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Abstract

We consider a task graph mapped on a set of homogeneous processors. We aim at minimizing the energy con-
sumption while enforcing two constraints: a prescribed bound on the execution time (or makespan), and a reliability
threshold. Dynamic voltage and frequency scaling (DVFS) is an approach frequently used to reduce the energy con-
sumption of a schedule, but slowing down the execution of a task to save energy is decreasing the reliability of the
execution. In this work, to improve the reliability of a schedule while reducing the energy consumption, we allow for
the re-execution of some tasks. We assess the complexity of the tri-criteria scheduling problem (makespan, reliability,
energy) of deciding which task to re-execute, and at which speed each execution of a task should be done, with two
different speed models: either processors can have arbitrary speeds (CONTINUOUS model), or a processor can run at
a finite number of different speeds and change its speed during a computation (VDD-HOPPING model). We propose
several novel tri-criteria scheduling heuristics under the continuous speed model, and we evaluate them through a set
of simulations. The two best heuristics turn out to be very efficient and complementary.
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1 Introduction
Energy-aware scheduling has proven an important issue in the past decade, both for economical and environmental
reasons. This holds true for traditional computer systems, not even to speak of battery-powered systems. More
precisely, a processor running at speed s dissipates s3 watts per unit of time [4, 6, 8], hence it consumes s3 × d joules
when operated during d units of time. To help reduce energy dissipation, processors can run at different speeds. A
widely used technique to reduce energy consumption is dynamic voltage and frequency scaling (DVFS), also known as
speed scaling [4, 6, 8]. Indeed, by lowering supply voltage, hence processor clock frequency, it is possible to achieve
important reductions in power consumption; faster speeds allow for a faster execution, but they also lead to a much
higher (supra-linear) power consumption. There are two popular models for processor speeds. In the CONTINUOUS
model, processors can have arbitrary speeds, and can vary them continuously in the interval [fmin, fmax]. This model
is unrealistic (any possible value of the speed, say

√
eπ , cannot be obtained), but it is theoretically appealing [6]. In the

VDD-HOPPING model, a processor can run at a finite number of different speeds (f1, ..., fm). It can also change its
speed during a computation (hopping between different voltages, and hence speeds). Any rational speed can therefore
be simulated [15]. The energy consumed during the execution of one task is the sum, on each time interval with
constant speed f , of the energy consumed during this interval at speed f .

Energy-aware scheduling aims at minimizing the energy consumed during the execution of the target application.
Obviously, this goal makes sense only when coupled with some performance bound to achieve, otherwise, the optimal
solution always is to run each processor at the slowest possible speed. In this paper, we consider a directed acyclic
graph (DAG) of n tasks with precedence constraints, and the goal is to schedule such an application onto a fully
homogeneous platform consisting of p identical processors. This problem has been widely studied with the objective of
minimizing the total execution time, or makespan, and it is well known to be NP-complete [7]. Since the introduction
of DVFS, many papers have dealt with the optimization of energy consumption while enforcing a deadline, i.e., a
bound on the makespan [4, 6, 8, 3].

There are many situations in which the mapping of the task graph is given, say by an ordered list of tasks to execute
on each processor, and we do not have the freedom to change the assignment of a given task. Such a problem occurs
when optimizing for legacy applications, or accounting for affinities between tasks and resources, or even when tasks
are pre-allocated [19], for example for security reasons. While it is not possible to change the allocation of a task,
it is possible to change its speed. This technique, which consists in exploiting the slack due to workload variations,
is called slack reclaiming [13, 18]. In our previous work [3], assuming that the mapping and a deadline are given,
we have assessed the impact of several speed variation models on the complexity of the problem of minimizing the
energy consumption. Rather than using a local approach such as backfilling [22, 18], which only reclaims gaps in the
schedule, we have considered the problem as a whole.

While energy consumption can be reduced by using speed scaling techniques, it was shown in [25, 10] that reducing
the speed of a processor increases the number of transient fault rates of the system; the probability of failures increases
exponentially, and this probability cannot be neglected in large-scale computing [16]. In order to make up for the loss
in reliability due to the energy efficiency, different models have been proposed for fault-tolerance: (i) re-execution is
the model under study in this work, and it consists in re-executing a task that does not meet the reliability constraint;
it was also studied in [25, 24, 17]; (ii) replication was studied in [1, 12]; this model consists in executing the same
task on several processors simultaneously, in order to meet the reliability constraints; and (iii) checkpointing consists
in "saving" the work done at some certain points of the work, hence reducing the amount of work lost when a failure
occurs [14, 23].

