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Abstract—Advances in technology allowed for integrating
DRAM-like structures into the chip, called embedded DRAM
(eDRAM). This technology has already been successfully
implemented in some GPUs and other graphic-intensive SoC,
like game consoles. The most recent processor from IBM R©,
POWER7, is the first general-purpose processor that integrates
an eDRAM module on the chip. In this paper, we propose a
hybrid cache architecture that exploits the main features of both
memory technologies, speed of SRAM and high density of eDRAM.
We demonstrate, that due to the high locality found in emerging
applications, a high percentage of data that enters to the on-chip
last-level cache are not accessed again before they are evicted.
Based on that observation, we propose a placement scheme where
re-accessed data blocks are stored in fast, but costly in terms of
area and power, SRAM banks, while eDRAM banks store data
blocks that just arrive to the NUCA cache or were demoted from
a SRAM bank. We show that a well-balanced SRAM / eDRAM
NUCA cache can achieve similar performance results than using
a NUCA cache composed of only SRAM banks, but reduces area
by 15% and power consumed by 10%. Furthermore, we also
explore several alternatives to exploit the area reduction we gain by
using the hybrid architecture, resulting in an overall performance
improvement of 4%.

I. INTRODUCTION

Technology trends are leading to the use of large on-chip

cache memories that typically occupy more than half of the

area of the chip. For example, the most recent architecture

from Intel R©, Nehalem, introduces up to 24MB shared-L3

cache on the chip, and assigns almost 60% of the chip

area to the cache memory. Cache memories require high

bandwidth and fast response times to minimize the number

of cycles that a core is stalled due to a memory request.

Because of that, traditionally, on-chip cache memories have

been implemented with SRAM cells (6T) which are fast and

simple. Due to their six-transistor implementation, however,

SRAM memories dissipate much more static energy, or

leakage, compared to other kind of memories, like DRAM

whose cells are implemented with only one transistor and

one capacitor. Furthermore, this situation is expected to get

worse as the transistor size shrinks in the future technologies.

Much research has tackled this problem in SRAM cells by

either reducing or removing the power supply to selected

cache blocks [6], [8]. However, although leakage currents are

reduced, they still persist.

Effectively, DRAM memories dissipate much less static

energy than SRAM, however, they are much slower. Actually,

DRAM’s strongest point is their density, which is more than

3x compared to SRAM cells. Because of that, DRAM has

been typically used to implement off-chip memories, where

response time is not so critical. Advances in technology

allowed for integrating DRAM-like structures into the chip,

called embedded DRAM (eDRAM). This technology has

already been successfully implemented in some GPUs

and other graphic-intensive SoC, like game consoles. The

most recent processor from IBM R©, POWER7, is the first

general-purpose processor that integrates an eDRAM module

on the chip [21]. POWER7 uses eDRAM technology to

implement a shared 32MByte-L3 cache. By using eDRAM

instead of SRAM, POWER7 increases access latency in

its third-level cache by few cycles, however, eDRAM

provides a roughly 3x density improvement as well as about

3.5x lower energy consumption than an equivalent SRAM

implementation. Prior works in the literature also analysed

how to integrate eDRAM technology on the chip efficiently,

but eDRAM was always naively integrated as a last-level cache

[7], [24]. In this paper, we propose a hybrid cache architecture

that exploits the main features of both memory technologies,

speed of SRAM and high density of eDRAM.

The hybrid SRAM / eDRAM cache memory we propose in

this paper is organized on the chip as a Non-Uniform Cache

Architecture (NUCA) design [9]. This kind of cache, which

mitigates the effect of increasing on-chip wire delays in cache

access latency [2], consist of multiple small banks distributed

along the chip that can be accessed independently. Response

time in NUCA caches does not only depend on the latency of

the actual bank, but also the time required to reach the bank

that has the requested data and to send it to the core. So, the

NUCA cache latency relies on the physical distance from the

requesting core to the bank that has the accessed data block.

Furthermore, NUCA caches allow data blocks to be mapped

to several banks, thus a data block can migrate from one bank

to another without leaving the NUCA cache. For instance,

when a data block is accessed by a core, it moves closer to

the requesting core in order to minimize access latency for

future accesses. In this paper we take advantage of migration

movements to share data between SRAM and eDRAM banks.

