic MapReduce [1]) shows great promise. Often
analysis paradigm, particularly in the cloud, where MapRed  in such cloud environments, server virtualization is used
jobs are run on virtual clusters. The provisioning of MapRe- for providing multi-tenancy and isolation. For the scope
duce jobs in the cloud is an important problem for optimizing of this paper, we also assume virtualization, wherein
several user as well as provider-side metrics, such asmanti egch node of a MapReduce cluster is associated with a
cost, throughput, energy, and load. In this paper, we ptesenjrtyal machine (VM) which is then placed on a virtu-
afprov',s',on',ng frzlamg\t/\k/]ork (t:a”e‘:, STE?FI:/IEngmet Fhatt CONSIStS 5jized physical machine in the data center. VMs from
of provisioning aigorithms fo optimize these metrcs gba different customers and/or different MapReduce applica-
set of common building blocks. These building blocks enable . . . .
tions share the set of physical machines in the data center.

spatio-temporal tradeoffs unique to MapReduce provigigni .
along with their resource requirements (spatial compgnent ~ Common to both the consumers and providers of such

MapReduce job runtime (temporal component) is a criticad el @ MapReduce service is the need to optimize their de-
ment for any resource provisioning algorithm. We also descr  ployments.  For instance, the end-user of a MapRe-
two novel provisioning algorithms—a user-driven perfonoa ~ duce service typically cares about minimizing cost for
optimization and a provider-driven energy optimizatiomiatt ~a given MapReduce job while satisfying their perfor-
leverage these building blocks. Our experimental resa@é®®  mance requirements. Similarly, from the cloud opera-
on an Amazon EC2 cluster and a local 6-node Xen/Hadoopgr's perspective, the desired objective is to impact the
cluster _show the benefits of STEAMEngine through improve- pottom-line via optimizing its deployment for system-
ments in perfgrmance and energy via the use of these algqy;iqe goals such as maximizing system throughput, min-
rithms and building blocks. imizing energy consumption, and load balancing, as new
MapReduce jobs arrive and old ones finish. While op-
1 Introduction timizing different metrics important to the MapReduce
end-user/provider require different algorithms, at their
The growing data deluge has inspired significant in-core they all leverage common resource provisioning for
terest recently in performing large-scale data analyticsachieving their objectives—for a consumer, this involves
for tasks such as web indexing, document clusteringchoosing the optimal number of VMs to run its job; for
machine learning, data mining, and log file analysis.a provider, this involves placing VMs from different jobs
MapReduce [17] and its open-source implementationon physical machines optimally. Our work, thus, ex-
Hadoop [2], are emerging as a popular paradigm for suclplores this key issue of resource provisioning for MapRe-
data analytics, given their ability to scale-out to largeduce, both within and across multiple jobs.
clusters of machines.
This growing interest from users of MapReduce is1.1 Spatio-Temporal Tradeoffs

suitably matched by enterprises/service providers hOStResource provisioning for Internet applications in a pub-

ing mas_sive _scale _infrastructure for MapReduce._SevereHc or a private cloud setting is well studied [35, 11, 12].
enterprises including Facebook, Yahoo, and M'CrOSOftHowever, we argue that applying that work directly to

rllm ;he|rhownd§frflaredt :\r;lfrathrlécture-, gkln EE atﬁr'vateMapReduce provisioning misses out on an important op-
cloud, where ditferent MapReduce Jobs within the er"portunity. As opposed to “always-on” Internet applica-

terprise are simultaneously executed. Similarly, MapRe'tions, MapReduce jobs are inherently batch jobs with a

*This work was supported in part by NSF Grant CNS-0643505.  bounded runtime. Thus, MapReduce VMs, in addition to
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Figure 1: Spatio-Temporal tradeoff in MapReduce provisign

being characterized by their spatial properties (e.g., CPUchoosing a better placement (Figure 1(b))—two tasks of
memory), have a temporal component as well. This tem-/; on one server and the rest on the second server, thus
poral nature of MapReduce VMs leads to unigpatio- time-balancingeach server better. This placement will
temporal tradeoffsvhen performing resource provision- result in a total uptime of 110min, thus using 45% less
ing, as discussed below. energy than the first placement.

For instance, most end-users provisioning these To the best of our knowledge, our work is the first to
“always-on” applications allocate sufficient resources to€Xploit this spatio-temporal tradeoff for MapReduce pro-
meet their performance requirements and need not incoiisioning, both within and across MapReduce jobs.
porate the time duration these resources will be online
into their cost calculations. However, for a MapReduce] .2 Research Contributions
job, the cost incurred by a job is dependent on both the
time required for job completion, and the resources al-T0 exploit spatio-temporal tradeoffs as described above,
located for the job. Further, the time required for job @ key requirement is the ability to predict and alter the
completion is inversely related to the allocated resourcegemporal behavior of a MapReduce job based on its spa-
Hence, resource allocation for optimizing end-user costial resource allocation. Further, irrespective of the op-

for a MapReduce job must account for both the spatiafimization objective, we argue that any MapReduce pro-
and temporal characteristics of a job. visioning algorithm can benefit from this characteristic

unique to the MapReduce paradigm. To that end, we

Similarly, from a provider’s vantage point, while there present a MapReduce provisioning framewoSTEA

has been significant work in workload placement for tra- . . oo
ditional applications [37, 38, 25, 34] via efficient spatial MEnginé, that makes two main contributions.

placement of VMs, leveraging those concepts for pIac-pofgsé’e';g\:i%\/r'g?ﬁ;ggg%:(l:zcjlgizaéyegssz (ietit:gelﬁ:glje
ing MapReduce jobs is not sufficient. Along with their MapReduce characteristics.  Further, these building

resource requirements (spatial component), MapRedu . . .
. ° req (sp P ) P Ct‘)alocks expose a generic API to easily enable a variety
job runtime (temporal component) is a critical element o . .

of provisioning algorithms (Section 2).

for any provider-side resource placement algorithm, as
illustrated by the following example. e Our Job Profiling building block exploits thepre-
Example 1: Take an example placement for an energy dictable and equitable behaviaf a MapReduce
conservation objective, where servers can be shutdown job to predict its completion time. Each node in a
or put into a sleep state to conserve energy if they are  MapReduce cluster operates on equal sized blocks

idle, so that the goal is to minimize the total uptime of which contain similar content (records). For a ho-
the servers in the system. Consider a cloud instance (Fig- mogeneous cluster, this results in nearly equitable
ure 1) running three MapReduce jolis, J, J3, each resource consumption and time required to process
with two VMs and utilizing 40%, 30% and 20% of physi- each block. Thus, by utilizing job profiles avail-

cal server resources respectively. Further assume thatthe able for different data set sizes or cluster sizes, this
runtime of the jobs is 10, 90 and 100 mins respectively. building block models and predicts the job runtime.
Most traditional placement algorithms only consider the Further, it improves this prediction by observing the
resource utilization (thepatialcomponent). Such algo- job progress over time.