This work focuses on the re-execution model, for several reasons. On the one hand, replication is too costly in
terms of both resource usage and energy consumption: even if the first execution turns out successful (no failure
occurred), the other executions will still have to take place. Moreover, the decision of which tasks should be replicated
cannot be taken when the mapping is already fixed. On the other hand, checkpointing is hard to manage with parallel
processors, and too costly if there are not too many failures. Altogether, it is the "online/no-waste" characteristic
of the corresponding algorithms that lead us focus on re-execution. The goal is then to ensure that each task is
reliable enough, i.e., either its execution speed is above a threshold, ensuring a given reliability of the task, or the
task is executed twice to enhance its reliability. There is a clear trade-off between energy consumption and reliability,
since decreasing the execution speed of a task, and hence the corresponding energy consumption, is deteriorating
the reliability. This calls for tackling the problem of considering the three criteria (makespan, reliability, energy)
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simultaneously. This tri-criteria optimization brings dramatic complications: in addition to choosing the speed of each
task, as in the deadline/energy bi-criteria problem, we also need to decide which subset of tasks should be re-executed
(and then choose both execution speeds). Few authors have tackled this problem; we detail below the closest works to
ours [17, 24, 1].

Izosinov et al. [17] study a tri-criteria optimization problem with a given mapping on heterogeneous architectures.
However, they do not have any formal energy model, and they assume that the user specifies the maximum number of
failures per processor tolerated to satisfy the reliability constraint, while we consider any number of failures but ensure
a reliability threshold for each task. Zhu and Aydin [24] are also addressing a tri-criteria optimization problem similar
to ours, and choose some tasks that have to be re-executed to match the reliability constraint. However, they restrict to
the scheduling problem on one single processor, and they consider only the energy consumption of the first execution
of a task (best-case scenario) when re-execution is done. Finally, Assayad et al. [1] have recently proposed an off-line
tri-criteria scheduling heuristic (TSH), which uses active replication to minimize the makespan, with a threshold on the
global failure rate and the maximum power consumption. TSH is an improved critical-path list scheduling heuristic
that takes into account power and reliability before deciding which task to assign and to duplicate onto the next free
processors. The complexity of this heuristic is unfortunately exponential in the number of processors. Future work
will be devoted to compare our heuristics to TSH, and hence to compare re-execution with replication.

Given an application with dependence constraints and a mapping of this application on a homogeneous platform,
we present in this paper theoretical results and tri-criteria heuristics that use re-execution in order to minimize the
energy consumption under the constraints of both a reliability threshold per task and a deadline bound. The first
contribution is a formal model for this tri-criteria scheduling problem (Section 2). The second contribution is to
provide theoretical results for the different speed models, CONTINUOUS (Section 3) and VDD-HOPPING (Section 4).
The third contribution is the design of novel tri-criteria scheduling heuristics that use re-execution to increase the
reliability of a system under the CONTINUOUS model (Section 5), and their evaluation through extensive simulations
(Section 6). To the best of our knowledge, this work is the first attempt to propose practical solutions to this tri-criteria
problem. Finally, we give concluding remarks and directions for future work in Section 7.

2 The tri-criteria problem
Consider an application task graph G = (V, E), where V = {T1, T2, . . . , Tn} is the set of tasks, n = |V |, and where
E is the set of precedence edges between tasks. For 1 ≤ i ≤ n, task Ti has a weight wi, that corresponds to the
computation requirement of the task. We also consider particular class of task graphs, such as linear chains where
E = ∪n−1i=1 {Ti → Ti+1}, and forks with n+ 1 tasks {T0, T1, T2, . . . , Tn} and E = ∪ni=1{T0 → Ti}.

We assume that tasks are mapped onto a parallel platform made up of p identical processors. Each processor has a
set of available speeds that is either continuous (in the interval [fmin, fmax]) or discrete (withmmodes {f1, · · · , fm}),
depending on the speed model (CONTINUOUS or VDD-HOPPING). The goal is to minimize the energy consumed
during the execution of the graph while enforcing a deadline bound and matching a reliability threshold. To match the
reliability threshold, some tasks are executed once at a speed high enough to satisfy the constraint, while some other
tasks need to be re-executed. We detail below the conditions that are enforced on the corresponding execution speeds.
The problem is therefore to decide which task to re-execute, and at which speed to run each execution of a task.

In this section, for the sake of clarity, we assume that a task is executed at the same (unique) speed throughout
execution, or at two different speeds in the case of re-execution. In Section 3, we show that this strategy is indeed
optimal for the CONTINUOUS model; in Section 4, we show that only two different speeds are needed for the VDD-
HOPPING model (and we update the corresponding formulas accordingly). We now detail the three objective criteria
(makespan, reliability, energy), and then define formally the problem.

2.1 Makespan
The makespan of a schedule is its total execution time. The first task is scheduled at time 0, so that the makespan
of a schedule is simply the maximum time at which one of the processors finishes its computations. We consider a
deadline bound D, which is a constraint on the makespan.
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Let Exe(wi, f) be the execution time of a task Ti of weight wi at speed f . We assume that the cache size is adapted
to the application, therefore ensuring that the execution time is linearly related to the frequency [14]: Exe(wi, f) =
wi
f . When a task is scheduled to be re-executed at two different speeds f (1) and f (2), we always account for both

executions, even when the first execution is successful, and hence Exe(wi, f (1), f (2)) = wi
f(1) + wi

f(2) . In other words,
we consider a worst-case execution scenario, and the deadline D must be matched even in the case where all tasks that
are re-executed fail during their first execution.

