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Abstract
MapReduce has gained in popularity as a distributed data

analysis paradigm, particularly in the cloud, where MapReduce
jobs are run on virtual clusters. The provisioning of MapRe-
duce jobs in the cloud is an important problem for optimizing
several user as well as provider-side metrics, such as runtime,
cost, throughput, energy, and load. In this paper, we present
a provisioning framework called STEAMEngine that consists
of provisioning algorithms to optimize these metrics through a
set of common building blocks. These building blocks enable
spatio-temporal tradeoffs unique to MapReduce provisioning:
along with their resource requirements (spatial component), a
MapReduce job runtime (temporal component) is a critical ele-
ment for any resource provisioning algorithm. We also describe
two novel provisioning algorithms—a user-driven performance
optimization and a provider-driven energy optimization—that
leverage these building blocks. Our experimental results based
on an Amazon EC2 cluster and a local 6-node Xen/Hadoop
cluster show the benefits of STEAMEngine through improve-
ments in performance and energy via the use of these algo-
rithms and building blocks.

1 Introduction

The growing data deluge has inspired significant in-
terest recently in performing large-scale data analytics,
for tasks such as web indexing, document clustering,
machine learning, data mining, and log file analysis.
MapReduce [17] and its open-source implementation,
Hadoop [2], are emerging as a popular paradigm for such
data analytics, given their ability to scale-out to large
clusters of machines.

This growing interest from users of MapReduce is
suitably matched by enterprises/service providers host-
ing massive scale infrastructure for MapReduce. Several
enterprises including Facebook, Yahoo, and Microsoft
run their own shared infrastructure, akin to a private
cloud, where different MapReduce jobs within the en-
terprise are simultaneously executed. Similarly, MapRe-
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duce offered as a service in the public cloud (e.g., Ama-
zon Elastic MapReduce [1]) shows great promise. Often
in such cloud environments, server virtualization is used
for providing multi-tenancy and isolation. For the scope
of this paper, we also assume virtualization, wherein
each node of a MapReduce cluster is associated with a
virtual machine (VM) which is then placed on a virtu-
alized physical machine in the data center. VMs from
different customers and/or different MapReduce applica-
tions share the set of physical machines in the data center.

Common to both the consumers and providers of such
a MapReduce service is the need to optimize their de-
ployments. For instance, the end-user of a MapRe-
duce service typically cares about minimizing cost for
a given MapReduce job while satisfying their perfor-
mance requirements. Similarly, from the cloud opera-
tor’s perspective, the desired objective is to impact the
bottom-line via optimizing its deployment for system-
wide goals such as maximizing system throughput, min-
imizing energy consumption, and load balancing, as new
MapReduce jobs arrive and old ones finish. While op-
timizing different metrics important to the MapReduce
end-user/provider require different algorithms, at their
core they all leverage common resource provisioning for
achieving their objectives—for a consumer, this involves
choosing the optimal number of VMs to run its job; for
a provider, this involves placing VMs from different jobs
on physical machines optimally. Our work, thus, ex-
plores this key issue of resource provisioning for MapRe-
duce, both within and across multiple jobs.

1.1 Spatio-Temporal Tradeoffs

Resource provisioning for Internet applications in a pub-
lic or a private cloud setting is well studied [35, 11, 12].
However, we argue that applying that work directly to
MapReduce provisioning misses out on an important op-
portunity. As opposed to “always-on” Internet applica-
tions, MapReduce jobs are inherently batch jobs with a
bounded runtime. Thus, MapReduce VMs, in addition to



(a) Spatially-efficient VM placement (b) Space-time-efficient VM placement

Figure 1: Spatio-Temporal tradeoff in MapReduce provisioning.

being characterized by their spatial properties (e.g., CPU,
memory), have a temporal component as well. This tem-
poral nature of MapReduce VMs leads to uniquespatio-
temporal tradeoffswhen performing resource provision-
ing, as discussed below.

For instance, most end-users provisioning these
“always-on” applications allocate sufficient resources to
meet their performance requirements and need not incor-
porate the time duration these resources will be online
into their cost calculations. However, for a MapReduce
job, the cost incurred by a job is dependent on both the
time required for job completion, and the resources al-
located for the job. Further, the time required for job
completion is inversely related to the allocated resources.
Hence, resource allocation for optimizing end-user cost
for a MapReduce job must account for both the spatial
and temporal characteristics of a job.

Similarly, from a provider’s vantage point, while there
has been significant work in workload placement for tra-
ditional applications [37, 38, 25, 34] via efficient spatial
placement of VMs, leveraging those concepts for plac-
ing MapReduce jobs is not sufficient. Along with their
resource requirements (spatial component), MapReduce
job runtime (temporal component) is a critical element
for any provider-side resource placement algorithm, as
illustrated by the following example.

Example 1: Take an example placement for an energy
conservation objective, where servers can be shutdown
or put into a sleep state to conserve energy if they are
idle, so that the goal is to minimize the total uptime of
the servers in the system. Consider a cloud instance (Fig-
ure 1) running three MapReduce jobsJ1, J2, J3, each
with two VMs and utilizing 40%, 30% and 20% of physi-
cal server resources respectively. Further assume that the
runtime of the jobs is 10, 90 and 100 mins respectively.
Most traditional placement algorithms only consider the
resource utilization (thespatialcomponent). Such algo-
rithms may use two physical servers to achieve spatially
efficient packing, as shown in Figure 1(a). This place-
ment will result in a total uptime of the servers being
200min. Incorporating the runtime information (tempo-
ral component) in the placement algorithm will allow

choosing a better placement (Figure 1(b))—two tasks of
J1 on one server and the rest on the second server, thus
time-balancingeach server better. This placement will
result in a total uptime of 110min, thus using 45% less
energy than the first placement.

To the best of our knowledge, our work is the first to
exploit this spatio-temporal tradeoff for MapReduce pro-
visioning, both within and across MapReduce jobs.

1.2 Research Contributions

To exploit spatio-temporal tradeoffs as described above,
a key requirement is the ability to predict and alter the
temporal behavior of a MapReduce job based on its spa-
tial resource allocation. Further, irrespective of the op-
timization objective, we argue that any MapReduce pro-
visioning algorithm can benefit from this characteristic
unique to the MapReduce paradigm. To that end, we
present a MapReduce provisioning framework,STEA-
MEngine1, that makes two main contributions.

First, it providesbuilding blocksthat expose the tem-
poral behavior of MapReduce jobs by exploiting unique
MapReduce characteristics. Further, these building
blocks expose a generic API to easily enable a variety
of provisioning algorithms (Section 2).

• Our Job Profilingbuilding block exploits thepre-
dictable and equitable behaviorof a MapReduce
job to predict its completion time. Each node in a
MapReduce cluster operates on equal sized blocks
which contain similar content (records). For a ho-
mogeneous cluster, this results in nearly equitable
resource consumption and time required to process
each block. Thus, by utilizing job profiles avail-
able for different data set sizes or cluster sizes, this
building block models and predicts the job runtime.
Further, it improves this prediction by observing the
job progress over time.