rithms may use two physical servers to achieve spatially ) o ,

efficient packing, as shown in Figure 1(a). This place- ® TheCluster Scalinguilding block exploits thease
ment will result in a total uptime of the servers being of scalingin a MapReduce job, i.e. dynamically in-

200min. Incorpo_rating the runtime inf0fmati0'fﬂ?_mp0- 1STEAM is an acronym for Space-Time based Elastic and Agile
ral component) in the placement algorithm will allow MapReduce.




creasing or decreasing the size of the cluster run2 STEAMENgine: Architecture and Build-
ning the MapReduce job, to alter the time required ing Blocks
to finish a job. For example, if a new node is added
to a cluster, MapReduce can automatically schedulé&kunning MapReduce in a virtualized cloud environment
tasks on the new node to take advantage of the inrequires the cloud service provider to provision VMs that
creased cluster capacity, thereby reducing the comform the MapReduce cluster for each job. The VM type
pletion time. This building block models and pre- (CPU, memory, storage) and the number of VMs is cho-
dicts the impact on job runtime if the cluster size is sen by the user submitting the job These should be
modified by accounting for the current job state andoptimally picked based on the desired performance and
the change in resources. cost objectives for the job and are the only control points
for the user to optimize their job. However, currently
Our next contribution is the design and implementa-oo|s that inform the user for making such decisions in-
tion of two novel MapReduce provisioning algorithms te|ligently are lacking and users rely on ad hoc decisions
based on these building blocks, that demonstrate the imyased on prior experience or trial and error.
portance of considering spatio-temporal tradeoffs, and il Once the number of VMs is picked, the cloud provider
lustrate the utility of the building blocks (Section 3). retains complete freedom in placing these VMs among
its physical server and storage resources. This placement
of VMs is a key lever that can control the optimization
of the cloud environment and the choice of the algo-
rithm is dictated by the specific objective chosen by the
cloud operator, e.g., maximizing throughput, balancing
. o \ L Yoad or minimizing energy consumption. In order to op-
adjust the runtime if it deviates from the initial pre- timize MapReduce provisioning, these placement algo-

d'C‘_'OF‘- V\_llthogt STEAMEngine, such performance rithms needs to account for the spatio-temporal tradeoffs
optimization will need to be performed manually by yo<cribed earlier

the user.

e Our end-user provisioning algorithm tries ogti-
mize performancef a job—meeting a job runtime
deadline while minimizing cost. It leverages Job
Profiling to pick the minimum number of VMs re-
quired to meet the deadline, and Cluster Scaling t

We argue that while the optimization logic needs to be
tailored specifically to the needs of the objectiat pro-
visioning algorithms will benefit from leveraging com-
arrive, and old ones finish. Job Profiling provides mon opportunities prowlded by MapReQuce._ Thu;, as
the runtime estimate of an incoming MapReducepart of our STE_AI\_/IEngme framework, in this sectlor_l
job, and thus the uptime estimate of its VMs. These'© present a unl_fymg framewo_rk_for MapRedu_ce provi-
VMs are then intelligently co-placed to minimize sioning t_hatprowdes com_r_n(bulldmg block_s_not_lvated
the cumulative up timeGMU) of the system. Clus- b_y the dlffer_ent opportunities .fo_r the provisioning algo-
ter Scaling helps correct deviations from initial pre- rithms to build on. These building blocks are intended
dictions. In the absence of STEAMEnNgine, this to be us_ed b_y the cloud provider as well as users, whgn
energy minimization algorithm will devolve into appropnate, n ordgrto m?‘_"e sr_nar'Fer provisioning deci-
performing inefficient VM placement using best-fit sions based on their specific objectives. .
spatial packing Figure 2 shows the proposed STEAMEnNgine frame-

' work. End-users submit MapReduce jobs by specifying

We have evaluated STEAMEngine on both Amazon.theJ'Ob charapteristics (e.g.,. data size and VM type). .The
EC2 [3], as well as a local 6-machine Xen cluster. Ouriob is placed in the cloud using an appropriate provision-
results show that our end-user performance optimizing"d algorithm based on the chosen objective, e.g. a user-
algorithm, running on Amazon EC2, enabled MapRe-d”Ven performance optimization (Section-3.1), or cloud
duce jobs to meet their given deadlines even with inaccuProvider-driven energy optimization (Section-3.2). To
rate initial information. Further, our energy optimizatio ©€xploit the opportunities provided by MapReduce, these
algorithm enabled energy savings of up to 14% in ourdlgorithms require some common information and mech-
local testbed (Section 4). anisms which are provided by the building blocks.

Finally, our STEAMEngine framework is extensible Note that the provisioning algorithm may be executed

and can easily accommodate other building blocks adoth at the time of initial provisioning of the job when it
well as provisioning algorithms. For instance, VM mi- is first submitted as well as in a continuous fashion while

gration and instance scaling can be used as additiondl€ 0D is executing in order to optimally adapt to the
building blocks, while provisioning algorithms can be changing characteristics of the cloud.

C_le\{e'O_ped for dynamic load balancing or QoS-based 0p- 27pe ym type is typically selected from a fixed set of availatlé
timization (Section 6). types (e.g., the VM instances in Amazon EC2)

e Our provider-side provisioning algorithminimizes
system energy consumptiasnew MapReduce jobs




MapReduice Jobs This suggests that we can model the job runtifhas

l a function of these two quantities:

| Performance based Energy based Other 3
Lo D) T = (D,n),

Provisioning Algorithms

e @ where D is the input data size, and is the number of
nodes (VMs) in the cluster. The functighis likely
Job custer || wigraton: to be heavily dependent on the job characteristics —
: potre ) e Instance Scaling) 3 whether it is CPU/memory/disk-intensive, and whether
. BuldingBlocks it is Map/Reduce-heavy, etc. The goal of the offline pro-
provinal l &gimiig:ggz filing is to capture this functiorf for a given MapReduce
job class. Note that, for the scope of this work, we do not
Cloud exeution model the impact of varying VM types; each job runtime
\/U\/\J model is associated with a MapReduce job class, and a
fixed VM type.

To show that building such a profile is feasible for real-
istic MapReduce applications, we ran three MapReduce
2.1 Job Profiling benchmarks— Pi, Wordcount, and Sort—with varying

input data sizes and cluster sizes. These benchmarks
The Job profiling building block is designed to ex- were chosen as representative of different classes of
pose the spatio-temporal tradeoffs offered by MapReMapReduce jobs (e.g., Pi is compute-intensive, while
duce jobs, by estimating job runtime as a function of thewordcount and sort are memory-and I/O-intensive). The
resources allocated to the job. This runtime informationdetails of the experimental setup are provided in Sec-
of a job enables the cloud operator to optimize perfor-tion 4. Due to space constraints, we only present the re-
mance, cost or energy of the execution environment asults for sort as the conclusions are similar for the other
the time of initial provisioning, while also providing in- benchmarks.
formation to reprovision to achieve continuous optimiza-
tion. Additionally, this information can be leveraged by Grep-10GB workload on EC2
the user to pick or dynamically modify the number of 1200
VMs in the MapReduce cluster.