2.2 Reliability
To define the reliability, we use the fault model of Zhu et al. [25, 24]. Transient failures are faults caused by software
errors for example. They invalidate only the execution of the current task and the processor subject to that failure will
be able to recover and execute the subsequent task assigned to it (if any). In addition, we use the reliability model
introduced by Shatz and Wang [21], which states that the radiation-induced transient faults follow a Poisson distribu-
tion. The parameter λ of the Poisson distribution is then:

λ(f) = λ̃0 e
d̃ fmax−f
fmax−fmin , (1)

where fmin ≤ f ≤ fmax is the processing speed, the exponent d̃ ≥ 0 is a constant, indicating the sensitivity of fault
rates to DVFS, and λ̃0 is the average fault rate corresponding to fmax. We see that reducing the speed for energy saving
increases the fault rate exponentially. The reliability of a task Ti executed once at speed f isRi(f) = e−λ(f)×Exe(wi,f).
Because the fault rate is usually very small, of the order of 10−6 per time unit in [5, 17], 10−5 in [1], we can use the
first order approximation of Ri(f) as

Ri(f) = 1− λ(f)× Exe(wi, f) = 1− λ̃0 ed̃
fmax−f

fmax−fmin × wi
f

= 1− λ0 e−df ×
wi
f
, (2)

where d = d̃
fmax−fmin

and λ0 = λ̃0e
dfmax . This equation holds if εi = λ(f) × wi

f � 1. With, say, λ(f) = 10−5, we
need wi

f ≤ 103 to get an accurate approximation with εi ≤ 0.01: the task should execute within 16 minutes. In other
words, large (computationally demanding) tasks require reasonably high processing speeds with this model (which
makes full sense in practice).

We want the reliability Ri of each task Ti to be greater than a given threshold, namely Ri(frel), hence enforcing
a local constraint dependent on the task Ri ≥ Ri(frel). If task Ti is executed only once at speed f , then the reliability
of Ti is Ri = Ri(f). Since the reliability increases with speed, we must have f ≥ frel to match the reliability
constraint. If task Ti is re-executed (speeds f (1) and f (2)), then the execution of Ti is successful if and only if both
attempts do not fail, so that the reliability of Ti is Ri = 1− (1−Ri(f (1)))(1−Ri(f (2))), and this quantity should be
at least equal to Ri(frel).

2.3 Energy
The total energy consumption corresponds to the sum of the energy consumption of each task. Let Ei be the energy
consumed by task Ti. For one execution of task Ti at speed f , the corresponding energy consumption is Ei(f) =
Exe(wi, f)× f3 = wi× f2, which corresponds to the dynamic part of the classical energy models of the literature [4,
6, 8, 3]. Note that we do not take static energy into account, because all processors are up and alive during the whole
execution.

If task Ti is executed only once at speed f , then Ei = Ei(f). Otherwise, if task Ti is re-executed at speeds f (1)

and f (2), it is natural to add up the energy consumed during both executions, just as we add up both execution times
when enforcing the makespan deadline. Again, this corresponds to the worst-case execution scenario. We obtain
Ei = Ei(f

(1)
i ) + Ei(f

(2)
i ). Note that some authors [24] consider only the energy spent for the first execution, which

seems unfair: re-execution comes at a price both in the deadline and in the energy consumption. Finally, the total
energy consumed by the schedule, which we aim at minimizing, is E =

∑n
i=1Ei.
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2.4 Optimization problems
The two main optimization problems are derived from the two different speed models:
• TRI-CRIT-CONT. Given an application graph G = (V, E), mapped onto p homogeneous processors with

continuous speeds, TRI-CRIT-CONT is the problem of deciding which tasks should be re-executed and at which
speed each execution of a task should be processed, in order to minimize the total energy consumptionE, subject
to the deadline bound D and to the local reliability constraints Ri ≥ Ri(frel) for each Ti ∈ V .

• TRI-CRIT-VDD. This is the same problem as TRI-CRIT-CONT, but with the VDD-HOPPING model.

We also introduce variants of the problems for particular application graphs: TRI-CRIT-CONT-CHAIN is the same
problem as TRI-CRIT-CONT when the task graph is a linear chain, mapped on a single processor; and TRI-CRIT-
CONT-FORK is the same problem as TRI-CRIT-CONT when the task graph is a fork, and each task is mapped on a
distinct processor. We have similar definitions for the VDD-HOPPING model.

3 CONTINUOUS model
As stated in Section 2, we start by proving that with the CONTINUOUS model, it is always optimal to execute a task at
a unique speed throughout its execution:

Lemma 1. With the CONTINUOUS model, it is optimal to execute each task at a unique speed throughout its execution.