• TheCluster Scalingbuilding block exploits theease
of scalingin a MapReduce job, i.e. dynamically in-

1STEAM is an acronym for Space-Time based Elastic and Agile
MapReduce.
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creasing or decreasing the size of the cluster run-
ning the MapReduce job, to alter the time required
to finish a job. For example, if a new node is added
to a cluster, MapReduce can automatically schedule
tasks on the new node to take advantage of the in-
creased cluster capacity, thereby reducing the com-
pletion time. This building block models and pre-
dicts the impact on job runtime if the cluster size is
modified by accounting for the current job state and
the change in resources.

Our next contribution is the design and implementa-
tion of two novel MapReduce provisioning algorithms
based on these building blocks, that demonstrate the im-
portance of considering spatio-temporal tradeoffs, and il-
lustrate the utility of the building blocks (Section 3).

• Our end-user provisioning algorithm tries toopti-
mize performanceof a job—meeting a job runtime
deadline while minimizing cost. It leverages Job
Profiling to pick the minimum number of VMs re-
quired to meet the deadline, and Cluster Scaling to
adjust the runtime if it deviates from the initial pre-
diction. Without STEAMEngine, such performance
optimization will need to be performed manually by
the user.

• Our provider-side provisioning algorithmminimizes
system energy consumptionas new MapReduce jobs
arrive, and old ones finish. Job Profiling provides
the runtime estimate of an incoming MapReduce
job, and thus the uptime estimate of its VMs. These
VMs are then intelligently co-placed to minimize
the cumulative up time (CMU) of the system. Clus-
ter Scaling helps correct deviations from initial pre-
dictions. In the absence of STEAMEngine, this
energy minimization algorithm will devolve into
performing inefficient VM placement using best-fit
spatial packing.

We have evaluated STEAMEngine on both Amazon
EC2 [3], as well as a local 6-machine Xen cluster. Our
results show that our end-user performance optimizing
algorithm, running on Amazon EC2, enabled MapRe-
duce jobs to meet their given deadlines even with inaccu-
rate initial information. Further, our energy optimization
algorithm enabled energy savings of up to 14% in our
local testbed (Section 4).

Finally, our STEAMEngine framework is extensible
and can easily accommodate other building blocks as
well as provisioning algorithms. For instance, VM mi-
gration and instance scaling can be used as additional
building blocks, while provisioning algorithms can be
developed for dynamic load balancing or QoS-based op-
timization (Section 6).

2 STEAMEngine: Architecture and Build-
ing Blocks

Running MapReduce in a virtualized cloud environment
requires the cloud service provider to provision VMs that
form the MapReduce cluster for each job. The VM type
(CPU, memory, storage) and the number of VMs is cho-
sen by the user submitting the job2. These should be
optimally picked based on the desired performance and
cost objectives for the job and are the only control points
for the user to optimize their job. However, currently
tools that inform the user for making such decisions in-
telligently are lacking and users rely on ad hoc decisions
based on prior experience or trial and error.

Once the number of VMs is picked, the cloud provider
retains complete freedom in placing these VMs among
its physical server and storage resources. This placement
of VMs is a key lever that can control the optimization
of the cloud environment and the choice of the algo-
rithm is dictated by the specific objective chosen by the
cloud operator, e.g., maximizing throughput, balancing
load or minimizing energy consumption. In order to op-
timize MapReduce provisioning, these placement algo-
rithms needs to account for the spatio-temporal tradeoffs
described earlier.

We argue that while the optimization logic needs to be
tailored specifically to the needs of the objective,all pro-
visioning algorithms will benefit from leveraging com-
mon opportunities provided by MapReduce. Thus, as
part of our STEAMEngine framework, in this section
we present a unifying framework for MapReduce provi-
sioning that provides commonbuilding blocksmotivated
by the different opportunities for the provisioning algo-
rithms to build on. These building blocks are intended
to be used by the cloud provider as well as users, when
appropriate, in order to make smarter provisioning deci-
sions based on their specific objectives.

Figure 2 shows the proposed STEAMEngine frame-
work. End-users submit MapReduce jobs by specifying
the job characteristics (e.g., data size and VM type). The
job is placed in the cloud using an appropriate provision-
ing algorithm based on the chosen objective, e.g. a user-
driven performance optimization (Section-3.1), or cloud
provider-driven energy optimization (Section-3.2). To
exploit the opportunities provided by MapReduce, these
algorithms require some common information and mech-
anisms which are provided by the building blocks.

Note that the provisioning algorithm may be executed
both at the time of initial provisioning of the job when it
is first submitted as well as in a continuous fashion while
the job is executing in order to optimally adapt to the
changing characteristics of the cloud.

2The VM type is typically selected from a fixed set of availableVM
types (e.g., the VM instances in Amazon EC2)
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Figure 2: STEAMEngine Framework

2.1 Job Profiling

The Job profiling building block is designed to ex-
pose the spatio-temporal tradeoffs offered by MapRe-
duce jobs, by estimating job runtime as a function of the
resources allocated to the job. This runtime information
of a job enables the cloud operator to optimize perfor-
mance, cost or energy of the execution environment at
the time of initial provisioning, while also providing in-
formation to reprovision to achieve continuous optimiza-
tion. Additionally, this information can be leveraged by
the user to pick or dynamically modify the number of
VMs in the MapReduce cluster.

We consider two complementary profiling techniques:
(i) an offline profiling technique that relies on historical
data from prior runs as well as execution of sample jobs.
to estimate the runtime of a MapReduce job, and (ii) an
online profiling technique which captures the progress of
an executing MapReduce job to update these estimates in
a more fine-grained manner.

2.1.1 Offline profiling

The goal of the offline profiling technique is to estimate
the runtime of a job before the job begins execution.
This estimate is developed using past observations of
runtimes of a similar job (in most environments, mul-
tiple instances of the same MapReduce application e.g.,
pagerank are executed repeatedly, so such observations
are easily available) or using extrapolation of running the
job on a much smaller data set (due to Observation 1 be-
low).

Conceptually, MapReduce jobs are data-dependent
and inherently parallel, and hence, the runtime of a
MapReduce job is dependent on two important factors:
(i) the size of the input data, and (ii) the amount of par-
allelism, corresponding to the size of the (virtual) cluster
available to the job for its execution.

This suggests that we can model the job runtimeT as
a function of these two quantities:

T = f(D, n),

whereD is the input data size, andn is the number of
nodes (VMs) in the cluster. The functionf is likely
to be heavily dependent on the job characteristics –
whether it is CPU/memory/disk-intensive, and whether
it is Map/Reduce-heavy, etc. The goal of the offline pro-
filing is to capture this functionf for a given MapReduce
job class. Note that, for the scope of this work, we do not
model the impact of varying VM types; each job runtime
model is associated with a MapReduce job class, and a
fixed VM type.