We consider two complementary profiling techniques: 1000
(i) an offline profiling technique that relies on historical
data from prior runs as well as execution of sample jobs. 800 - ]
to estimate the runtime of a MapReduce job, and (ii) an
online profiling technique which captures the progress of
an executing MapReduce job to update these estimates in
a more fine-grained manner.

Figure 2: STEAMEngine Framework
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2.1.1 Offline profiling 200 - .

The goal of the offline profiling technique is to estimate 0 ‘ ‘ ‘ s s s s

the runtime of a job before the job begins execution. 4 6 8 mcmséfsﬁe 4 1 1820

This estimate is developed using past observations of

runtimes of a similar job (in most environments, mul- Figure 4: 10 GB Grep job runtimes on EC2 as a function

tiple instances of the same MapReduce application e.g9f cluster size.

pagerank are executed repeatedly, so such observations

are easily available) or using extrapolation of running theDependence on data sizeFigure 3(a) shows the run-

job on a much smaller data set (due to Observation 1 betime of the benchmarks as a function of data size (the

low). lines in the figure are fitted to the data points). As shown
Conceptually, MapReduce jobs are data-dependenn the figure, for a given cluster size, the runtime in-

and inherently parallel, and hence, the runtime of acreases linearly with the input data size (Observation 1).

MapReduce job is dependent on two important factorsThis result implies that if we have prior observations

(i) the size of the input data, and (ii) the amount of par-about a job, and we get a new job instance with a dif-

allelism, corresponding to the size of the (virtual) cluste ferent data size, we can estimate its runtime with a lin-

available to the job for its execution. ear extrapolation. In fact, this property leads to another
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Figure 3: Relation between job runtime, input data size,@nster size for sort job.

PI-Estimator workload on EC2 result in non-linear overheads (e.g., for sort, as shown in
1000 the figure). Thus, to capture the relation to cluster size,
900 - , both the Map and the residual Reduce phases need to be

modeled separately, and the total runtime of a job will be
determined by combining the two (Observation 3).
Based on the above results, our offline profiling

800 1

g ooor T algorithm works as follows. For each job class, we
2 so0f E keep a database of historic observations of job runtimes
2 a0 , (separate for Map and residual Reduce phases) along
E

with the corresponding input data sizes and cluster sizes.
Upon arrival of a new job, if the profiling data includes
an exact match for the cluster size and the data size
100 1 specifications of the new job, the runtime is simply
0 S S R R calculated using the value(s) stored in the database. In
2 4 6 8 Cif;ter Slizze 1416 1820 the absence of an exact match, if the database contains
multiple values corresponding to the same cluster size
Figure 5: 8.5M-sample PiEstimator job runtimes on EC2(put different data sizes) as the incoming job, we can
as a function of cluster size. perform a linear extrapolation from these values (based
on Observation 1 above). If we don't have multiple
matches for the cluster size of the incoming job, but
profiling optimization. In the absence of historical obser-have values corresponding to the same input size, then
vations, we can run the job on a subset of the data in &ve extrapolate for the Map and residual Reduce phases
staging area and extrapolate the results to the actual inptgsed on Observations 2 and 3 above. In the case when
data size to get an estimate of the expected runtime.  Nno relevant values are available in the database, short
runs are used to obtain values for small data and cluster
ize combinations and then extrapolated from there.
ater, this estimate is combined with the online progress
Sc,timation to account for any errors in offline profiling.

300 1

200 1

Dependence on cluster sizeTo understand the depen-
dence on cluster size, we consider the time to complet
the Map phase (the time to complete all the map tasks
and the residual Reduce phase (the remaining Reduc
after the Map phase has completed) for these bench- ) ] ]
marks separately (Figures 3(b) and 3(c) and the map_I_3u|ld|ng block mterface_: In ord(_erto access th|_s build-
heavy Grep and PiEstimator workloads in EC2 in Fig-"d block, STEAMEngine provides the following two
ures 4 and 5, respectively). As we can see, for a gived*F!S: _ _ _ _ _

data size, the Map phase runtime shows an inverse re- 9t X f 1 i neEsti mat e(job, dataSize, clusterSize)
lation (1/n) to the cluster size (Observation 2). This is Which returns the estimated runtime for that job, and
because the Map phase is fairly data-parallel for most ap- get Cl ust er Si ze(job, dataSize, desiredRuntime)
plications, with each map task working independently onwhich returns the estimated cluster size required to finish
its own data block. On the other hand, the Reduce phaste job withindesired Runtime. These APls are acces-
depends a lot on the application, and could be insignifisible to both cloud provider as well as the cloud user. The
cant (e.g., for Pi and Grep) or could involve a fair amountcloud provider can use this estimate to decide VM place-
of data movement and output data writing, which couldment in a spatio-temporal manner and the cloud user can



use this API to determine its initial cluster size. | Configuration | Mean (s) | Improvement]

4 nodes, none added 615.84 —
8 nodes, none added 353.95 42.53%
2.1.2  Online profiling 4 nodes, add 4 at 0%map| 343.14 44.28%
4 nodes, add 4 at 25%map 464.49 24.58%
While the offline profiling technique provides us with a 4 nodes, add 4 at 50%map  514.24 16.50%
4 nodes, add 4 at 75%map 585.29 4.96%

coarse-grained estimate of the total job runtime based on
the parameters available a priori, the estimate may some-Tap|e 1: Impact of cluster scaling during Map phase.
times be inaccurate. This could be either because we do

not have sufficient historical information to make accu-

rate estimates, the model used for estimation may turmmount of resources allocated to the job using the cluster
out to be inaccurate, or the performance of a job mayscaling building block described next.

vary due to failures, stragglers, etc. As a result, we also

use an online profiling technique, that provides us with .

more fine-grained information about the progress of a2'2 Cluster scaling

running job, and enables updating the estimates of it®ur cluster scaling building block is inspired by the elas-

runtime on the fly. ticity offered by MapReduce. As discussed above, the
runtime of a job is inherently dependent on its cluster
Sort: Cluster size=6: Data size=3GBytes size. So, if the estimated performance of a job begins to
100 , , ‘ ' —— fall behind the initial estimate, or if the cloud operator
2 v o/ h h ity to add des to a job’
g g | Reduce 7 as enough spare capacity to add more nodes to a job’s
2 cluster, it is possible to dynamically expand the cluster
S 60l ondemand. Similarly, the cloud provider may also “scale
s down” a cluster by removing nodes from a cluster when
% or F a job may want to reduce its cost, or when the operator
S 20 / needs to reclaim some of the nodes added as part of an
= / earlier “scale-up” operation. To leverage this scaling op-
0 100 200 300 400 500 600 700 portunity, the provisioning algorithm needs information
Time (seconds) about the impact of scaling on job runtime, which is pro-

vided by the cluster scaling building block.