The idea is to consider a task whose speed changes during the execution; we exhibit a speed such that the execution
time of the task remains the same, but where both energy and reliability are potentially improved, by convexity of the
functions.

Proof. We can assume without loss of generality that the function that gives the speed of the execution of a task is a
piecewise-constant function. The proof of the general case is a direct corollary from the theorem that states that any
piecewise-continuous function defined on an interval [a, b] can be uniformly approximated as closely as desired by a
piecewise-constant function [20].

Suppose that in the optimal solution, there is a task whose speed changes during the execution. Consider the first
time-step at which the change occurs: the computation begins at speed f from time t to time t′, and then continues at
speed f ′ until time t′′. The total energy consumption for this task in the time interval [t, t′′] isE = (t′−t)×f3+(t′′−
t′)× (f ′)3. Moreover, the amount of work done for this task is W = (t′ − t)× f + (t′′ − t′)× f ′. The reliability of
the task is exactly 1− λ0

(
(t′ − t)× e−df + (t′′ − t′)× e−df ′ + r

)
, where r is a constant due to the reliability of the

rest of the process, which is independent from what happens during [t, t′′]. The reliability is a function that increases
when the function h(t, t′, t′′, f, f ′) = (t′ − t)× e−df + (t′′ − t′)× e−df ′ decreases.

If we run the task during the whole interval [t, t′′] at constant speed fd = W/(t′′ − t), the same amount of work
is done within the same time, and the energy consumption during this interval of time becomes E′ = (t′′ − t) × f3d .
Note that the new speed can be expressed as fd = af + (1 − a)f ′, where 0 < a = t′−t

t′′−t < 1. Therefore, because
of the convexity of the function x 7→ x3, we have E′ < E. Similarly, since x 7→ e−dx is a convex function,
h(t, t′, t′′, fd, fd) < h(t, t′, t′′, f, f ′), and the reliability constraint is also matched. This contradicts the hypothesis of
optimality of the first solution, and concludes the proof.

Next we show that not only a task is executed at a single speed, but that its re-execution (whenever it occurs) is
executed at the same speed as its first execution:

Lemma 2. With the CONTINUOUS model, it is optimal to re-execute each task (whenever needed) at the same speed
as its first execution, and this speed f is such that f (inf)i ≤ f < 1√

2
frel, where

λ0wi
e−2df

(inf)
i

(f
(inf)
i )2

=
e−dfrel

frel
. (3)
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Similarly to the proof of Lemma 1, we exhibit a unique speed for both executions, in case they differ, so that the
execution time remains identical but both energy and reliability are improved. If this unique speed is greater than
1√
2
frel, then it is better to execute the task only once at speed frel, and if f is lower than f (inf)i , then the reliability

constraint is not matched.

Proof. Consider a task Ti executed a first time at speed fi, and a second time at speed f ′i > fi. Assume first that
d = 0, i.e., the reliability of task Ti executed at speed fi is Ri(fi) = 1 − λ0wifi . We show that executing task Ti
twice at speed f =

√
fif ′i improves the energy consumption while matching the deadline and reliability constraints.

Clearly the reliability constraint is matched, since 1− λ20w2
i

1
f2 = 1− λ20w2

i
1
fif ′i

. The fact that the deadline constraint

is matched is due to the fact that
√
fif ′i ≥

2fif
′
i

fi+f ′i
(by squaring both sides of the equation we obtain (fi − f ′i)2 ≥ 0).

Then we use the fact that fd =
2fif

′
i

fi+f ′i
is the minimal speed such that ∀f ≥ fd,

2wi
f < wi

fi
+ wi

f ′i
. Finally, it is easy to

see that the energy consumption is improved since 2fif
′
i ≤ f2i + f ′2i , hence 2wifif

′
i ≤ wif2i + wif

′2
i .

In the general case when d 6= 0, instead of having a closed form formula for the new speed f common to both
executions, we have f = max(f1, f2), where f1 is dictated by the reliability constraint, while f2 is dictated by the
deadline constraint. f1 is the solution to the equation 2(dX+lnX) = (dfi+ln fi)+(df ′i+ln f ′i); this equation comes

from the reliability constraint: the minimum speed X to match the reliability is obtained with 1− λ20w2
i
e−dfi

fi
e−df

′
i

f ′i
=

1− λ20w2
i
e−2dX

X2 . The deadline constraint must also be enforced, and hence f2 =
2fif

′
i

fi+f ′i
(minimum speed to match the

deadline). Then the fact that the energy does not increase comes from the convexity of this function.
Let f be the unique speed at which the task is executed (twice). If f ≥ 1√

2
frel, then executing the task only once

at speed frel has a lower energy consumption and execution time, while still matching the reliability constraint. Hence
it is not optimal to re-execute the task unless f < 1√

2
frel. Finally, note that f must be greater than f (inf)i , solution of

Equation (3), since f (inf)i is the minimum speed such that the reliability constraint is met if task Ti is executed twice
at the same speed.