To show that building such a profile is feasible for real-
istic MapReduce applications, we ran three MapReduce
benchmarks— Pi, Wordcount, and Sort—with varying
input data sizes and cluster sizes. These benchmarks
were chosen as representative of different classes of
MapReduce jobs (e.g., Pi is compute-intensive, while
wordcount and sort are memory-and I/O-intensive). The
details of the experimental setup are provided in Sec-
tion 4. Due to space constraints, we only present the re-
sults for sort as the conclusions are similar for the other
benchmarks.
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Figure 4: 10 GB Grep job runtimes on EC2 as a function
of cluster size.

Dependence on data size:Figure 3(a) shows the run-
time of the benchmarks as a function of data size (the
lines in the figure are fitted to the data points). As shown
in the figure, for a given cluster size, the runtime in-
creases linearly with the input data size (Observation 1).
This result implies that if we have prior observations
about a job, and we get a new job instance with a dif-
ferent data size, we can estimate its runtime with a lin-
ear extrapolation. In fact, this property leads to another
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Figure 3: Relation between job runtime, input data size, andcluster size for sort job.
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Figure 5: 8.5M-sample PiEstimator job runtimes on EC2
as a function of cluster size.

profiling optimization. In the absence of historical obser-
vations, we can run the job on a subset of the data in a
staging area and extrapolate the results to the actual input
data size to get an estimate of the expected runtime.

Dependence on cluster size:To understand the depen-
dence on cluster size, we consider the time to complete
the Map phase (the time to complete all the map tasks)
and the residual Reduce phase (the remaining Reduces
after the Map phase has completed) for these bench-
marks separately (Figures 3(b) and 3(c) and the map-
heavy Grep and PiEstimator workloads in EC2 in Fig-
ures 4 and 5, respectively). As we can see, for a given
data size, the Map phase runtime shows an inverse re-
lation (1/n) to the cluster size (Observation 2). This is
because the Map phase is fairly data-parallel for most ap-
plications, with each map task working independently on
its own data block. On the other hand, the Reduce phase
depends a lot on the application, and could be insignifi-
cant (e.g., for Pi and Grep) or could involve a fair amount
of data movement and output data writing, which could

result in non-linear overheads (e.g., for sort, as shown in
the figure). Thus, to capture the relation to cluster size,
both the Map and the residual Reduce phases need to be
modeled separately, and the total runtime of a job will be
determined by combining the two (Observation 3).

Based on the above results, our offline profiling
algorithm works as follows. For each job class, we
keep a database of historic observations of job runtimes
(separate for Map and residual Reduce phases) along
with the corresponding input data sizes and cluster sizes.
Upon arrival of a new job, if the profiling data includes
an exact match for the cluster size and the data size
specifications of the new job, the runtime is simply
calculated using the value(s) stored in the database. In
the absence of an exact match, if the database contains
multiple values corresponding to the same cluster size
(but different data sizes) as the incoming job, we can
perform a linear extrapolation from these values (based
on Observation 1 above). If we don’t have multiple
matches for the cluster size of the incoming job, but
have values corresponding to the same input size, then
we extrapolate for the Map and residual Reduce phases
based on Observations 2 and 3 above. In the case when
no relevant values are available in the database, short
runs are used to obtain values for small data and cluster
size combinations and then extrapolated from there.
Later, this estimate is combined with the online progress
estimation to account for any errors in offline profiling.

Building block interface: In order to access this build-
ing block, STEAMEngine provides the following two
APIs:
getOfflineEstimate(job, dataSize, clusterSize)

which returns the estimated runtime for that job, and
getClusterSize(job, dataSize, desiredRuntime)

which returns the estimated cluster size required to finish
the job withindesiredRuntime. These APIs are acces-
sible to both cloud provider as well as the cloud user. The
cloud provider can use this estimate to decide VM place-
ment in a spatio-temporal manner and the cloud user can
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use this API to determine its initial cluster size.

2.1.2 Online profiling

While the offline profiling technique provides us with a
coarse-grained estimate of the total job runtime based on
the parameters available a priori, the estimate may some-
times be inaccurate. This could be either because we do
not have sufficient historical information to make accu-
rate estimates, the model used for estimation may turn
out to be inaccurate, or the performance of a job may
vary due to failures, stragglers, etc. As a result, we also
use an online profiling technique, that provides us with
more fine-grained information about the progress of a
running job, and enables updating the estimates of its
runtime on the fly.
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Figure 6: Online progress of a MapReduce sort job.

Figure 6 shows the online progress of the Map and Re-
duce tasks for the sort benchmark. Our results suggest
that the progress of the Map phase is linear. On the other
hand, the residual Reduce phase, once the Map tasks are
done, shows a bursty, though piecewise linear progress.
Based on these observations, in our current implementa-
tion, we extrapolate the Map progress linearly based on
the online estimates. We start by using the offline es-
timate for the residual Reduce phase runtime, and once
the Map phase is over, we predict it in the same fashion
as we predicted the Map phase.
Interface: In order to use the online profiling
building block, first the job is registered with
STEAMEngine for online profiling using the
registerForProfiling(jobId) API, where
jobId is the ID of the MapReduce job. Once the job is
registered, the online profiling estimate can be obtained
using getOnlineEstimate(jobId) which returns
expected map, reduce and total job runtime at that point
of time based on the performance of the MapReduce job
so far. This interface is available to both cloud provider
and cloud users who, if desired, can then adjust the

Configuration Mean (s) Improvement

4 nodes, none added 615.84 —
8 nodes, none added 353.95 42.53%
4 nodes, add 4 at 0%map 343.14 44.28%
4 nodes, add 4 at 25%map 464.49 24.58%
4 nodes, add 4 at 50%map 514.24 16.50%
4 nodes, add 4 at 75%map 585.29 4.96%

Table 1: Impact of cluster scaling during Map phase.

amount of resources allocated to the job using the cluster
scaling building block described next.

2.2 Cluster scaling

Our cluster scaling building block is inspired by the elas-
ticity offered by MapReduce. As discussed above, the
runtime of a job is inherently dependent on its cluster
size. So, if the estimated performance of a job begins to
fall behind the initial estimate, or if the cloud operator
has enough spare capacity to add more nodes to a job’s
cluster, it is possible to dynamically expand the cluster
on demand. Similarly, the cloud provider may also “scale
down” a cluster by removing nodes from a cluster when
a job may want to reduce its cost, or when the operator
needs to reclaim some of the nodes added as part of an
earlier “scale-up” operation. To leverage this scaling op-
portunity, the provisioning algorithm needs information
about the impact of scaling on job runtime, which is pro-
vided by the cluster scaling building block.