Figure 6: Online progress of a MapReduce sort job. The job profiling building block can already estimate
the complete job runtime for different cluster sizes, how-
ever, cluster scaling building block needs to couple this

Figure 6 shows the online progress of the Map and Reinformation with the progress the job has already made,

duce tasks for the sort benchmark. Our results suggesind the impact of scaling it after the job begins. Addi-
that the progress of the Map phase is linear. On the othetionally, it has to account for the differences between the
hand, the residual Reduce phase, once the Map tasks axgap and the Reduce phases of the job.

done, shows a bursty, though piecewise linear progress.
Based on these observations, in our current implementaz-
tion, we extrapolate the Map progress linearly based on”
the online estimates. We start by using the offline es\We begin with an understanding of the impact of scaling
timate for the residual Reduce phase runtime, and oncen the map phase using the following setup: A word-
the Map phase is over, we predict it in the same fashiortount job with 6 GBytes of data is executed from begin-
as we predicted the Map phase. ning to end on a 4 node and an 8 node physical cluster.
Interface: In order to use the online profiling We then experiment with starting the same job on a 4
building block, first the job is registered with node cluster, and adding 4 more nodes at different points
STEAMENgine for online profiing using the inthe map stage. Our results (Table 2) demonstrate that
regi sterForProfiling(jobld) API, where benefit from cluster scaling is higher if the amount of
jobld is the ID of the MapReduce job. Once the job is map phase remaining is higher. Another interesting ob-
registered, the online profiling estimate can be obtainedervation is that the amount of improvementwhen the job
using get Onl i neEst i mat e(jobld) which returns is executed with 8 nodes is quite close to when 4 nodes
expected map, reduce and total job runtime at that poinare added after the job is launched on 4 nodes. This oc-
of time based on the performance of the MapReduce joleurs due to two reasons — first, our startup overhead of
so far. This interface is available to both cloud providerstarting new VMs is very small, which makes scaling
and cloud users who, if desired, can then adjust thevery efficient. Second, even though the newly added 4

2.1 Scaling for Map Phase



nodes do not contain any local data, and they must fetch #j’\;ffkc?fs red R?_Sidua' Total time (s)
their input data from the original 4 nodes over the net- (= #ireducers)| Reduce Time (s)

work, fetching their input data from other nodes across g 13;3;’ g;gi
the network has negligible overhead in our setting (since 7 714 2874
network bandwidth and disk bandwidth on our LAN con- 10 516 1987

nected nodes are comparable). _ ) )
Based on the above results, the cluster scaling building}-able 2: Impact of number of Reducers on job run time.
block for the map phase estimates the impact of scaling

by leveraging the job runtlm_e VS cluster_ size mOqelreduces the time spent for the reduce phase going from
and_t.he Map Progress over time model built by the JObover 5700 seconds for a 3 node cluster to under 2000
profiling building block. seconds for 10 nodes.

A way to work around this limitation would be to pos-

Interface: This STEAMEngine building block pro- .

) sibly set a larger number of reducers than the number of
vides four APIs that can be used by the cloud US€T odes in the cluster at job start time, thus potentially al-
or the provider — (1)get Scal i ngEst i mat e(jobld, J X P y

. ' . . lowing for future cluster scaling. However, this causes
newClusterSize, mapProgressPoint) provides estimate - . .

. . . . ) an additional overhead since if the number of reduc-
runtime for the job with ID jobid if the cluster X
: _ ers is larger than the number of nodes, the reduce tasks
is scaled tonewClusterSize when map progress

. . are serialized on those nodes and since each reduce task
is at mapProgressPoint, (2) An inverse lookup

API get Newd ust er Si ze(jobld, mapProgressPoint, has to wait for all map tasks to finish before complet-

. ) : ’_ing, it causes an unnecessary slowdown. As an example
newDesiredRuntime) which returns the new cluster siz - . .
: . ) . -~ for a similar wordcount job for a 3 node cluster, setting
required in order to adjust the runtime of the job

0 -
to newDesiredRuntime, (3) scal ed ust er (jobld, the_number of re_ducers to 25 performe(_JI 43% poorer in
. X .. ' residual reduce time as compared to using 3 reducers.
newClusterSize) which uses cloud VM provisioning Fixing the imol tation to all titioni f
(or de-provisioning) to create (or delete) VMs in IXing the implementation to aflow re-partitioning o

the cluster to bring its size taewClusterSize and the key space and thus, allow scaling reduce jobs dy-

edits MapReduce cluster configuration to reflect thenamically is an importan_t problem and part of our future
new cluster size, and (4) an exclusive cloud providerwork‘ In the current version of STEAMEngine, however,

API scal ed ust er (jobld, newClusterSize, vmToP- we only support cluster scaling for the map phase.
mMap) which instead of using default VM placement

on the physical machines (PMs), explicitly specifies the3 STEAMEngine:
placement; such an APl is useful when the provisioning )
algorithm needs to dictate how all VMs are placed during
the execution of the scaling operation.

Provisioning Algo-
rithms

This section presents two STEAMEnNgine provisioning
_ algorithms that leverage the profiling and scaling build-
2.2.2 Scaling for Reduce Phase ing blocks. The first technique demonstrates how the

. building blocks could be used to meet performance
_Unll_ke the map phase, the reduce pha_lse ofa MapReducgeoals from a cloud user’s perspective, while the second
job is more complex to scale dynamically. In MapRe-

o . . resents an energy management algorithm based on the
duce and specifically the Hadoop implementation, th 9y g 9

o . ramework that can be employed by a cloud provider to
number of reducers for a job is a static parameter se

: ; : S educe their system-wide energy consumption.
when the job begins executing. This is because as soon e L .
As part of each, we will first introduce anitial provi-

as the job starts executing, the intermediate key space " . :
. i~ uing, the . Y Sp: sioningalgorithm that allocates MapReduce jobs as they
is statically broken up into partitions which are equal in

number to the set number of reducers. Ability to dy- arrive by starting virtualized clusters across serverigén t

. " ._data center. Then, we will presentantinuous optimiza-
namically change these partitions would allow dynamic_. ) . .
. . L tion algorithm that alters VM allocations during the ex-
scaling. While such re-partitioning would have non-zero . . ) o .
. -ecution of these jobs in order to optimize for the desired
overheads, as our next experiment shows, there are Sid- i
e : . . etric (performance or energy).
nificant potential performance benefits of reduce scaling.
In this experiment, for a wordcount job for a 10 GB
dataset, we varied the number of nodes in the clusterand 1 User Optimization: Performance
set the number of reducers to the number of nodes for
each run. As can be seen from Table 2, ability to use allThis end-user MapReduce provisioning algorithm opti-

nodes in the cluster for reduce operations significantlymizes job performance.