In this paper we propose a hybrid NUCA cache that
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Access Time (ns) Leakage (mW) Area (mm2)

SRAM 0.6631 93.264 0.4513
eDRAM 1.4612 63.908 0.3162

TABLE I: Physical parameters of SRAM and eDRAM memories. The technology assumed is 45nm2 and their capacity is

64KBytes.

is composed of SRAM banks and eDRAM banks. We

demonstrate, that due to the high locality found in emerging

applications, a high percentage of data that enters to the

on-chip last-level cache are not accessed again before they are

replaced. Based on that observation, we propose a placement

scheme where re-accessed data blocks are stored in fast,

but costly in terms of area and power, SRAM banks, while

eDRAM banks store data blocks that just arrive to the NUCA

cache or were demoted from a SRAM bank. The effectiveness

of this architecture is demonstrated further in this paper. We

show that a well-balanced SRAM / eDRAM NUCA cache

can achieve similar performance results than using a NUCA

cache composed of only SRAM banks, but reducing area by

15% and power consumed by 10%. Furthermore, we also

explore several alternatives to exploit the area reduction we

got by using the hybrid architecture, resulting on an overall

performance improvement of 4%.

Summarizing, the contributions of this paper are as follows:

1) Implement a hybrid NUCA cache that combines both

technologies, SRAM and eDRAM, and make them work

cooperatively at the same cache level on the chip.

2) Analyse the behaviour of the proposed hybrid NUCA

cache and find the configuration that optimize the

trade-off between performance, power and area.

3) Exploit the area and power benefits obtained with the

optimal configuration of the hybrid NUCA cache to

increase the overall performance.

The remainder of this paper is structured as follows. Section

II describes the main characteristics of both technologies,

SRAM and eDRAM. Section III lays out the hybrid NUCA

cache we proposed in this paper. Section IV presents the

experimental method we used, followed by the analysis of

the hybrid SRAM / eDRAM architecture that is presented

in Section V. In Section VI, we show different alternatives

to obtain performance improvements by exploiting area and

power reductions. Related work is discussed in Section VII,

and concluding remarks are given in Section VIII.

II. SRAM VS. EDRAM

SRAM memories are typically used to implement on-chip

cache memories because they are faster and easier to

integrate than other memories, thus they leverage performance.

DRAM memories, however, leverage density. Therefore, this

technology has been traditionally used to implement off-chip

memories. This section describes the main characteristics of

both technologies as well as the role they have in the hybrid

architecture we propose in this paper.

SRAM, which is the core storage element used for

most register files and cache designs on high-performance

microprocessors, is typically implemented with a six-transistor

CMOS cell with cross-coupled inverters as storage elements

and two pass gates as a combination read/write port.

This implementation allows for fast response times and

tightly-coupled integration with processing elements which are

crucial in a high-performance environment, like register files or

low-level caches. On the other hand, as static power dissipated

in a circuit relies on the number of transistors of the actual

implementation, SRAM caches are significantly affected by

leakage currents when they become larger, which is actually

the current trend for last-level caches in recently released

CMPs.

The memory cell used in DRAM arrays consists of one

MOS transistor and a capacitor, where the actual bit is stored.

By using such a small memory cells, DRAMs density is about

3x higher than SRAMs. However, 1T1C DRAM memory cell

should not be considered for high-performance environment,

because a read operation in this memory cell is destructive.

The capacitor on the memory cell gets discharged when it is

read, so data must be refreshed after each read. This refreshing

period stalls the DRAM and cannot be accessed until it is

done, so successive accesses to the same bank must queue

up and serialize. This increases DRAM memories response

time, and thus make them much slower than SRAM. The most

straightforward solution is to simply increase the number of

independent DRAM banks in order to lower the probability

of a conflict. Furthermore, a refresh operation is needed

periodically to restore the charge to the capacitor because the

leakage current of the storage cell reduces the amount of the

stored charge. The refresh operation, which is executed by the

sense amplifiers, is vitally important for the correct operation

of DRAMs.

The hybrid architecture we propose in this paper is

organized as a NUCA cache composed by small banks of

both types, SRAM and eDRAM, which are interconnected

through an on-chip network. The NUCA organization is

further described in Section III. Table I outlines the values

of access time, leakage power and area for both kind of

memories, SRAM and eDRAM1 assuming the same bank size

as in the NUCA cache: 64KBytes. We expected SRAM to

be a bit faster than DRAM caches, but surprisingly, assuming

such a small cache size, SRAM is 2.5x faster than DRAM.

CACTI values also confirm that DRAM cache consumes much

less leakage power than SRAM does. Finally, high-density

eDRAM cache occupies about two-thirds of the area required

by a SRAM cache of the same size.