The job profiling building block can already estimate
the complete job runtime for different cluster sizes, how-
ever, cluster scaling building block needs to couple this
information with the progress the job has already made,
and the impact of scaling it after the job begins. Addi-
tionally, it has to account for the differences between the
Map and the Reduce phases of the job.

2.2.1 Scaling for Map Phase

We begin with an understanding of the impact of scaling
on the map phase using the following setup: A word-
count job with 6 GBytes of data is executed from begin-
ning to end on a 4 node and an 8 node physical cluster.
We then experiment with starting the same job on a 4
node cluster, and adding 4 more nodes at different points
in the map stage. Our results (Table 2) demonstrate that
benefit from cluster scaling is higher if the amount of
map phase remaining is higher. Another interesting ob-
servation is that the amount of improvement when the job
is executed with 8 nodes is quite close to when 4 nodes
are added after the job is launched on 4 nodes. This oc-
curs due to two reasons – first, our startup overhead of
starting new VMs is very small, which makes scaling
very efficient. Second, even though the newly added 4
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nodes do not contain any local data, and they must fetch
their input data from the original 4 nodes over the net-
work, fetching their input data from other nodes across
the network has negligible overhead in our setting (since
network bandwidth and disk bandwidth on our LAN con-
nected nodes are comparable).

Based on the above results, the cluster scaling building
block for the map phase estimates the impact of scaling
by leveraging the job runtime vs. cluster size model
and the map progress over time model built by the job
profiling building block.

Interface: This STEAMEngine building block pro-
vides four APIs that can be used by the cloud user
or the provider – (1)getScalingEstimate(jobId,
newClusterSize, mapProgressPoint) provides estimated
runtime for the job with ID jobId if the cluster
is scaled to newClusterSize when map progress
is at mapProgressPoint, (2) An inverse lookup
API getNewClusterSize(jobId, mapProgressPoint,
newDesiredRuntime) which returns the new cluster size
required in order to adjust the runtime of the job
to newDesiredRuntime, (3) scaleCluster(jobId,
newClusterSize) which uses cloud VM provisioning
(or de-provisioning) to create (or delete) VMs in
the cluster to bring its size tonewClusterSize and
edits MapReduce cluster configuration to reflect the
new cluster size, and (4) an exclusive cloud provider
API scaleCluster(jobId, newClusterSize, vmToP-
mMap) which instead of using default VM placement
on the physical machines (PMs), explicitly specifies the
placement; such an API is useful when the provisioning
algorithm needs to dictate how all VMs are placed during
the execution of the scaling operation.

2.2.2 Scaling for Reduce Phase

Unlike the map phase, the reduce phase of a MapReduce
job is more complex to scale dynamically. In MapRe-
duce and specifically the Hadoop implementation, the
number of reducers for a job is a static parameter set
when the job begins executing. This is because as soon
as the job starts executing, the intermediate key space
is statically broken up into partitions which are equal in
number to the set number of reducers. Ability to dy-
namically change these partitions would allow dynamic
scaling. While such re-partitioning would have non-zero
overheads, as our next experiment shows, there are sig-
nificant potential performance benefits of reduce scaling.

In this experiment, for a wordcount job for a 10 GB
dataset, we varied the number of nodes in the cluster and
set the number of reducers to the number of nodes for
each run. As can be seen from Table 2, ability to use all
nodes in the cluster for reduce operations significantly

#Workers Residual Total time (s)
(= #reducers) Reduce Time (s)

3 1503 5703
5 932 3661
7 714 2874
10 516 1987

Table 2: Impact of number of Reducers on job run time.

reduces the time spent for the reduce phase going from
over 5700 seconds for a 3 node cluster to under 2000
seconds for 10 nodes.

A way to work around this limitation would be to pos-
sibly set a larger number of reducers than the number of
nodes in the cluster at job start time, thus potentially al-
lowing for future cluster scaling. However, this causes
an additional overhead since if the number of reduc-
ers is larger than the number of nodes, the reduce tasks
are serialized on those nodes and since each reduce task
has to wait for all map tasks to finish before complet-
ing, it causes an unnecessary slowdown. As an example
for a similar wordcount job for a 3 node cluster, setting
the number of reducers to 25 performed 43% poorer in
residual reduce time as compared to using 3 reducers.

Fixing the implementation to allow re-partitioning of
the key space and thus, allow scaling reduce jobs dy-
namically is an important problem and part of our future
work. In the current version of STEAMEngine, however,
we only support cluster scaling for the map phase.

3 STEAMEngine: Provisioning Algo-
rithms

This section presents two STEAMEngine provisioning
algorithms that leverage the profiling and scaling build-
ing blocks. The first technique demonstrates how the
building blocks could be used to meet performance
goals from a cloud user’s perspective, while the second
presents an energy management algorithm based on the
framework that can be employed by a cloud provider to
reduce their system-wide energy consumption.

As part of each, we will first introduce aninitial provi-
sioningalgorithm that allocates MapReduce jobs as they
arrive by starting virtualized clusters across servers in the
data center. Then, we will present acontinuous optimiza-
tion algorithm that alters VM allocations during the ex-
ecution of these jobs in order to optimize for the desired
metric (performance or energy).

3.1 User Optimization: Performance

This end-user MapReduce provisioning algorithm opti-
mizes job performance.
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Problem setup: Given a MapReduce job and a deadline
for its completion, the provisioning algorithm seeks to
meet the deadline while minimize user costs (we equate
this to minimizing number of VMs assigned for the job).
Key idea: This provisioning algorithm must make ef-
fective use of offline profiling data to estimate the initial
number of resources it should allocate to the job. Fur-
ther, if such profiling data is unavailable or is inaccurate,
continuous optimization via online profiling and cluster
scaling must be used to accelerate the progress of the job,
and meet the given deadline.

3.1.1 Initial Provisioning

We assume that a user specifies the data size for the sub-
mitted MapReduce job, the VM Type corresponding to
the resource requirements for the VMs in the cluster, and
the desired deadline by which the job must be completed.
For the initial provisioning, given the data size, the of-
fline profiling API getClusterSize is used to esti-
mate the number of VMs required to meet the deadline.

3.1.2 Continuous Optimization

As the job executes, its progress may deviate from our
initial estimate, and we need to continually optimize its
resource allocation in order to meet the desired deadline.
For such continuous optimization, first the job is regis-
tered with the online profiling building block using the
registerForProfiling API, which lets the build-
ing block monitor the progress of the job.

If the online profiling estimate of job’s finish time falls
beyond the given deadline, then a re-provisioning may be
needed. To avoid over-reaction to small errors and also
enable the online profiling to build up enough observa-
tion, we check for these violations at reasonably spaced-
out execution points (e.g., every 10% of map progress)
by using thegetOnlineEstimate API.

If there is indeed a need to re-provision the job, we
use cluster scaling to adjust the resources for the job. As
mentioned earlier, in our current implementation, we use
cluster scaling during the map phase only, and its impact
on the reduce phase is part of our future work.