Problem setup: Given a MapReduce job and a deadline 3.2 Provider Optimization: Energy
for its completion, the provisioning algorithm seeks to
meet the deadline while minimize user costs (we equat
this to minimizing number of VMs assigned for the job).

ext, we present a more complex provisioning algorithm
that minimizes the total energy consumption of the cloud
execution environment. Reducing energy consumption

Key idea: This provisioning algorithm must make ef- . . : .
. . - : -~ .. in these cloud environments is an important problem as
fective use of offline profiling data to estimate the initial ., . ) ) .
it is a fast growing component of the operational cost in

number of resources it should allocate to the job. Fur- . .
X . . ) I these massive scaled environments [26, 6].
ther, if such profiling data is unavailable or is inaccurate, ] o
: LT ; . - Problem setup: The energy efficiency goal for a
continuous optimization via online profiling and cluster

: . MapReduce cloud is to execute all submitted MapRe-
scaling must be used to accelerate the progress of the jo . .
i : uce jobs such that the total energy consumption of the
and meet the given deadline.

physical machines is minimized. It can be assumed that
as soon as all the jobs on a machine are finished, it can
3.1.1 Initial Provisioning be put into a hibernate or sleep mode which uses a neg-

igible amount of energy. For simplicity, we assume that

- . i
We assume that a user specifies the data size for the subn machines in the cloud data center consume an equal
mitted MapReduce job, the VM Type corresponding to mount of power and do not consider fractional energy

:Ee (rjesquré:((ej re?jll{lrergentﬁ.fc;]rtt;]elvsz n tthbe cIuste:, ?n osts for a machine running at less than 100% utilization.
€ desired deadline by which the Job must be completety ;o energy-efficient processors consume lesser power

F_or the ”?!“a' provisioning, g|ven_the _data Siz€, the_ of- at lower utilization levels (with or without DVFS based
fline profiling APl get d ust er Sl ze is used to est|_- techniques, e.g., [8]), the power variation exhibited ss it
mate the number of VMs required to meet the deadllne'utilization is varied is not significant [36]. Further, work

in [18] shows that techniques that turn machines on/off
3.1.2 Continuous Optimization can achieve higher energy savings. Under this model, the

optimization goal effectively translates into minimizing

As the job executes, its progress may deviate from oufnq cumulative machine uptime (CMU¥ all the physi-
initial estimate, and we need to continually optimize its .5 machines in the cluster.

resource allocation in order to meet the desired deadlinekey idea: As discussed in Section 1.1. both the re-

For such continuous optimization, first the job is regis-gqrce requirements as well as the expected runtime of

tereq with the online_ pr_ofiling buildi_ng block using the a MapReduce job need to be considered to achieve an

regi sterForProfilingAPI, which lets the build-  gnerqy_efficient allocation. In particular, as illustrta

ing block monitor the progress of the job. Example 1, to achieve a better space-time tradeoff, we
If the online profiling estimate of job’s finish time falls \yoy|d like all the machines to be spatially well-fitted (to

beyond the given deadline, then a re-provisioning may bgyiq spatial wastage), as well as time-balanced (to avoid
needed. To avoid over-reaction to small errors and a|5‘i‘emporal wastage) [9].

enable the online profiling to build up enough observa-
tion, we check for these violations at reasonably spaced:
out execution points (e.g., every 10% of map progress
by using theget Onl i neEst i mat e API. When a job is submitted to the system, it is placed using
If there is indeed a need to re-provision the job, wethe initial provisioning step. The submitted job specifies
use cluster scaling to adjust the resources for the job. Athe size of the data for the MapReduce application, the
mentioned earlier, in our current implementation, we use/M Type corresponding to the resource requirements for
cluster scaling during the map phase only, and its impacthe VMs in the cluster, and an initial provisioning size in
on the reduce phase is part of our future work. the number of VMs desired for the virtualized cluster.
First, we use thget NewCl ust er Si ze API at the Our initial provisioning algorithm combines the notion
current map progress point to get the additional numbeof time balancing servers with spatially-efficient place-
of VMs which need to be provisioned. Note that the ment for a new job arriving into the system as follows:
newDesi r edRunt i me argument to the APl needs to When a johJ arrives, we usget Of f | i neEst i mat e
adequately account for overhead time of starting up adto obtain an estimate of its runtin¥e;. Note thatT’; is
ditional VMs. For instance, on EC2, we experienced agoing to be the estimated runtime of all VMs allocated to
startup overhead of 70 seconds to completely boot a neithe job.J. We then definé ; 5 to be the set of non-empty
VM. Next, those VMs can then be added into the clusterservers such that the estimatedhaining runtimesf all
using thescal eCl ust er API of the building block. the VMs on any server € S; s are withing of T';. This
The process can be repeated if necesséigr the new  constrains the expected runtime of VMs running on any
VMs have joined the cluster. server to be withiny time units of each other, thereby

.2.1 Initial Provisioning



limiting the time imbalancevhich is defined as the dif-

Algorithm 1 PRovVISIONJOBDELTA(FLOAT delta, JOB j,

ference between the minimum and the maximum remainVMTYPE vt, INT numV ms, FLOAT estRuntime, SERVER

servers[])

ing runtimes of the VMSs running on it:
. " 1
TI =maxT; —minT}, 2
j=1 j=1 3

Limiting Tl to § causes VMs on a server to finish close
to each otherin time, and then that server can be powere
off or put into a sleep state, thereby saving power.

We then usaest Fitspatial placement— which aims

at maximizing the utilization of spatial resources like .
10:
11:
VMs for J on servers withinS; 5, we start new servers 12:
and put the remaining VMs on them as needed. Pseut3:
docode describing this approach for initial provisioning 14:
15:

Note thato is a system parameter that depends on the'6: ¢ )
17: if candidateVmSlots < numV ms then

CPU and memory— to place the VMs of the jobon
a subset of servers frof); 5. If we can not place all the

is shown in Algorithm 1.

amount of time-balancing desired, and is likely to de-
pend on various factors such as job lifetimes, number o
servers in the system and their capacity, job arrival rates,
etc. Intuitively, whend = 0, each job will be placed

21:
on separate servers (or with VMs on another job with .
identical finish time), while ih = oo, our provisioning 23
algorithm reduces to a spatial-only Best Fit algorithm. 24
25:
3.2.2  Continuous Optimization ;3

As jobs progress, new jobs arrive, jobs complete, and ags:
the collective state of the datacenter changes, our initia?®:
provisioning decisions could potentially be sub-optimal. 30:

Our continuous optimization algorithm addresses thesel: )
32: Reversecandidates

inefficiencies, and improves overall system energy con-
sumption via the following components:

4:

Servercandidates[] = {}
int candidateVmSiots[] £}
int totalVmSlots =0
for eachs in servers do
min = min(s.getMinRuntime(e st Runtime)
max = max(s.getMaxRuntime(yst Runtime)
if max — min > delta then
continue;
end if
int VmSlots = s.canPlaceaft)
if VimSLots > 0then
totalVmSlots+ = VmSlots
candidates.add()
candidateV:mSlots.addl(/mSlots)
end if
end for

return false

19: end if
: Sortcandidates by candidateVmSlots descending

for eachs in candidates do
AssignV'mSlots from candidateVmSlots entry
if numVms > VmSlots then
numVms — = VmSlots
DoBestFit(s,vt,vmSlots)
Removes from candidates
if numVms == 0then
return true
end if
end if
end for

3: for eachs in candidates do

34:  AssignVmSlots from candidateVmSlots entry
Trigger Point: Continuous optimization is triggered 35: vmsToPlace = min(VmSlots, numVms)
when a §-violation occurs as follows. Our algo- 36: numVms— = VmsToPlace
rithm periodically queries the online job profiling 37: DoBestFil(s,vt,VmsToPlace)
get Onl i neEst i nat e API to update the job runtime 38 if numVms == 0 then
prediction. If this online run time prediction deviates 3° return  true
from the offline profiling estimate, it checks if the servers 2(1): enzr;gr'f

hosting the VMs of that job violate thedrconstraint. If

42: return true

there is a violation, the optimization algorithm leverages
cluster scaling to take corrective action.