Based on the features of both technologies, we should build

a hybrid NUCA cache that maximizes the number of hits

in SRAM banks. Moreover, they should be located close to

the cores in order to reduce the overall NUCA latency by

1SRAM and eDRAM have been modeled with CACTI 5.3. The technology
assumed is 45nm2 and the size of the modeled caches is 64KBytes. More
details of the methodology can be found in Section IV.
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Fig. 1: Scheme of the proposed NUCA organizations.

minimizing routing delays. With regard to the eDRAM, results

on static power and area encourage us to enlarge these banks

as much as possible in the NUCA cache. So, we can get

significant benefits in terms of power and area with the hybrid

architecture.

III. IMPLEMENTING A HYBRID SRAM/EDRAM NUCA

CACHE

A. Baseline architecture

We assume a Non-Uniform Cache Architecture (NUCA) L2

cache, derived from Kim et al.’s Dynamic NUCA (D-NUCA)

design [9]. Similar to the original proposal we partition the

address space across cache banks, which are connected via a

2D mesh interconnection network. As illustrated in Figure 1,

the NUCA storage is partitioned into 128 banks. D-NUCA is

dynamic in the sense that it allows for migration movements

which distribute data blocks among the NUCA banks in order

to have the most accessed data close to the cores, and thus

reduce access latency for future accesses to the same data.

Ideally, a data block could be mapped into any cache bank in

order to maximize placement flexibility, however, the overhead

of locating a data block may be too large as each bank

must be searched, either through a centralized tag store or by

broadcasting the tags to all the banks. To address this situation

all banks in the NUCA cache are treated as a set-associative

structure, and each bank holds one “way” of the set, which

are called banksets. Thus, data blocks can only be mapped to

one bankset. The NUCA banks that compose a bankset are

organized among the NUCA cache in bankclusters (dashed

boxes in Figure 1). Each bankcluster consists of a single

bank of each bankset. As shown in Figure 1, we propose a

NUCA cache 16-way bankset associative that is organized in

16 bankclusters, eight are located close to the cores and the

other eight in the center of the NUCA cache. Therefore, a data

block has 16 possible placements in the NUCA cache (eight

local banks and eight central banks).

The bank where an incoming data block is going to be

mapped when it comes from the off-chip memory is statically

predetermined based on the lower bits of the data block’s

address. The LRU data block in this bank would be evicted if

it is needed. Once the data block is in the NUCA cache, the

migration scheme will determine its optimal position in there.

As migration policy, we assume gradual promotion that has

been widely used in the literature [9], [4]. It defines that upon a

hit in the NUCA cache, the requested data block should move

one-step closer to the core that initiate the memory request.

With regard to the data search scheme, the baseline D-NUCA

design uses partitioned multicast [9], [4]. First, it broadcasts

a request to the local bank that is closest to the processor

that launched the memory request, and to the eight central

banks. If all nine initial requests miss, the request is sent, also

in parallel, to the remaining seven banks from the requested

data’s bankset. Finally, if the request misses all 16 banks, the

request would be forwarded to the off-chip memory.

B. The two hybrid approaches

Figures 1a and 1b show the two different organizations

that we propose for the hybrid NUCA cache. Note that both

architectures define half of the NUCA banks as SRAM banks,

and eDRAM the rest. Based on the main characteristics of

SRAM and eDRAM caches, we first propose an intuitive

approach that organize all SRAM banks close to the cores

and all eDRAM banks in the center of the NUCA cache.

We call it homogeneous bankcluster approach and it is

illustrated in Figure 1a. This approach does not modify any

of the previously described NUCA policies from the baseline

D-NUCA cache. Having all SRAM banks concentrated close

to the cores, we intend to reduce cache access latency for

most accessed data blocks and optimize routing latencies to

the SRAM banks. The main drawback of this approach is that

by having all eDRAM banks in the center of the NUCA cache

it neglects the effect of the migration movements to the shared

data. Note that when a data block is simultaneously accessed

by two or more cores, it is pulled to different locations by the

migration scheme, so it tends to be in the center banks [4].

Figure 1b shows the other organization that we propose. It

combines SRAM and eDRAM banks within a bankcluster, so

we call it heterogeneous bankcluster approach. Compared to

the homogeneous bankcluster approach, this organization is

not biased to optimizing access latency to the most frequently
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lifetime in the NUCA cache.

accessed data and fairly distributes the fast SRAM banks

among the NUCA cache. However, this organization requires

SRAM and eDRAM banks to cooperate in order to emphasize

the strengths of both technologies and hide their drawbacks.