First, we use thegetNewClusterSize API at the
current map progress point to get the additional number
of VMs which need to be provisioned. Note that the
newDesiredRuntime argument to the API needs to
adequately account for overhead time of starting up ad-
ditional VMs. For instance, on EC2, we experienced a
startup overhead of 70 seconds to completely boot a new
VM. Next, those VMs can then be added into the cluster
using thescaleCluster API of the building block.
The process can be repeated if necessaryafter the new
VMs have joined the cluster.

3.2 Provider Optimization: Energy

Next, we present a more complex provisioning algorithm
that minimizes the total energy consumption of the cloud
execution environment. Reducing energy consumption
in these cloud environments is an important problem as
it is a fast growing component of the operational cost in
these massive scaled environments [26, 6].
Problem setup: The energy efficiency goal for a
MapReduce cloud is to execute all submitted MapRe-
duce jobs such that the total energy consumption of the
physical machines is minimized. It can be assumed that
as soon as all the jobs on a machine are finished, it can
be put into a hibernate or sleep mode which uses a neg-
ligible amount of energy. For simplicity, we assume that
all machines in the cloud data center consume an equal
amount of power and do not consider fractional energy
costs for a machine running at less than 100% utilization.
While energy-efficient processors consume lesser power
at lower utilization levels (with or without DVFS based
techniques, e.g., [8]), the power variation exhibited as its
utilization is varied is not significant [36]. Further, work
in [18] shows that techniques that turn machines on/off
can achieve higher energy savings. Under this model, the
optimization goal effectively translates into minimizing
thecumulative machine uptime (CMU)of all the physi-
cal machines in the cluster.
Key idea: As discussed in Section 1.1, both the re-
source requirements as well as the expected runtime of
a MapReduce job need to be considered to achieve an
energy-efficient allocation. In particular, as illustrated in
Example 1, to achieve a better space-time tradeoff, we
would like all the machines to be spatially well-fitted (to
avoid spatial wastage), as well as time-balanced (to avoid
temporal wastage) [9].

3.2.1 Initial Provisioning

When a job is submitted to the system, it is placed using
the initial provisioning step. The submitted job specifies
the size of the data for the MapReduce application, the
VM Type corresponding to the resource requirements for
the VMs in the cluster, and an initial provisioning size in
the number of VMs desired for the virtualized cluster.

Our initial provisioning algorithm combines the notion
of time balancing servers with spatially-efficient place-
ment for a new job arriving into the system as follows:
When a jobJ arrives, we usegetOfflineEstimate
to obtain an estimate of its runtimeTJ . Note thatTJ is
going to be the estimated runtime of all VMs allocated to
the jobJ . We then defineSJ,δ to be the set of non-empty
servers such that the estimatedremaining runtimesof all
the VMs on any servers ∈ SJ,δ are withinδ of TJ . This
constrains the expected runtime of VMs running on any
server to be withinδ time units of each other, thereby
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limiting the time imbalancewhich is defined as the dif-
ference between the minimum and the maximum remain-
ing runtimes of the VMs running on it:

TI =
n

max
j=1

Tj −
n

min
j=1

Tj,

Limiting TI to δ causes VMs on a server to finish close
to each other in time, and then that server can be powered
off or put into a sleep state, thereby saving power.

We then useBest Fitspatial placement— which aims
at maximizing the utilization of spatial resources like
CPU and memory— to place the VMs of the jobJ on
a subset of servers fromSJ,δ. If we can not place all the
VMs for J on servers withinSJ,δ, we start new servers
and put the remaining VMs on them as needed. Pseu-
docode describing this approach for initial provisioning
is shown in Algorithm 1.

Note thatδ is a system parameter that depends on the
amount of time-balancing desired, and is likely to de-
pend on various factors such as job lifetimes, number of
servers in the system and their capacity, job arrival rates,
etc. Intuitively, whenδ = 0, each job will be placed
on separate servers (or with VMs on another job with
identical finish time), while ifδ = ∞, our provisioning
algorithm reduces to a spatial-only Best Fit algorithm.

3.2.2 Continuous Optimization

As jobs progress, new jobs arrive, jobs complete, and as
the collective state of the datacenter changes, our initial
provisioning decisions could potentially be sub-optimal.
Our continuous optimization algorithm addresses these
inefficiencies, and improves overall system energy con-
sumption via the following components:

Trigger Point: Continuous optimization is triggered
when a δ-violation occurs as follows. Our algo-
rithm periodically queries the online job profiling
getOnlineEstimate API to update the job run time
prediction. If this online run time prediction deviates
from the offline profiling estimate, it checks if the servers
hosting the VMs of that job violate theirδ constraint. If
there is a violation, the optimization algorithm leverages
cluster scaling to take corrective action.

Job Selection: This step selects the most suitable job
for corrective action. When a job causes aδ-violation,
it is either finishing earlier than originally predicted, or
later than expected. In case the job run time is lower than
the predicted value, we do not correct it since we do not
want to force the job to run longer. In the case when
the job is taking longer than expected, we consider it as
a viable candidate for accelerating its progress via clus-
ter scaling. Since aδ-violation trigger can be caused by
multiple jobs, we select the job with the longest runtime
among all the candidate jobs amenable to cluster scaling.

Algorithm 1 PROVISIONJOBDELTA(FLOAT delta, JOB j,
VMTYPE vt, INT numV ms, FLOAT estRuntime, SERVER

servers[])

1: Servercandidates[] = {}
2: int candidateVmSlots[] ={}
3: int totalV mSlots = 0
4: for eachs in servers do
5: min = min(s.getMinRuntime(),estRuntime)
6: max = max(s.getMaxRuntime(),estRuntime)
7: if max − min > delta then
8: continue;
9: end if

10: int V mSlots = s.canPlace(vt)
11: if V mSLots > 0 then
12: totalV mSlots+ = V mSlots

13: candidates.add(s)
14: candidateV mSlots.add(V mSlots)
15: end if
16: end for
17: if candidateV mSlots < numV ms then
18: return false

19: end if
20: Sortcandidates by candidateV mSlots descending
21: for eachs in candidates do
22: AssignV mSlots from candidateV mSlots entry
23: if numV ms ≥ V mSlots then
24: numV ms − = V mSlots

25: DoBestF it(s, vt, vmSlots)
26: Removes from candidates

27: if numV ms == 0 then
28: return true

29: end if
30: end if
31: end for
32: Reversecandidates

33: for eachs in candidates do
34: AssignV mSlots from candidateV mSlots entry
35: vmsToP lace = min(V mSlots, numV ms)
36: numV ms − = V msToP lace

37: DoBestF it(s, vt, V msToP lace)
38: if numV ms == 0 then
39: return true

40: end if
41: end for
42: return true

Adjustment Decision: Having selected the jobJ for
cluster scaling, we must now determine the magnitude of
the scaling operation, and how to provision the additional
VMs. If there are multiple servers that violate theδ con-
straint, we pick the one with the largest violation. Having
picked this server, ifT0 is the runtime of the shortest job
on the server, we defineT1 = T0 + δ as the target run-
time that the selected jobJ should be scaled to, to make
the server time-balanced again. Next, we use the cluster
scaling building block’sgetNewClusterSizeAPI to
obtain the number of VMs required to reduce the runtime
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of J down toT1, and we call this numberVT1
.