Job Selection: This step selects the most suitable job Adjustment Decision: Having selected the joly for

for corrective action. When a job causes-wiolation,

cluster scaling, we must now determine the magnitude of

it is either finishing earlier than originally predicted, or the scaling operation, and how to provision the additional
later than expected. In case the job run time is lower tharvMs. If there are multiple servers that violate theon-

the predicted value, we do not correct it since we do nostraint, we pick the one with the largest violation. Having
want to force the job to run longer. In the case whenpicked this server, i is the runtime of the shortest job
the job is taking longer than expected, we consider it a®n the server, we defing, = Ty + J as the target run-

a viable candidate for accelerating its progress via clustime that the selected jalp should be scaled to, to make
ter scaling. Since a-violation trigger can be caused by the server time-balanced again. Next, we use the cluster
multiple jobs, we select the job with the longest runtime scaling building block’gjet NewCl ust er Si ze APl to
among all the candidate jobs amenable to cluster scalinghbtain the number of VMs required to reduce the runtime



of J down to73, and we call this numbéry, . Linux kernel. Our operating environment supports 3 dif-
The next step is to choose where to start up these addferent VM types, that vary in CPU and memory sizes
tional VMs. In case the data center does not have enougfVM type 1: 128 CPU credits-768 MB memory, VM
resources to provision these new VMs, we abort the scaltype 2: 128 CPU credits-640 MB memory, and VM type
ing operation. If resources are available, we attempt t®8: 256 CPU credits-256 MB memory). Each machine
provision the VMs on servers that are already poweredtores VM images for each of the VM types, which are
on and if that is inadequate, only then are suspendedsed to instantiate VMs for each job.
servers brought back online. Note that any of the scalWorkloads: Our MapReduce platform is Hadoop
ing decisions are employed only if it reduces the overall0.20.1. We experiment with four different workloads
CMU of the system, i.eACMU < 0. as representative MapReduce applications: Sort, Grep,
Concretely, we first consider only the s&f of cur-  Wordcount, PiEstimator (Pi). In our local testbed, we as-
rently powered-on servers that would not incuda sume that each application is associated with a VM type:
violation if one of the new VMs were started on it. We Sort uses VM type 1, Wordcount and Grep type 2, and Pi
then prioritize servers irbs by their estimated uptime uses type 3.
(corresponding to their currently longest-running job), N
and consider placing newly added VMs onto the serveré-2  Accuracy of Job Profiling
in this priority order. If we run out of servers ifi; and We first measure the accuracy of our online and offline
still have remaining VMs to be placed, then we con- profiling algorithms, since our cluster scaling building
sider the cost of starting up a new server and adjusblock builds on top of this accuracy.
the ACMU accordingly. Based on our calculations, if : -
ACMU is positive, then by addingr, additional VMs, 4.2.1 Offline Profiling
we would incur a penalty in longer machine uptimesd ~ For this experiment, we first profiled the different bench-
thus we do not perform a cluster scaling operatidii  marks by running them on 5 physical servers in our local
ACMU is negative, however, thewe have found an testbed with different combinations of data size and num-
energy-efficient cluster scaling operation which both in-ber of VMs. These runs generated a set of 90 data points,
creases MapReduce performance and shortens cumul@omposed of 5 data sizes combined with 6 cluster sizes
tive machine uptime At this point, we starf’y, addi- for each of 3 workloads, as part of our offline profiling
tional VMs for the jobJ on the selected target servers database. We then evaluated the accuracy of our offline
using the provider-specifecal e ust er APl which  profiling algorithm as follows: we conducted 3000 runs
also provides the physical servers to use while placingf our profiling algorithm on a randomly selected sub-

the new VMs. set (60 points) of the profiling database to estimate the
) remaining 30 data points, and computed the estimation
4 Evaluation error. Offline profiling had an average error of 9.5% and

_ ) ~ standard deviation of 15.8%.
In this section, we evaluate the accuracy of our building

blocks and the benefits of our provisioning algorithms4.2.2  Online Profiling

which leverage these building blocks. We next evaluated the accuracy of our online profiling

4.1 Methodology algorithm at different stages of a job progress. Here, we
_ _ _ _ran a job and at many points during its run, we estimated
We used two environments in our evaluation, a publicits Map-phase or residual Reduce-phase finish time us-

cloud setting and a local testbed. ing our online profiler, which was compared to the actual
Public Cloud: We utilized Amazon EC2 [3] Our VM finish time.

instances were of the m1l.small type that is defined as 1

CPU core, 1.7 GB memory, 160 GB local storage, and 50 T —
running on a virtualized Fedora Core 8 32-bit platform. < 40 f N R 1
We used Amazon S3 to store our 10GB data set thatwe 5 5 emaer ]
used for many of our experiments. ook |
Local Testbed: Our local testbed consists of 6 physi- 0 - :

0 20 40 60 80 100

cal machines interconnected with Gigabit Ethernet. Each

machine is a dual core 800 MHz processor with a 250 GB ] ) o
hard drive and 2 GB memory. Each machine is running™i9ure 7: Error experienced while predicting the Map

i : : hase completion times for standard workloads in EC2
Xen 3.2 and Debian operating system with the 2.6.24° I%gure P os oy tlgne T est(ljmation S

3We used EC2 instead of Amazon Elastic MapReduce [1] to retainth® Map phase_ for our standard workloads (WordC(_)U”t—
control over how we optimized our provisioning. 10 GB data with 10 nodes, Grep—10 GB data with 4

Map Progress (%)
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Figure 8: Error while predicting residual Reduce phase
completion times for Wordcount. Staggered time series g

progress (as in Figure 10) contributes to high error. 0 g : : x
0 200 400 600 800 1000
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nodes, Pi—8.5 million samples on 4 nodes) while they Figure 9: 10 GB Grep job progress on EC2.
execute in EC2, averaged over 3 runs. We bootstrap with
no initial data, but the estimation accuracy naturally im-
proves as the job continues executing, as more time series
data becomes available to the online profiler. For Pi and
Grep, the error was5% beyond map=22%, and2%
beyond map=38%. For Wordcount, progress is staggered
at the beginning, where its low initial error appears to be ,
a random phenomenon, and stabilizes with more read- /4’ e
ings. Overall, its error wasc20% beyond map=12%, R - ol A S S
and<10% beyond map:43% 0 200 400 600 TiE::]): (Sii(:)(;dgoo 1400 1600 1800
Figure 8 shows the error of the online estimation of _
the residual Reduce phase. As in Figure 10, the Reduce Figure 10: 10 GB Wordcount job progress on EC2.
phase progress is staggered for Wordcount, leading to
larger error than the Map phase predictions. One may in-

stead use the offline prediction for residual Reduce time PiWwas run with 900 maps and 9500 samples per map.
instead of the online prediction if available. More com- N the firstrun, Pi missed its deadline by only 20 seconds

plex modeling for online estimations of residual Reduce'ith & runtime of 520 sec, which was the only deadline
lation we experienced in all of our runs. However, Pi

progress are necessary for higher accuracy, and we leayd - ’ )
that to future work. beat its deadline by 20 seconds in the second run, when

it added 4 VMs instead of just 3.
o . Grep was run on 10 GB random data. The job met its
4.3 Performance Optimization Evaluation  deadline for both runs. Figure 9 shows the detailed time