Note that both lemmas can be applied to any solution of the TRI-CRIT-CONT problem, not just optimal solutions,
hence all heuristics of Section 5 will assign a unique speed to each task, be it re-executed or not.

We are now ready to assess the problem complexity:

Theorem 1. The TRI-CRIT-CONT-CHAIN problem is NP-hard, but not known to be in NP.

Note that the problem is not known to be in NP because speeds could take any real values (CONTINUOUS model).
The completeness comes from SUBSET-SUM [11]. The problem is NP-hard even for a linear chain application
mapped on a single processor (and any general DAG mapped on a single processor becomes a linear chain).

Proof. Consider the associated decision problem: given a deadline, and energy and reliability bounds, can we schedule
the graph to match all these bounds? Since the speeds could take any real values, the problem is not known to be in
NP. For the completeness, we use a reduction from SUBSET-SUM [11]. Let I1 be an instance of SUBSET-SUM:
given n strictly positive integers a1, . . . , an, and a positive integer X , does there exist a subset I of {1, . . . , n} such
that

∑
i∈I ai = X? Let S =

∑n
i=1 ai.

We build the following instance I2 of our problem. The execution graph is a linear chain with n tasks, where:
• task Ti has weight wi = ai;
• λ0 = fmax

100maxi ai
;

• fmin =
√
λ0 maxi aifmax = 1

10fmax;
• frel = fmax; d = 0.

The bounds on reliability, deadline and energy are:
• R0

i = Ri(frel) = 1− λ0 wi
frel

for 1 ≤ i ≤ n;
• D0 = S

frel
+ X
cfrel

, where c is the unique positive real root of the polynomial 7y3 + 21y2 − 3y − 1. Analytically,

we derive that c = 4
√

2
7 cos 1

3 (π − tan−1 1√
7
)−1 (≈ 0.2838); but this value is irrational, so have to we encode

it symbolically rather than numerically;
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• E0 = 2X(
2c

1 + c
frel)2 + (S −X)f2rel.

Clearly, the size of I2 is polynomial in the size of I1.

Suppose first that instance I1 has a solution, I . For all i ∈ I , Ti is executed twice at speed
2c

1 + c
frel. Otherwise,

for all i /∈ I , it is executed only once at speed frel. The execution time is
∑
i/∈I

ai
frel

+
∑
i∈I 2 ai

2c
1+c frel

= S−X
frel

+

2X 1+c
2cfrel

= D0. The reliability constraint is obviously met for tasks not in I . It is also met for all tasks in I , since
2c

1 + c
frel > fmin, and two executions at fmin are sufficient to match the reliability constraint. Indeed, 1− λ20

a2i
f2
min

=

1−λ0 ai
frel

ai
maxi ai

≥ 1−λ0 ai
frel

= R0
i . The energy consumption is exactlyE0. All bounds are respected, and therefore

we have a solution to I2.

Suppose now that I2 has a solution. Let I = {i | Ti is executed twice in the solution}, and Y =
∑
i∈I ai. We

prove in the following that necessarily Y = X , since the energy constraint E0 is respected in I2.
We first point out that tasks executed only once are necessarily executed at maximum speed to match the reliability

constraint. Then consider the problem of minimizing the energy of a set of tasks, some executed twice, some executed
once at maximum speed, and assume that we have a deadline D0 to match, but no constraint on reliability or on fmin.
We will verify later that these additional two constraints are indeed satisfied by the optimal solution when the only
constraint is the deadline. Thanks to Lemma 2, for all i ∈ I , task Ti is executed twice at the same speed. It is easy
to see that in fact all tasks in I are executed at the same speed, otherwise we could decrease the energy consumption
without modifying the execution time, by convexity of the function. Let f be the speed of execution (and re-execution)
of task Ti, with i ∈ I . Because the deadline is the only constraint, either Y = 0 (no tasks are re-executed), or it is
optimal to exactly match the deadline D0 (otherwise we could just slow down all the re-executed tasks and this would
decrease the total energy). Hence the problem amounts to find the values of Y and f that minimize the function
E = 2Y f2 + (S − Y )f2rel, with the constraint (S − Y )/frel + 2Y/f ≤ D0. First, note that if Y = 0 then
E > E0, and hence Y > 0 (since it corresponds to a solution of I2). Therefore, since the deadline is tight, we have
f = 2Y

D0frel−(S−Y )frel, and finally the energy consumption can be expressed as

E(Y ) =

(
(2Y )3

(D0frel − (S − Y ))2
+ (S − Y )

)
f2rel.

We aim at finding the minimum of this function. Let Ỹ = Y
D0frel−S . Then we haveE(Ỹ ) =

(
(2Ỹ )3

(1+Ỹ )2
+ ( S

D0frel−S − Ỹ )
)
×

(D0frel − S)f2rel. Differentiating, we obtain

E′(Ỹ ) =

(
3× 23Ỹ 2

(1 + Ỹ )2
− 24Ỹ 3

(1 + Ỹ )3
− 1

)
(D0frel − S)f2rel .