C. Placement policy for heterogeneous bankcluster

In general, when a line is requested by a core, it is stored

in the cache memory in order to exploit temporal and spatial

locality found in most applications. Cache memory allows

for reducing memory response time to the following accesses

to the same data and minimizes the number of accesses to

the off-chip memory. However, the higher the cache level,

the less locality it finds. Figure 2 illustrates the percentage

of lines that are accessed during their lifetime in the NUCA

cache. We observe that a significant amount of data (more

than 50%) that are stored in the on-chip last-level cache

memory are not accessed again during their lifetime in the

NUCA cache. It does not mean that they are not accessed

at all, but the lower-level cache satisfied these requests due

to the high-locality found in the application. Based on this

observation, we define a smart placement policy for the

heterogeneous bankcluster NUCA organization that works as

follows: When a data block enters into the NUCA cache from

the off-chip memory, it is located in one of the eDRAM

banks (statically predetermined based on the lower bits of its

address). Then, if it is accessed again the data block moves to

the closest SRAM bank in the bankcluster.

This placement policy assures that SRAM banks store

the hottest most frequently accessed data blocks in the

NUCA cache, while eDRAM banks have data blocks that

were not accessed since they entered to the NUCA cache,

and data blocks that were evicted or demoted from SRAM

banks. Furthermore, the placement policy in the heterogeneous

bankcluster approach introduces the following interesting

features:

1) Accessed data blocks always migrate from a SRAM

bank to another SRAM bank. It means that once a

data block abandons the eDRAM bank to go to a SRAM

bank, it will remain in one of the SRAM banks of the

SRAM @
(TDA)

HIT?

Yes

To eDRAM

@A

Fig. 3: Scheme of the Tag Directory Array.

NUCA until other more recently used data block takes

its place.

2) Gradual promotion stays in the SRAM banks but

does not apply for eDRAM banks anymore. There is

no communication between eDRAM banks, if there is

a hit in one those banks, the requested data block will

move towards the closest SRAM bank in the bankcluster.

3) A replacement in a SRAM bank does not provoke

an eviction in the NUCA cache. Data blocks that

come from the off-chip memory are located in eDRAM

banks, so data evictions happen there. SRAM banks, on

the other hand, are fed by promoted data blocks from

eDRAM banks. Consequently, this provokes data blocks

that are evicted from SRAM banks to be demoted to the

eDRAM banks instead of being evicted from the NUCA

cache.

4) There is a tight relationship between a SRAM bank

and an eDRAM bank. Actually, a particular eDRAM

bank could be seen as a kind of extra storage for a

SRAM bank.

D. Tag Directory Array (TDA)

The heterogeneous bankcluster NUCA organization also

allows a data block to be mapped to two banks within

a bankcluster, one SRAM and one eDRAM. Then, the

NUCA cache is 32-way bankset associative in this approach,

which is twice the associativity considered with the

homogeneous bankcluster approach. As described in Section

III-A, increasing the placement flexibility may introduce

significant overheads when locating a data block within the

NUCA cache that could hurt performance and power of the

overall system. Implementing a centralized or distributed tag

structure to boost accesses to the NUCA cache in CMP

appears to be impractical [4]. Apart from requiring huge

hardware overhead, this tag structure could not be quickly

accessed by all processors due to wire delays, and more

importantly, a separate tag structures would require a complex

coherence scheme that updates address location state with

block migrations. To address this situation, we propose using

the baseline access scheme to find the requested data in the

SRAM banks, but also introducing a tag directory array (TDA)
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Fig. 4: Results of the three approches described in this section.

per eDRAM bank in order to avoid accessing to any of these

banks if they do not have the requested data. As there is

no migration between eDRAM banks and each TDA only

manages the closest eDRAM bank, this structure does not

incur on the overheads previously described for tag structures

that manage the whole NUCA cache.

A particular TDA contains the tags of all data blocks that

a particular eDRAM bank is storing. In order to provide

high-perfomance access, the TDA is implemented using

SRAM technology. As illustrated in Figure 3, each TDA is

physically located jointly with a SRAM bank. Thus, when a

request arrives to the SRAM bank, the joint TDA receives

it as well. Then, both structures, the SRAM bank and the

TDA, are accessed in parallel, so we prioritise performance at

the cost of increasing dynamic power. Finally, if the request

hits on the TDA, it is forwarded to the related eDRAM bank,

otherwise the request is discarded. By using TDAs, although a

data block could be in any of the 32 possible locations within

NUCA cache, the implemented lookup algorithm will only

need to access up to 17 banks (16 SRAM banks and one

eDRAM). This mechanism, however, presents some overheads

that should be considered. The most obvious one is the

extra hardware required to implement TDAs. For example,

assuming an hybrid 4-MByte-SRAM + 4-MByte-eDRAM

heterogeneous bankcluster NUCA organization, the total

hardware required to implement all TDAs would be 512

KBytes, with each TDA requiring 8 KBytes. The required area

and the power dissipated by this structure will be considered

when we analyse this mechanism further in this paper. In

order to keep each TDA updated, all allocate and deallocate

operations in the related eDRAM are synchonized by this

structure. Therefore, we maintain correctness in TDAs data

at the cost of making these operations a bit slower.