The next step is to choose where to start up these addi-
tional VMs. In case the data center does not have enough
resources to provision these new VMs, we abort the scal-
ing operation. If resources are available, we attempt to
provision the VMs on servers that are already powered
on and if that is inadequate, only then are suspended
servers brought back online. Note that any of the scal-
ing decisions are employed only if it reduces the overall
CMU of the system, i.e.∆CMU < 0.

Concretely, we first consider only the setSδ of cur-
rently powered-on servers that would not incur aδ-
violation if one of the new VMs were started on it. We
then prioritize servers inSδ by their estimated uptime
(corresponding to their currently longest-running job),
and consider placing newly added VMs onto the servers
in this priority order. If we run out of servers inSδ and
still have remaining VMs to be placed, then we con-
sider the cost of starting up a new server and adjust
the ∆CMU accordingly. Based on our calculations, if
∆CMU is positive, then by addingVT1

additional VMs,
we would incur a penalty in longer machine uptimes,and
thus we do not perform a cluster scaling operation. If
∆CMU is negative, however, thenwe have found an
energy-efficient cluster scaling operation which both in-
creases MapReduce performance and shortens cumula-
tive machine uptime. At this point, we startVT1

addi-
tional VMs for the jobJ on the selected target servers
using the provider-specificscaleCluster API which
also provides the physical servers to use while placing
the new VMs.

4 Evaluation

In this section, we evaluate the accuracy of our building
blocks and the benefits of our provisioning algorithms
which leverage these building blocks.

4.1 Methodology

We used two environments in our evaluation, a public
cloud setting and a local testbed.
Public Cloud: We utilized Amazon EC2 [3]3. Our VM
instances were of the m1.small type that is defined as 1
CPU core, 1.7 GB memory, 160 GB local storage, and
running on a virtualized Fedora Core 8 32-bit platform.
We used Amazon S3 to store our 10GB data set that we
used for many of our experiments.
Local Testbed: Our local testbed consists of 6 physi-
cal machines interconnected with Gigabit Ethernet. Each
machine is a dual core 800 MHz processor with a 250 GB
hard drive and 2 GB memory. Each machine is running
Xen 3.2 and Debian operating system with the 2.6.24

3We used EC2 instead of Amazon Elastic MapReduce [1] to retain
control over how we optimized our provisioning.

Linux kernel. Our operating environment supports 3 dif-
ferent VM types, that vary in CPU and memory sizes
(VM type 1: 128 CPU credits-768 MB memory, VM
type 2: 128 CPU credits-640 MB memory, and VM type
3: 256 CPU credits-256 MB memory). Each machine
stores VM images for each of the VM types, which are
used to instantiate VMs for each job.
Workloads: Our MapReduce platform is Hadoop
0.20.1. We experiment with four different workloads
as representative MapReduce applications: Sort, Grep,
Wordcount, PiEstimator (Pi). In our local testbed, we as-
sume that each application is associated with a VM type:
Sort uses VM type 1, Wordcount and Grep type 2, and Pi
uses type 3.

4.2 Accuracy of Job Profiling
We first measure the accuracy of our online and offline
profiling algorithms, since our cluster scaling building
block builds on top of this accuracy.

4.2.1 Offline Profiling

For this experiment, we first profiled the different bench-
marks by running them on 5 physical servers in our local
testbed with different combinations of data size and num-
ber of VMs. These runs generated a set of 90 data points,
composed of 5 data sizes combined with 6 cluster sizes
for each of 3 workloads, as part of our offline profiling
database. We then evaluated the accuracy of our offline
profiling algorithm as follows: we conducted 3000 runs
of our profiling algorithm on a randomly selected sub-
set (60 points) of the profiling database to estimate the
remaining 30 data points, and computed the estimation
error. Offline profiling had an average error of 9.5% and
standard deviation of 15.8%.

4.2.2 Online Profiling

We next evaluated the accuracy of our online profiling
algorithm at different stages of a job progress. Here, we
ran a job and at many points during its run, we estimated
its Map-phase or residual Reduce-phase finish time us-
ing our online profiler, which was compared to the actual
finish time.
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Figure 7: Error experienced while predicting the Map
phase completion times for standard workloads in EC2.

Figure 7 shows the error of the online estimation of
the Map phase for our standard workloads (Wordcount–
10 GB data with 10 nodes, Grep–10 GB data with 4
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Figure 8: Error while predicting residual Reduce phase
completion times for Wordcount. Staggered time series
progress (as in Figure 10) contributes to high error.

nodes, Pi–8.5 million samples on 4 nodes) while they
execute in EC2, averaged over 3 runs. We bootstrap with
no initial data, but the estimation accuracy naturally im-
proves as the job continues executing, as more time series
data becomes available to the online profiler. For Pi and
Grep, the error was<5% beyond map=22%, and<2%
beyond map=38%. For Wordcount, progress is staggered
at the beginning, where its low initial error appears to be
a random phenomenon, and stabilizes with more read-
ings. Overall, its error was<20% beyond map=12%,
and<10% beyond map=43%.

Figure 8 shows the error of the online estimation of
the residual Reduce phase. As in Figure 10, the Reduce
phase progress is staggered for Wordcount, leading to
larger error than the Map phase predictions. One may in-
stead use the offline prediction for residual Reduce time
instead of the online prediction if available. More com-
plex modeling for online estimations of residual Reduce
progress are necessary for higher accuracy, and we leave
that to future work.

4.3 Performance Optimization Evaluation

We now demonstrate the benefit of our performance op-
timizing provisioning algorithm (Section 3.1). In partic-
ular, we evaluate the benefit of the cluster scaling build-
ing block in this algorithm, for which we intentionally
started jobs with inaccurate cluster sizes to trigger clus-
ter scaling in order to meet the given deadlines.

We implemented our algorithm in EC2, composed
of our cluster scaling building block and online profil-
ing4. As determined by the algorithm that monitors the
Hadoop job progress, new VMs are added on the fly as
needed in order to finish the job by the deadline. Im-
portant parameters in this algorithm are the frequency
of trigger points, which we set to be every 10% map
progress, and the VM startup overhead, which we mea-
sured as 70 seconds in EC2.

The full results are listed in Table 3, and time series
for single runs of Grep and Wordcount can be seen in
Figures 9 and 10, respectively.

4We used the offline estimate for the residual Reduce-phase.
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Figure 9: 10 GB Grep job progress on EC2.
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Figure 10: 10 GB Wordcount job progress on EC2.