Finally, E′(Ỹ ) = 0 if and only if
24Ỹ 2(1 + Ỹ )− 16Ỹ 3 − (1 + Ỹ )3 = 0. (4)

The only positive solution of Equation (4) is Ỹ = c, and therefore the unique minimum of E(Y ) is obtained for
Y = c(D0frel − S) = X .

Note that for Y = X , we have E = E0, and therefore any other value of Y would not correspond to a solution.
There remains to check that the solution matches both constraints on fmin and on reliability, to confirm the hypothesis
on the speed of tasks that are re-executed. Using the same argument as in the first part of the proof, we see that
the reliability constraint is respected when a task is executed twice at fmin, and therefore we just need to check that
f ≥ fmin. For Y = X , we have f = 2c

1+cfrel > fmin.
Altogether, we have

∑
i∈I ai = Y = X , and therefore I1 has a solution. This concludes the proof.

Even if TRI-CRIT-CONT-CHAIN is NP-hard, we can characterize an optimal solution of the problem:
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Proposition 1. If frel < fmax, then in any optimal solution of TRI-CRIT-CONT-CHAIN, either all tasks are executed
only once, at constant speed max(

∑n
i=1 wi
D , frel); or at least one task is re-executed, and then all tasks that are not

re-executed are executed at speed frel.

Proof. Consider an optimal schedule. If all tasks are executed only once, the smallest energy consumption is obtained
when using the constant speed

∑n
i=1 wi
D . However if

∑n
i=1 wi
D < frel, then we have to execute all tasks at speed frel

to match both reliability and deadline constraints.

Now, assume that some task Ti is re-executed, and assume by contradiction, that some other task Tj is executed
only once at speed fj > frel. Note that the common speed fi used in both executions of Ti is smaller than frel,
otherwise we would not need to re-execute Ti. We have fi < frel < fj , and we prove that there exist values f ′i (new
speed of one execution of Ti) and f ′j (new speed of Tj) such that fi < f ′i , frel ≤ f ′j < fj , and the energy consumed
with the new speeds is strictly smaller, while the execution time is unchanged. The constraint on reliability will also be
met, since the speed of one execution of Ti is increased, while the speed of Tj remains above the reliability threshold.
Note that we do not modify the speed of the re-execution of Ti (that remains fi), and the time and energy consumption
of this execution are not accounted for in the equations. Also, we restrict to values such that f ′i ≤ f ′j .

Our problem writes: do there exist ε, ε′ > 0 such that

wif
2
i + wjf

2
j > wi(fi + ε′)2 + wj(fj − ε)2;

D =
wi
fi

+
wj
fj

=
wi

fi + ε′
+

wj
fj − ε

;

fi < fi + ε′ ≤ fj − ε;
frel ≤ fj − ε < fj .

We study the function φ : ε 7→ wif
2
i + wjf

2
j −

(
wi(fi + ε′)2 + wj(fj − ε)2

)
, and we want to prove that it is

positive. Thanks to the deadline constraint (D is the bound on the execution time of Tj plus one execution of Ti), we
have fi =

wifj
Dfj−wj , and fi + ε′ = wi

D−
wj
fj−ε

=
wi(fj−ε)

D(fj−ε)−wj .

We can therefore express φ(ε) as:

φ(ε) =
w3
i f

2
j

(Dfj − wj)2
− w3

i (fj − ε)2

(D(fj − ε)− wj)2
+ wjf

2
j − wj(fj − ε)2.

Moreover, we study the function for ε > 0, and because of the constraint on new speeds, ε ≤ fj − frel. Another
bound on ε is obtained from the fact that fi + ε′ ≤ fj − ε, and the equality is obtained when both tasks are running at
speed wi+wj

D , thus meeting the deadline. Hence, fj − ε ≥ wi+wj
D , and finally

0 < ε ≤ fj −max

(
frel,

wi + wj
D

)
.

Differentiating, we obtain

φ′(ε) =
2w3

i (fj − ε)
(D(fj−ε)−wj)2

− 2Dw3
i (fj − ε)2

(D(fj−ε)−wj)3
+ 2wj(fj − ε).

We are looking for ε such that φ′(ε) = 0, hence obtaining the polynomial

X3 − w3
i

w3
j

= 0,

by multiplying each side of the equation by (D(fj−ε)−wj)3
w4
j (fj−ε)

, and defining X =
D(fj−ε)−wj

wj
. The only real solution to

this polynomial is X = wi
wj

, that corresponds to ε = fj − wi+wj
D . Therefore, the only extremum of the function φ is
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obtained for this value of ε, which corresponds to executing both tasks at the same speed. Because of the convexity
of the energy consumption, this value corresponds to a maximum of function φ (see for instance Proposition 2 in [3]),
since the energy is minimized when both tasks run at the same speed. Therefore, φ is strictly increasing for 0 ≤ ε ≤

fj − wi+wj
D , and for ε = fj −max

(
frel,

wi + wj
D

)
, φ is maximal (with regards to our constraints), and φ(ε) > 0.