E. Performance and power analysis

Figures 4a and 4b show how the hybrid approaches that

we described in this section behave in terms of performance

and power consumption, respectively2. Performance results

emphasize the necessity of using TDAs with the heterogeneous

bankcluster approach. While both approaches, homogeneous

and heterogeneous without TDAs, achieve similar performance

results, the introduction of TDAs improve performance of the

latter by almost 7%. Furthermore, Figure 4b illustrates that

the power consumed by the heterogeneous bankcluster NUCA

organization does not increase when using TDAs, it actually

decreases. Because of the bankset-associativity increase, when

TDAs are not considered, the heterogeneous bankcluster

approach must access more banks to find the requested data

block, and thus, it consumes much more dynamic power

than the other considered approaches. Although homogeneous

bankcluster is the architecture that consumes less power, it

does not perform so well. Having all eDRAM banks in the

center of the NUCA, this approach is heavily penalized by

shared data blocks because they concentrate to these slow

banks. In general, we consider the heterogeneous bankcluster

approach with TDAs the best choice to be our hybrid NUCA

architecture. It performs significantly well assuming both

simulated environments, multi-programmed and emerging

parallel applications, and it is not constrained by power

consumption. Therefore, in the remainder of this paper, we

will not evaluate other approaches and will assume we are

using the heterogeneous bankcluster approach with TDAs as

hybrid NUCA architecture.

IV. EXPERIMENTAL METHODOLOGY

In order to evaluate the proposed architectures, we used the

full-system execution-driven simulator, Simics [11], extended

with the GEMS toolset [12]. GEMS provides a detailed

memory-system timing model that enabled us to model the

presented approaches. Besides, it also integrates a power

model based on Orion [20] that we used to evaluate the

static and dynamic power consumed by the on-chip network.

We have modeled cache memories considered in this paper

with CACTI 5.3 [18], which includes support for eDRAM

2For each approach, we assumed an hybrid 4-MByte-SRAM +
4-MByte-eDRAM NUCA organization. More details of the experimental
methodology used are described in Section IV.



6

caches. It outlines the optimal physical characteristics (e.g.

area, access latency and leakage) of the modeled memories.

In order to validate CACTI results, we have modeled a real

eDRAM macro [16] and found that they are very similar

to the actual physical parameters. Thus, we used physical

parameters provided by CACTI to evaluate static power

consumed and the area required by the memory structures.

CACTI has been used to evaluate dynamic power consumption

as well, but GEMS support is required in this case to ascertain

the dynamic behaviour in the applications. The simulated

architecture is structured as a single CMP made up of eight

UltraSPARC IIIi homogeneous cores. With regard to the

memory hierarchy, each core provides a split first-level cache

(data and instructions). The second level of the memory

hierarchy is the NUCA cache. In order to maintain coherency

along the memory subsystem, we used the MESIF coherence

protocol, which is also used in the Intel R© Nehalem processor

[13]. The access latencies of the memory structures are based

on CACTI models. Table II outlines the most important

configuration parameters used in our studies.

Processors 8 - UltraSPARC IIIi
Frequency 3 GHz
Integration Technology 45 nm

Block size 64 bytes
L1 Cache (Instr./Data) 32 KBytes, 2-way
L2 Cache (NUCA) 8 MBytes, 128 Banks

L1 Latency 3 cycles
Router Latency 1 cycle
Avg Offchip Latency 250 cycles

TABLE II: Configuration parameters.

We assume two different scenarios: 1) Multi-programmed

and 2) Parallel applications. The former executes in parallel

a set of eight different SPEC CPU2006 [1] workloads with

the reference input. Table III outlines the workloads that

make up this scenario. The latter simulates the whole set of

applications from the PARSEC v2.0 benchmark suite [5] with

the simlarge input data sets. This suite contains 13 programs

from many different areas such as image processing, financial

analytics, video encoding, computer vision and animation

physics, among others.

astar gcc lbm mcf
milc omnetpp perlbench soplex

Reference input

TABLE III: Multi-programmed scenario.