Pi was run with 900 maps and 9500 samples per map.
In the first run, Pi missed its deadline by only 20 seconds
with a runtime of 520 sec, which was the only deadline
violation we experienced in all of our runs. However, Pi
beat its deadline by 20 seconds in the second run, when
it added 4 VMs instead of just 3.

Grep was run on 10 GB random data. The job met its
deadline for both runs. Figure 9 shows the detailed time
series of the first run.

Wordcount was run on the same 10 GB random data.
This is our reduce-heavy workload, where 28% of the
total expected job runtime would be accounted for in the
residual Reduce phase. The results as seen in Figure 10
show that cluster scaling was performed twice to meet
the deadline. This shows the ability of cluster scaling
to overcome inaccuracies exhibited in the online runtime
estimations as seen in Section 4.2.2. The graph also il-
lustrates the impact of the VM startup overhead: after
the first cluster scaling, the 70 sec overhead of start-
ing new nodes corresponded to map=26%, and therefore
the first trigger point after the initial cluster scaling was
at map=36% and increments of 10% for further trigger
points thereafter. This is why the second scaling is done
at 36% in one case and 66% in the second case.

Our results from this performance optimization prob-
lem show that our building blocks, online profiling and
cluster scaling, were successfully synthesized into an al-
gorithm to enable the agility of MapReduce applications
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Job VMs Orig Runtime (sec) Deadline (sec) Final Runtime (sec) Cluster Scalings

Pi 4 733 500 *520 +3 VMs @ map=10%
Pi 4 733 500 480 +4 VMs @ map=10%
Grep 4 1057 600 577 +6 VMs @ map=10%
Grep 4 1057 600 585 +5 VMs @ map=10%
WdCnt 10 1987 1700 1674 +2 VMs @ map=20%, +1 VM @ map=36%
WdCnt 10 1987 1700 1698 +2 VMs @ map=20%, +1 VM @ map=66%

Table 3: Cluster scaling allows MapReduce applications to be reprovisioned to meet deadlines if not given enough
resources at runtime. Only one trial* did not meet its deadline.

to meet given deadlines.

4.4 Energy Optimization Evaluation

In this section we show the benefits of using our energy
optimization algorithm (Section 3.2), both in the initial
provisioning and continuous optimization stages. Since
this is a provider-side optimization, these experiments
were conducted on our local testbed, where we could
control VM allocations.

4.4.1 Benefit of Initial Provisioning

We first show the benefit of using initial provisioning
based on accurate offline profiling (our offline profile
database contains run times for the chosen jobs result-
ing in an exact match in our runtime estimation) by
comparing it to the initial provisioning with spatial best
fit, thereby demonstrating the benefit of exploiting the
spatio-temporal tradeoff.
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Figure 11: The spatio-temporal algorithm uses fewer ma-
chines, has a lower CMU and thus saves energy.

In this experiment, we had 3 MapReduce jobs—(1)
Sort job with 3 VMs and data size 950 MB, resulting in a
runtime of 768 seconds; (2) Wordcount job with 8 VMs
and data size 4 GB, resulting in a runtime of 900 sec-
onds; (3) a Pi job with 6 VMs and 77.5 million samples,
resulting in a runtime of 2071 seconds. We compared a
spatial best fit algorithm against a spatio-temporal algo-
rithm that incorporated the runtimes of the jobs in its VM
placement decisions. Our results showed that while both
schemes utilized 5 physical machines in total, the total
uptime of the servers in the spatio-temporal technique
was lower by 920 seconds: 5549 sec vs 6469 sec (a sav-
ings of 14%). The number of physical machines online

for both the spatial best-fit and our spatio-temporal algo-
rithms can be seen in Figure 11.

4.4.2 Benefit of Continuous Optimization

We now evaluate the benefit of continuous optimization
after initial provisioning is done, but when conditions
change during their execution.

In this experiment, we have 2 Pi jobs; the first job has
3 VMs, 900 maps, 9950 samples/map, and takes 1545
seconds while the second one has 6 VMs, 1386 maps,
4000 samples/map and takes 990 seconds. We introduce
an error in the runtime estimate to induce cluster scaling
in the experiment. Specifically, we estimate the runtime
of the first Pi job to be the same as the second Pi job.
Thus, our initial provisioning algorithm co-places these
two jobs on the same physical machines, and then in-
curs a higher CMU due to the error in the estimation.
However, STEAM with continuous optimization detects
the error in runtime estimate using online profiling when
the job is 10% completed, which triggers aδ violation,
which in turn triggers cluster scaling to correct the vio-
lation (as described in Section 3.2). The results can be
seen in Table 4. The cluster scaling logic adds 1-2 ad-
ditional VMs for the longer running job to remove theδ
violation, resulting in a total runtime of 1104 seconds on
average for the longer job. This results in a CMU savings
of 335 seconds (11%), averaged over three runs.

5 Related Work

Resource provisioning in MapReduce. Recent work
has investigated the problem of sharing resources across
several MapReduce jobs while achieving different objec-
tives [33]: Yahoo’s capacity scheduler consists of dif-
ferent job queues, and each queue receives its capac-
ity when it contains jobs, while unused capacity is dis-
tributed among other queues. Facebook’s fairness sched-
uler ensures fairness among different jobs, and also pro-
vides resource guarantees for production jobs. These
schedulers’ main focus is to fairly allocate resources
across jobs, and not on how the jobs are co-placed.
Quincy [23] is a framework for scheduling concurrent
jobs to achieve fairness while improving data locality.
The authors note as part of their future work that Quincy
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Expt Initial TI (s) Targetδ (s) TI after CS (s) CS VMs Added CMU w/CS (s) CMU no CS (s) CS CMU Savings

Run 1 504.6 200 143.1 1 2832.0 3122.0 9.3%
Run 2 593.7 200 34.8 2 2638.1 3126.2 15.6%
Run 3 568.1 200 145.9 1 2835.9 3062.5 7.4%
Avg 555.5 200 84.74 2768.7 3103.6 10.8%

Table 4: Cluster scaling (CS) used for time balancing to achieve energy savings. TI corresponds to Time Imbalance.

can be further improved by leveraging information sim-
ilar to that provided by STEAMEngine’s job profiling
and cluster scaling components. Further, we believe that
STEAMEngine’s building blocks can be leveraged in the
non-virtualized MapReduce clusters considered in these
cases to similarly optimize different metrics of interest.
For example, the problems of placement and choice of
the number of maps and reduces to optimize provision-
ing in this setting are analogous to the problems studied
in this paper for the virtualized setting.