We now demonstrate the benefit of our performance Op_serles of the first run.

timizing provisioning algorithm (Section 3.1). In partic- qudcount was run on the same 10 GB random data.
ular, we evaluate the benefit of the cluster scaling buiId-ThIS IS our red_uce-hefa\vy workload, where 28% qf the
ing block in this algorithm, for which we intentionally tota_\l expected job runtime would be accounte(_j for_ in the
started jobs with inaccurate cluster sizes to trigger clus—reSIdual Reduce phasg. The resuits as seen in Figure 10
ter scaling in order to meet the given deadlines. show that cluster scaling was performed twice to meet

We implemented our algorithm in EC2, composedihe deadllne._ This shqws thhebib'(;'t.y 3: cIusI_ter scatl_mg
of our cluster scaling building block and online profil- 0 overcome inaccuracies exnioitedin the oniine runtime

ing®. As determined by the algorithm that monitors the EStimations as seen in Section 4.2.2. The graph also il-

Hadoop job progress, new VMs are added on the fly aéustrates the impact of the VM startup overhead: after
needed in order to fir’1ish the job by the deadline. im-the first cluster scaling, the 70 sec overhead of start-

. o0
portant parameters in this algorithm are the frequency'/ng new nodes corresponded to map=26%, and therefore

of trigger points, which we set to be every 10% mapth[e f|rst_t?r)|g§er pgl_nt after thte 'nf'tf(l)(;hfte; s;:r?hn?_was
progress, and the VM startup overhead, which we meadt Map=s07 and Increments o o for urther trgger
; points thereafter. This is why the second scaling is done

sured as 70 seconds in EC2. £36% i d66% in th d

The full results are listed in Table 3, and time series® o oin olnefcase ?]n fo In the second case. b
for single runs of Grep and Wordcount can be seen ir] urhresut;[s romtt) |.\|¢,dper glrmince ()lpt|m|za;!?n pro d-
Figures 9 and 10, respectively. em show that our building blocks, online profiling an
cluster scaling, were successfully synthesized into an al-

“4We used the offline estimate for the residual Reduce-phase. gorithm to enable the agility of MapReduce applications

20
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Job [ VMs | Orig Runtime (sec)| Deadline (sec)| Final Runtime (sec)| Cluster Scalings

Pi 4 733 500 *520 | +3 VMs @ map=10%
Pi 4 733 500 480 | +4 VMs @ map=10%
Grep 4 1057 600 577 | +6 VMs @ map=10%
Grep 4 1057 600 585 | +5VMs @ map=10%
WdCnt 10 1987 1700 1674 | +2 VMs @ map=20%, +1 VM @ map=36%
WwdCnt 10 1987 1700 1698 | +2 VMs @ map=20%, +1 VM @ map=66%

Table 3: Cluster scaling allows MapReduce applicationsetagprovisioned to meet deadlines if not given enough
resources at runtime. Only one trial* did not meet its dewaali

to meet given deadlines. for both the spatial best-fit and our spatio-temporal algo-

e ) rithms can be seen in Figure 11.
4.4 Energy Optimization Evaluation

In this section we show the benefits of using our energyt.4.2 Benefit of Continuous Optimization
optimization algorithm (Section 3.2), both in the initial Wi luate the benefit of i timizati
provisioning and continuous optimization stages. Since € how evaluate the benetit of continuous optimization

this is a provider-side optimization, these experimentsafter initial provisioning is done, but when conditions

were conducted on our local testbed, where we couléth"’m%(_e dur|ng-the|rexec1rj]t|on.2 i obs: the first iob h
control VM allocations. In this experiment, we have 2 Pi jobs; the first job has

3 VMs, 900 maps, 9950 samples/map, and takes 1545
seconds while the second one has 6 VMs, 1386 maps,
4000 samples/map and takes 990 seconds. We introduce
We first show the benefit of using initial provisioning an error in the runtime estimate to induce cluster scaling
based on accurate offline profiling (our offline profile in the experiment. Specifically, we estimate the runtime
database contains run times for the chosen jobs resulgf the first Pi job to be the same as the second Pi job.
ing in an exact match in our runtime estimation) by Thus, our initial provisioning algorithm co-places these
comparing it to the initial provisioning with spatial best two jobs on the same physical machines, and then in-
fit, thereby demonstrating the benefit of exploiting thecurs a higher CMU due to the error in the estimation.

4.4.1 Benefit of Initial Provisioning

spatio-temporal tradeoff. However, STEAM with continuous optimization detects
the error in runtime estimate using online profiling when
6 e — the job is 10% completed, which triggersyaviolation,
5 SpatioTemporal 1 which in turn triggers cluster scaling to correct the vio-
4 |— lation (as described in Section 3.2). The results can be

i ] seen in Table 4. The cluster scaling logic adds 1-2 ad-
2L ditional VMs for the longer running job to remove the

1l violation, resulting in a total runtime of 1104 seconds on

average for the longer job. This results in a CMU savings
of 335 seconds (11%), averaged over three runs.

Machines Online
w

. . . .
0 500 1000 1500 2000
Time (seconds)

Figure 11: The spatio-temporal algorithm uses fewer mab Related Work
chines, has a lower CMU and thus saves energy.
Resource provisioning in MapReduce. Recent work

In this experiment, we had 3 MapReduce jobs—(1)has investigated the problem of sharing resources across
Sort job with 3 VMs and data size 950 MB, resulting in a several MapReduce jobs while achieving different objec-
runtime of 768 seconds; (2) Wordcount job with 8 VMs tives [33]: Yahoo's capacity scheduler consists of dif-
and data size 4 GB, resulting in a runtime of 900 secferent job queues, and each queue receives its capac-
onds; (3) a Pi job with 6 VMs and 77.5 million samples, ity when it contains jobs, while unused capacity is dis-
resulting in a runtime of 2071 seconds. We compared dributed among other queues. Facebook’s fairness sched-
spatial best fit algorithm against a spatio-temporal algouler ensures fairness among different jobs, and also pro-
rithm that incorporated the runtimes of the jobs in its VM vides resource guarantees for production jobs. These
placement decisions. Our results showed that while botlschedulers’ main focus is to fairly allocate resources
schemes utilized 5 physical machines in total, the totakhcross jobs, and not on how the jobs are co-placed.
uptime of the servers in the spatio-temporal techniqueQuincy [23] is a framework for scheduling concurrent
was lower by 920 seconds: 5549 sec vs 6469 sec (a sajebs to achieve fairness while improving data locality.
ings of 14%). The number of physical machines onlineThe authors note as part of their future work that Quincy
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[ Expt [ Initial TI(s) [ Targeté (s) | Tlafter CS(s)| CS VMs Added] CMUW/CS (s)| CMUno CS (s)| CS CMU Savings]|