The method we used for the simulations involved first

skipping both the initialization and thread creation phases, and

then fast-forwarding while warming all caches for 500 million

cycles. Finally, we performed a detailed simulation for 500

million cycles. As performance metric, we use the aggregate

number of user instructions committed per cycle, which is

proportional to the overall system throughput [22].

V. EVALUATION OF THE HYBRID NUCA CACHE

This section analyses how the hybrid SRAM / eDRAM

NUCA architecture presented in Section III behaves in

terms of performance, power and area compared to other

homogeneous schemes, such as the traditional SRAM NUCA

cache, or the same but composed of only eDRAM banks.

For the sake of simplicity, all evaluated configurations assume

the same NUCA architecture (Figure 1b), so the following

parameters do not change along the different configurations:

the number of banks in the NUCA cache, on-chip network

organization and global NUCA cache size. The configurations

evaluated in this section are as follows: 1) all-SRAM NUCA

cache, 2) range of hybrid approaches, and 3) all-eDRAM

NUCA cache. The former and the latter assume an 8-MByte

NUCA cache composed of 128 banks, and behave as described

in Section III-A. The hybrid approach also assumes an

8-MByte NUCA cache, but composed of 64 SRAM banks

and 64 eDRAM banks. Moreover, in this case we consider

seven different configurations by changing the size of the

NUCA dedicated to SRAM and eDRAM. This will allow

us to find the configuration that better leverages the trade-off

between performance, power and area. Table IV outlines the

most relevant parameters of the NUCA banks used in the

different configurations. In the remainder of the paper we

will refer to a X-MByte-SRAM + Y-MByte-eDRAM hybrid

NUCA architecture as XS-YD.

A. Performance Analysis

Figure 5a shows how the hybrid NUCA architecture behaves

in terms of performance compared to an all-SRAM-bank

NUCA cache. We find that, on average, our hybrid approach

can get similar performance results compared to the all-SRAM

configuration when considering the proper configuration.

Actually, several hybrid configurations, like 5S-3D or 4S-4D,

achieve almost 97% of the performance achieved by

all-SRAM. Assuming an all-eDRAM NUCA cache, however,

performance is reduced by 13%. Figure 5b illustrates the

main reason that make our hybrid approach performs so well

compared to both homogeneous configurations, all-SRAM and

all-eDRAM: the placement policy proposed for the hybrid

architecture succeeds in concentrating most of hits in NUCA

in the fast SRAM banks, so even dedicating little size to the

SRAM banks, most of hits in the NUCA cache happen in the

SRAM banks.

By taking into consideration the features of both

technologies, SRAM and eDRAM, one could expect that the

more size the hybrid NUCA dedicates to SRAM, the better it

performs. However, Figure 5a shows that the best performing

configurations are those that dedicate about the same size

to SRAM and eDRAM banks. As described in Section III,

when a data block enters into the NUCA cache it is located

into an eDRAM bank. If it is later accessed, then it moves

forward to a SRAM bank. This placement decision makes

configurations with small eDRAM banks barely effective in

terms of performance because, in most cases, data blocks

are evicted from the NUCA cache before being accessed for

second time, and thus could not move to the SRAM part.

Surprisingly, Figure 5a shows that some hybrid

configurations outperform all-SRAM (e.g. bodytrack,

streamcluster and vips). This is because our hybrid
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KB ns mW mW mm2 ns mW mW mm2 KB ns mW mW mm2

1 MByte 16 0.59 40.30 30.80 0.12 1.26 40.54 20.24 0.09 2 0.39 22.64 1.48 0.013
2 MBytes 32 0.61 45.35 51.44 0.23 1.31 44.13 35.03 0.17 4 0.42 23.83 2.50 0.021
3 MBytes 48 0.63 47.91 72.03 0.34 1.43 46.93 49.35 0.25 6 0.45 25.64 3.28 0.028
4 MBytes∗ 64 0.66 49.34 93.26 0.45 1.46 49.51 63.91 0.32 8 0.49 28.83 4.35 0.036
5 MBytes 80 0.68 52.75 114.04 0.56 1.54 53.78 76.83 0.41 10 0.53 33.51 5.39 0.042
6 MBytes 96 0.69 55.30 135.51 0.67 1.60 56.58 91.62 0.47 12 0.56 34.03 6.60 0.053
7 MBytes 112 0.71 58.34 156.40 0.78 1.69 59.73 105.13 0.55 14 0.57 34.55 7.61 0.068

TABLE IV: Parameters for each configuration got from CACTI models. For example, the shaded parameters are used by the

hybrid configuration 2S-6D. ∗All banks in both homogeneous configurations are like the 4-MByte configuration.
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Fig. 5: Evaluation of different configurations using the NUCA architecture described in Section III.

architecture increases the bank-set associativity assumed

with the homogeneous configurations, then there are more

data elegible to be mapped to the SRAM banks. In order

to describe better this situation, we will use the following

example. A data block that is located in the second row

of banks would be in its optimal location for a core in

the all-SRAM configuration, however, assuming our hybrid

architecture, this data would be in an eDRAM bank, so it

could move forward to an SRAM bank in the first row, thus

having faster access latency for future accesses.