Sandholm et al [32] presented a resource allocation
system that uses priorities to offer different service lev-
els to jobs over time. This enables resource allocation to
be varied across different job stages, and even within a
job, resulting in overall performance improvement while
the cost budget is met. Our end user provisioning al-
gorithm is complementary to this approach, and could
be employed to obtain cost budget required as input to
this algorithm. Work in [15] notes that Amazon Spot
Instances can be leveraged to dynamically improve the
performance of a MapReduce job. This finding is similar
to that of our cluster scaling building block. Also, while
the above algorithms focus on optimizing specific met-
rics such as performance and fairness, our work presents
a framework with a set of common building blocks that
can be exploited by different provisioning algorithms to
achieve different objectives.

Our energy minimizing resource provisioning algo-
rithm addresses an important MapReduce issue. Re-
cent work points to the growing concern regarding en-
ergy consumption of MapReduce; Work in [19, 29]
used MapReduce as one of the workloads in evaluating
the power consumption of datacenters. Further, recent
work [28] shows the energy inefficient use of resources
within a Hadoop job, and proposes a new data layout
that enables turning off nodes to save energy, while trad-
ing off performance in the process. Work in [14] studied
the impact of different parameters of a Hadoop job and
cluster such as replication level, input size, etc. to un-
derstand how they impact the energy consumption. Our
work, however, focuses on the opportunities to save en-
ergy across multiple jobs rather than within a single job.
Investigating an integration of these two approaches is an
interesting avenue for further work.

MapReduce optimizations. The growing popularity
of MapReduce has also spurred a large body of inter-
esting work on improving the Hadoop implementation,

and its applicability (e.g., [16, 39]). STEAMEngine’s
building blocks can be leveraged beyond resource pro-
visioning problems. Work in [5] proposes an approach
similar to our job profiling to determine optimal configu-
ration parameters for a MapReduce job. Mantri [4] uses
an approach similar to our online profiling to detect out-
liers in a MapReduce job, and proactively takes correc-
tive action. As part of our future work, we would like to
investigate if more detailed models [22, 30] that predict
MapReduce completion time could potentially enhance
the accuracy of our job profiling building block, and ex-
periment with other applications including scientific data
analysis [27] to understand enhancements required.

Resource allocation in virtualized environments. A
large body of work has explored application placement
in a virtualized data center to minimize energy consump-
tion [37], perform load balancing [34, 38] or for server
consolidation [25]. These approaches essentially focus
on achieving spatial efficiency when placing applications
and deal with temporal variations by continually adjust-
ing the placement using VM migrations. In contrast,
our algorithms are proactive in nature exploiting the run-
time estimates of MapReduce jobs based on their inher-
ent parallelism. Steinder at al [35] also investigated
resource allocation for heterogeneous virtualized work-
loads driven by high-level performance goals, while we
consider a broader set of metrics such as energy and cost.

Energy Management.A number of resource allocation
techniques (e.g., [10, 7, 13]) leverage the stateless nature
of certain workloads (such as web requests) to end and
restart request execution on a different physical machine
that saves energy. Such techniques are not suitable for
MapReduce jobs due to the stateful nature of MapReduce
VMs. Recent work [31, 24] has explored integrating sys-
tem level power management policies with virtualization
technologies. They focus on developing hooks into vir-
tualized systems to better integrate power management,
and hence is complementary to our techniques.

Parallel Processing.Finally, parallel job scheduling in
the context of massively parallel supercomputers is a
well studied area [21, 20], and shares interesting simi-
larities and differences with our work. “Space slicing”
in these parallel machines enables packing as many jobs
as possible in the given set of resources, “malleable”
parallel jobs resemble the elastic nature of MapReduce;
and similar to our observation, estimating job completion
time can potentially aid in scheduling decisions in these
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systems as well. We exploit properties of VMs to enable
easy cluster scaling, and while many of these algorithms
are focused on performance or fairness, we also support
metrics such as energy management and cost.

6 Extending STEAMEngine

STEAMEngine is easily extensible for plugging in new
building blocks and provisioning algorithms.
Other Building Blocks: While profiling and clus-
ter scaling are useful building blocks for both cloud
providers and users, there can be other building blocks
that are only useful for one of the two. An example of
a provider-side building block ismigration. This build-
ing block is based on VM migration capability and can
be used to migrate a MapReduce VM to another physi-
cal machine for several reasons: to improve a map task’s
data-locality, to load-balance, or to consolidate for en-
ergy management. However, since MapReduce appli-
cations are data-intensive, to leverage this opportunity,
it is important to understand the overhead of migration,
which is dependent on the storage model used by the
cloud environment. For instance, the commonly used
live VM migration relies on a shared storage model,
while traditional MapReduce clusters use a local storage
model (data on local disks of compute nodes). Capturing
the migration overhead and determining the right storage
model would be critical in designing this building block.

Another example is aninstance scaling building
block. While the cluster scaling building block for
STEAMEngine provides the capability for users or cloud
providers toscale-outor scale-inresources allocated to
the MapReduce job, instance scaling could enablescale-
up or scale-downof the VM instance allocated to the
cluster nodes. As an example, if a VM needs more CPU,
it can be dynamically allocated using virtualization ca-
pabilities likesharesin VMware orCPU weightin Xen.
Additionally, other techniques like DVFS [8] can be used
to reduce the clock frequency of the CPU, reducing the
energy consumption, thus scaling down the VM.
Other Provisioning Algorithms: In this paper, we
described two provisioning algorithms—a cloud user
driven performance optimization and a cloud provider
driven energy optimization. There are many other pro-
visioning optimizations possible that can leverage one or
more of the same building blocks to achieve other ob-
jectives. For example, adynamic load balancingalgo-
rithm may attempt to alleviate hotspots in the data cen-
ter by identifying the VMs with most remaining runtime
and either shutting them down on congested servers and
cluster scaling them on underutilized servers or using a
VM migration building block to migrate them to other
servers. Similarly aQoS-driven optimizationalgorithm
may obtain online estimates of job runtimes for high pri-

ority jobs and scale them to larger cluster sizes while pos-
sibly scaling down low priority jobs.

7 Conclusions

Intelligent provisioning of MapReduce jobs in a virtual-
ized cloud environment enables end-users/providers of a
MapReduce service to effectively optimize their deploy-
ments. Our work identified the spatio-temporal opportu-
nities unique to the MapReduce paradigm, and proposed
STEAMEngine, a provisioning framework to leverage
these opportunities. STEAMEngine consists of a set
of common building blocks—Job Profiling and Clus-
ter Scaling—that estimate and alter the temporal char-
acteristics of the MapReduce job. STEAMEngine also
comprises of provisioning algorithms that leverage these
building blocks to optimize desired metrics. Our work
describes two such novel provisioning algorithms—a
cloud user-driven performance optimization and a cloud
provider-driven energy optimization. Our evaluation
shows that our performance optimizing algorithm, run-
ning on Amazon EC2, enabled MapReduce jobs to meet
their deadlines even with inaccurate initial information.
Further, our energy optimization algorithm saved up to
14% energy in our local 6-machine Xen cluster when si-
multaneously executing multiple MapReduce jobs.
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