Run 1 504.6 200 143.1 1 2832.0 3122.0 9.3%
Run 2 593.7 200 34.8 2 2638.1 3126.2 15.6%
Run 3 568.1 200 145.9 1 2835.9 3062.5 7.4%
Avg 555.5 200 84.74 2768.7 3103.6 10.8%

Table 4: Cluster scaling (CS) used for time balancing to@a@henergy savings. Tl corresponds to Time Imbalance.

can be further improved by leveraging information sim- and its applicability (e.g., [16, 39]). STEAMEngine’s
ilar to that provided by STEAMEngine’s job profiling building blocks can be leveraged beyond resource pro-
and cluster scaling components. Further, we believe thatisioning problems. Work in [5] proposes an approach
STEAMENgine’s building blocks can be leveraged in thesimilar to our job profiling to determine optimal configu-
non-virtualized MapReduce clusters considered in theseation parameters for a MapReduce job. Mantri [4] uses
cases to similarly optimize different metrics of interest. an approach similar to our online profiling to detect out-
For example, the problems of placement and choice ofiers in a MapReduce job, and proactively takes correc-
the number of maps and reduces to optimize provisiontive action. As part of our future work, we would like to
ing in this setting are analogous to the problems studiednhvestigate if more detailed models [22, 30] that predict
in this paper for the virtualized setting. MapReduce completion time could potentially enhance

Sandholm et al [32] presented a resource allocatioth€ accuracy of our job profiling building block, and ex-
system that uses priorities to offer different service lev-Perimentwith other applications including scientific data
els to jobs over time. This enables resource allocation t@nalysis [27] to understand enhancements required.
be varied across different job stages, and even within &esource allocation in virtualized environments. A
job, resulting in overall performance improvement while large body of work has explored application placement
the cost budget is met. Our end user provisioning al4in a virtualized data center to minimize energy consump-
gorithm is complementary to this approach, and couldion [37], perform load balancing [34, 38] or for server
be employed to obtain cost budget required as input t@onsolidation [25]. These approaches essentially focus
this algorithm. Work in [15] notes that Amazon Spot on achieving spatial efficiency when placing applications
Instances can be leveraged to dynamically improve thend deal with temporal variations by continually adjust-
performance of a MapReduce job. This finding is similaring the placement using VM migrations. In contrast,
to that of our cluster scaling building block. Also, while our algorithms are proactive in nature exploiting the run-
the above algorithms focus on optimizing specific met-time estimates of MapReduce jobs based on their inher-
rics such as performance and fairness, our work presenemt parallelism.  Steinder at al [35] also investigated
a framework with a set of common building blocks that resource allocation for heterogeneous virtualized work-
can be exploited by different provisioning algorithms to loads driven by high-level performance goals, while we
achieve different objectives. consider a broader set of metrics such as energy and cost.

Our energy minimizing resource provisioning algo- Energy Management.A number of resource allocation
rithm addresses an important MapReduce issue. Reechniques (e.g., [10, 7, 13]) leverage the stateless@atur
cent work points to the growing concern regarding en-of certain workloads (such as web requests) to end and
ergy consumption of MapReduce; Work in [19, 29] restart request execution on a different physical machine
used MapReduce as one of the workloads in evaluatinghat saves energy. Such techniques are not suitable for
the power consumption of datacenters. Further, recenlapReduce jobs due to the stateful nature of MapReduce
work [28] shows the energy inefficient use of resourcesvMs. Recent work [31, 24] has explored integrating sys-
within a Hadoop job, and proposes a new data layoutem level power management policies with virtualization
that enables turning off nodes to save energy, while tradtechnologies. They focus on developing hooks into vir-
ing off performance in the process. Work in [14] studied tualized systems to better integrate power management,
the impact of different parameters of a Hadoop job andand hence is complementary to our techniques.

cluster such as replication level, input size, etc. to unpgrg|lel Processing. Finally, parallel job scheduling in
derstand how they impact the energy consumption. OUfhe context of massively parallel supercomputers is a
work, however, focuses on the opportunities to save engyel| studied area [21, 20], and shares interesting simi-
ergy across multiple jobs rather than within a single job.|5rities and differences with our work. “Space slicing”
Investigating an integration of these two approaches is af these parallel machines enables packing as many jobs
interesting avenue for further work. as possible in the given set of resources, “malleable”
MapReduce optimizations. The growing popularity parallel jobs resemble the elastic nature of MapReduce;
of MapReduce has also spurred a large body of interand similar to our observation, estimating job completion
esting work on improving the Hadoop implementation, time can potentially aid in scheduling decisions in these
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systems as well. We exploit properties of VMs to enableority jobs and scale them to larger cluster sizes while pos-
easy cluster scaling, and while many of these algorithmsibly scaling down low priority jobs.

are focused on performance or fairness, we also support

metrics such as energy management and cost. 7 Conclusions

6 Extending STEAMEngine Intelligent provisioning of MapReduce jobs in a virtual-
ized cloud environment enables end-users/providers of a

MapReduce service to effectively optimize their deploy-
ments. Our work identified the spatio-temporal opportu-
nities unique to the MapReduce paradigm, and proposed
STEAMENgine, a provisioning framework to leverage
ghese opportunities. STEAMEngine consists of a set
of common building blocks—Job Profiling and Clus-
a provider-side building block igiigration. This build- 1" Scaling—that estimate and alter the temporal char-
acteristics of the MapReduce job. STEAMENgine also

ing block is based on VM migration capability and can . L .
be used to migrate a MapReduce VM to another Iohysi_<:ompr|ses of provisioning algorithms that leverage these
uilding blocks to optimize desired metrics. Our work

cal machine for several reasons: to improve a map task’ . S .
escribes two such novel provisioning algorithms—a

data-locality, to load-balance, or to consolidate for en—CIO 4 user-driven performance ontimization and a cloud
ergy management. However, since MapReduce appli- ud user-ariven p \ce optimizati ou
rovider-driven energy optimization. Our evaluation

cations are data-intensive, to leverage this opportunityp

it is important to understand the overhead of migration,é_hOWS that our performance optimizing algorithm, run-

which is dependent on the storage model used by th ing on Amazon EC2, enabled MapReduce jobs to meet

cloud environment. For instance, the commonly usec%: eir deadiines even Wit.h inagcurate injtial information.
live VM migration relies on a shared storage model, ugther, our energy optimization algorithm saved up 1o
while traditional MapReduce clusters use a local storag(g‘ﬂ'/0 energy in our Io_caI 6-m§ch|ne Xen clustgr when si-
model (data on local disks of compute nodes). CapturindﬁmmneOUSIy executing multiple MapReduce jobs.
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