B. Power and Area Analysis

Figure 6a shows the power consumed by each configuration

assumed in this analysis. We normalized the power

consumption results to the all-SRAM configuration, which

is the configuration that dissipates more leakage power, and

consequently, consumes more power in general. The major

contributor (close to 70%) of power consumption results

is static power. On the other hand, due to the use of

the power-efficient eDRAM technology, the all-eDRAM is

the least power-consuming configuration, reducing the power

consumed by the all-SRAM configuration by 22%. With regard

to the hybrid configurations, the less SRAM they use, the less

power they consume. In general, their power consumption

results range from 3% (7S-1D) to 18% (1S-7D) reduction

compared to the all-SRAM configuration. Figure 6a also

shows that the overhead associated to TDAs in terms of

power consumption is only 2% assuming the most pessimistic

hybrid configuration: 1S-7D. Using TDAs, however, the hybrid

architectures prevent accessing all eDRAM banks for each

request to the NUCA cache, and thus it prevents increasing

dynamic power requirements in these configurations.

With regard to the requirements in terms of die area, Figure

6b illustrates the area reduction obtained with the hybrid

architecture compared to the all-SRAM configuration. Similar

to the trend observed on the power consumption results, the

less SRAM the configurations use, the less area they require.

The all-eDRAM configuration would occupy less than 70%

of area compared to the all-SRAM. The area reduction of the

hybrid architecture ranges from 2% (7S-1D) to 21% (1S-7D).

In this case, the area overhead introduced by TDAs is not

insignificant (up to 10%), however, as previously shown in this

section, this structure is necessary to get performance results

similar to the all-SRAM configuration and to reduce dynamic

power consumption.

C. Choosing the best hybrid configuration

This section shows that the hybrid architecture described in

Section III succeeds in combining both technologies, SRAM

and eDRAM, in a NUCA cache. We observed that the

placement policy assumed benefits these configurations that

dedicate about the same size to SRAM and eDRAM banks,
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and other imbalanced configurations are not so effective. In

order to decide the best hybrid configuration, we could use

popular metrics like ED or ED2 to analyse the performance

and power trade-off. However, these metrics does not consider

the area required by the configuration, which is very important

in our design. So, we have used a recently proposed

metric Power x (Performance x Area) [3] that takes into

account the three terms of the trade-off to analyse. Assuming

the scheme shown in Figure 7, we choose 4S-4D as the

best hybrid configuration. This configuration is neither the

best-performing one nor the one that dissipates less power,

however, it is the one that leverages better the trade-off

between performance, power and area. This is our choice,

but in this section we evaluated a wide range of hybrid

configurations and showed the main characteristics of all

of them. Based on this analysis, architects can choose the

hybrid configuration that better fits to their needs, e.g. high

performance, low power consumption, or small area.

VI. EXPLOITING ARCHITECTURALS BENEFITS

Section V shows that a well-balanced configuration of

the proposed hybrid NUCA architecture achieves similar

performance results to an architecture composed of only

SRAM banks, but occupies about 15% less area and dissipates

10% less power. Architects could manage this significant

area reduction to either implement smaller and more

power-efficient designs, or re-design architectural structures

to improve overall performance. For example, the most recent

architecture from Intel R©, Nehalem, assigns more than 50%

of the chip area to the last-level cache memory, thus the area

reduced of using the proposed hybrid architecture as last-level

cache in this processor would be enough to integrate an extra

core.

In this section, we evaluate two different scenarios assuming

that the remaining transistors are used to increase the

last-level cache memory size. Thus, assuming the best hybrid

configuration, we increase either the size designated to SRAM

banks, or to eDRAM banks. The 15% area reduction allows for

integrating up to 1 MByte extra to the SRAM banks, resulting

a 5-MByte-SRAM + 4-MByte-eDRAM hybrid configuration.