Altogether, this value of ε gives us two new speeds f ′i =
wi(fj−ε)

D(fj−ε)−wj and f ′j = fj − ε that strictly improve the
energy consumption of the schedule, while the constraints on deadline and reliability are still enforced. However, the
original schedule was supposed to be optimal, we have a contradiction, which concludes the proof.

In essence, Proposition 1 states that when dealing with a linear chain, we should first slow down the execution
of each task as much as possible. Then, if the deadline is not too tight, i.e., if frel >

∑n
i=1 wi
D , there remains the

possibility to re-execute some of the tasks (and of course it is NP-hard to decide which ones). Still, this general
principle “first slow-down and then re-execute” will guide the design of type A heuristics in Section 5.

While the general TRI-CRIT-CONT problem is NP-hard even with a single processor, the particular variant TRI-
CRIT-CONT-FORK can be solved in polynomial time:

Theorem 2. The TRI-CRIT-CONT-FORK problem can be solved in polynomial time.

The difficulty to provide an optimal algorithm for the TRI-CRIT-CONT-FORK problem comes from the fact that
the total execution time must be shared between the source of the fork, T0, and the other tasks that all run in parallel.
If we know D′, the fraction of the deadline allotted for tasks T1, . . . , Tn once the source has finished its execution,
then we can decide which tasks are re-executed and all execution speeds.

Proof. We start by showing that TRI-CRIT-CONT can be solved in polynomial time for one single task, and then for
n independent tasks, before tackling the problem TRI-CRIT-CONT-FORK.

TRI-CRIT-CONT for a single task on one processor can be solved in polynomial time. When there is a single
task T of weight w, the solution depends on the deadline D:

1. if D < w
fmax

= D(0), then there is no solution;

2. if w
fmax

≤ D ≤ w
frel

= D(1), then T is executed once at speed w
D , the minimum energy is w3 × 1

D2 ;

3. if w
frel

< D ≤ 2
√
2w

frel
= D(2), then T is executed once at speed frel, the minimum energy is wf2rel;

4. if 2
√
2w

frel
< D ≤ 2w

f(inf) = D(3), then T is executed twice at speed 2w
D , the minimum energy is (2w)3 × 1

D2 ;

5. if 2w
f(inf) < D, then T is executed twice at speed f (inf), the minimum energy is 2wf (inf)2.

These results are a direct consequence from the deadline and reliability constraints. With a deadline smaller thanD(0),
the task cannot be executed within the deadline, even at speed fmax. The bound D(2) comes from Lemma 2, which
states that we need to have enough time to execute the task twice at a speed lower than 1√

2
frel before re-executing it.

Therefore, the task is executed only once for smaller deadlines, either at speed w/D, or at speed frel if w/D < frel.
For larger deadlines, the task is re-executed, either at speed 2w/D, or at speed f (inf) if 2w/D < f (inf), since the
re-execution speed cannot be lower than f (inf) (see Lemma 2).

TRI-CRIT-CONT for n independent tasks on n processors can be solved in polynomial time. For n independent
tasks mapped on n distinct processors, decisions for each task can be made independently, and we simply solve n times
the previous single task problem. The minimum energy is the sum of the minimum energies obtained for each task.
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TRI-CRIT-CONT-FORK. For a fork, we need to decide how to share the deadline between the source T0 of the
fork and the other tasks (i.e., n independent tasks on n processors). We search the optimal values D1 and D2 such
that D1 + D2 = D, and the energy of executing T0 within deadline D1 plus the energy of executing all other tasks
within D2 is minimum. Therefore, we just need to find the optimal value for D2 (since D1 = D − D2), and reuse
previous results for independent tasks.

Independently ofD, we can define for each task Ti four valuesD(0)
i , D

(1)
i , D

(2)
i andD(3)

i , as in the case of a single
task. There is a solution if and only if max1≤i≤nD

(0)
i ≤ D2 ≤ D − D(0)

0 . Then, the energy consumption depends
upon the intervals delimited by values D − D(j)

0 and D(j)
i , for 1 ≤ i ≤ n and j = 1, 2, 3. Within an interval, the

energy consumed by the source is either a constant, or a constant times 1
(D−D2)2

, and the energy consumed by task Ti
(1 ≤ i ≤ n) is either a constant, or a constant times 1

D2
2

. All the constants are known, only dependent of Ti, and
they are obtained by the algorithm that gives the optimal solution to TRI-CRIT-CONT for a single task. To obtain the
intervals, we sort the 4n values of D(j)

i (i > 0) and the four values of D −D(j)
0 , with j = 0, 1, 2, 3, and rename these

4(n + 1) values as dk, with 1 ≤ k ≤ 4(n + 1) and dk ≤ dk+1. Given the bounds on D2, we consider the intervals
of the form [dk, dk+1], with dk ≥ max1≤i≤nD