On the other hand, assuming eDRAM’s higher density,

architects could manage to re-design the 4S-4D configuration

by dedicating up to 6 MBytes to the eDRAM banks. Both

configurations, 5S-4D and 4S-6D, occupy almost the same

area as a NUCA architecture composed of only SRAM banks.

Figure 8a illustrates how the extended configurations, 5S-4D

and 4S-6D, behave in terms of performance compared to the

all-SRAM. On average, both configurations outperform the

all-SRAM configuration by 4%, and 4S-4D by 10%. However,

we observe that the performance benefits are much higher

with memory-intensive parallel applications, like streamcluster

and canneal, and with the multi-programmed scenario (mix

of SPEC CPU2006 applications). Figure 8a also shows that

most of workloads achieve higher performance results with the

configuration that provide the largest cache memory (4S-6D),

instead of with the one that provides more capacity on fast

banks (5S-4D). This demonstrates that reducing the number of

accesses to the off-chip memory is more effective in terms of

performance than reducing access latency to most frequently

accessed data. With regard to the power consumption, Figure

8b shows that both configurations, 5S-4D and 4S-6D, not only

occupy the same die area as the all-SRAM configuration, but

also dissipate about the same power.
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VII. RELATED WORK

Prior works have proposed hybrid architectures to take

advantage of the different features that memories structures

offer in the on-chip memory hierarchy. Valero et al. [19]

combine both, SRAM and eDRAM, technologies at cell level.

They implement a n-way set-associative memory cache with

macrocells that consist of one SRAM cell, n-1 eDRAM cells,

and a transistor that acts as a bridge to move data from the

static cell to the dynamic ones. This design turns out to be

very efficient to implement private first-level memory caches.

However, it is not so convenient with large shared memory

caches where access patterns are not so predictible, and thus

significant number of accesses would be to slow eDRAM

cells. Our hybrid architecture combines both technologies

at bank level, and demonstrate that more than 90% of

hits in the NUCA cache are served by SRAM banks. Wu

et al. [23] propose integrating two different technologies

(SRAM and eDRAM, MRAM or PCM) at different levels of

cache (LHCA), and then, at the same level (RHCA). They

split a traditional cache into two regions made up different

technologies, and propose a swap scheme to promote data to

the fastest region. However, their architecture and placement

decisions are based on a private cache scheme, and could

hardly be implemented on a shared cache. Another hybrid

architecture was proposed by Madan et al. [10]. They propose

a 3D chip design consisting of three dies: one contains the

processing cores and L1 caches, the second die has the L2

cache which is composed of SRAM banks, and the third die

is composed of DRAM banks that act as extra storage to

the L2 cache. Furthermore, the placement assumed in this

work requires OS support to distribute data blocks among

the caches, and consequently to find them in the L2 cache.

SRAM and MRAM are also combined to create a L2 hybrid

cache in a CMP [17]. This combination tries to solve the

problems, in terms of long write latency and high write energy,

which MRAM introduces in isolation. Another combination

of memory technologies has been recently proposed to be

included in main memory [15], [14]. In this hybrid approach,

PCM and DRAM are combined in two levels (first level

DRAM and second level PCM) to solve the write endurance

problems of the PCM memory and taking profit of its 4x

density compared to DRAM.

VIII. CONCLUSIONS

Cache memories have been typically implemented using

SRAM memory structures. They are efficient in terms of

latency and are relatively easy to integrate, however, each

SRAM cell consists of six transistors, thus these memories

are not so efficient in terms of power compared to other

alternatives, like DRAM. Recently, advances in technology

allowed for integrating DRAM-like memory structures on

the chip, called embedded DRAM (eDRAM). These kind of

memories provide about 3x density and dissipate less leakage

power than SRAMs, at the cost of not being so fast. IBM R©

have already succeeded in integrating eDRAM technology in

the on-chip memory cache hierarchy of their latest processor,

POWER7. The naive integration of the eDRAM module in

POWER7 could be considered the starting point to integrate

more sophisticated hybrid cache structures in the near future.

Here, we propose a hybrid cache architecture that combines

both technologies in the same cache level, and make them

work cooperatively. Our architecture, organized as a NUCA

cache, uses a smart placement policy that efficiently distributes

data blocks among SRAM and eDRAM banks by emphasizing

their strengths and hiding their drawbacks. We evaluate a

wide range of configurations and observe that a well-balanced

hybrid configuration achieves similar performance results to

an architecture composed of only SRAM banks, but occupies

about 15% less area and dissipates 10% less power. Finally,

we have analysed different alternatives to take advantage of

the area reduction we got by using the hybrid architecture that

lead us to get performance benefits up to 10%.
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