(0)
i , and dk+1 ≤ D − D(0)

0 . On each of these intervals, the energy
function is K

(D−D2)2
+ K′

D2
2

+K ′′, where K, K ′ and K ′′ are positive constants that can be obtained in polynomial time
by the solution to TRI-CRIT-CONT for a single task. Finding a minimum to this function on the interval [dk, dk+1]
can be done in polynomial time:

• the first derivative of this function is 2K
(D−D2)3

− 2K′

D3
2

;

• the function is convex on ]0, D[, indeed the second derivative of this function is 6K
(D−D2)4

+ 6K′

D4
2

, which is
positive on ]0, D[, and therefore on the interval [dk, dk+1], there is exactly one minimum to the energy function
(dk > 0 and dk+1 < D);

• the minimum is obtained either when the first derivative is equal to zero in the interval (i.e., if there is a solution
to the equation 2KD3

2 − 2K ′(D−D2)3 = 0 in [dk, dk+1]), or the minimum is reached at dk (resp. dk+1) if the
first derivative is positive (resp. negative) on the interval.

There are O(n) intervals, and it takes constant time to find the minimum energy Ek within interval [dk, dk+1],
as explained above, by solving one equation. Since we have partitioned the interval of possible deadlines D2 ∈[
max1≤i≤nD

(0)
i , D −D(0)

0

]
, and obtained the minimum energy consumption in each sub-interval, the minimum

energy consumption for the fork graph is mink Ek, and the value of D2 is obtained where the minimum is reached.
Once we know the optimal value of D2, it is easy to reconstruct the solution, following the algorithm for a single task,
in polynomial time.

Note that this algorithm does not provide any closed-form formula for the speeds of the tasks, and that there is an
intricate case analysis due to the reliability constraints.

If we further assume that the fork is made of identical tasks (i.e., wi = w for 0 ≤ i ≤ n), then we can provide
a closed-form formula. However, Proposition 2 illustrates the inherent difficulty of this simple problem, with several
cases to consider depending on the values of the deadline, and also the bounds on speeds (fmin, fmax, frel, etc.). First,
since the tasks all have the same weight wi = w, we get rid of the f (inf)i introduced above, since they are all identical
(see Equation (3)): f (inf)i = f (inf) for 0 ≤ i ≤ n. Therefore we let fmin = max(fmin, f

(inf)) in the proposition
below:

Proposition 2. In the optimal solution of TRI-CRIT-CONT-FORK with at least three identical tasks (and hence n ≥ 2),
there are only three possible scenarios: (i) no task is re-executed; (ii) the n successors are all re-executed but not the
source; (iii) all tasks are re-executed. In each scenario, the source is executed at speed fsrc (once or twice), and the
n successors are executed at the same speed fleaf (once or twice).

For a deadline D < 2w
fmax

, there is no solution. For a deadline D ∈
[

2w
fmax

, w
frel

(1+2n
1
3 )

3
2√

1+n

]
, no task is re-executed

(scenario (i)) and the values of fsrc and fleaf are the following:
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• if 2w
fmax

≤ D ≤ min
(

w
fmax

(1 + n
1
3 ), w( 1

frel
+ 1

fmax
)
)

, then fsrc = fmax and fleaf = w
Dfmax−wfmax;

• if w
fmax

(1 + n
1
3 ) ≤ w( 1

frel
+ 1

fmax
), then

– if w
fmax

(1 + n
1
3 ) < D ≤ w

frel
1+n

1
3

n
1
3

, then fsrc = w
D (1 + n

1
3 ) and fleaf = w

D
1+n

1
3

n
1
3

;

– if w
frel

1+n
1
3

n
1
3

< D ≤ 2w
frel

, then fsrc = w
Dfrel−wfrel and fleaf = frel;

• if w
fmax

(1 + n
1
3 ) > w( 1

frel
+ 1

fmax
), then

– if w( 1
frel

+ 1
fmax

)) < D ≤ 2w
frel

, then fsrc = w
Dfrel−wfrel and fleaf = frel;

• if 2w
frel

< D ≤ w
frel

(1+2n
1
3 )

3
2√

1+n
, then fsrc = fleaf = frel.

Note that for larger values of D, depending on fmin, we can move to scenarios (ii) and (iii) with partial or total
re-execution. The case analysis becomes even more painful, but remains feasible. Intuitively, the property that all
tasks have the same weight is the key to obtaining analytical formulas, because all tasks have the same minimum
speed f (inf) dictated by Equation (3).

Proof. First, we recall preliminary results:
• if a task is executed only once at speed f , then frel ≤ f ≤ fmax;
• if a task is re-executed, then both executions are done at the same speed f , and fmin ≤ f < 1√

2
frel.

By hypothesis, all tasks are identical: the bound on re-execution speed accounts for f (inf) as in Lemma 2, since
we now have fmin = max(fmin, f

(inf)). Therefore, if two tasks of same weight w have the same energy consumption
in the optimal solution, then they are executed the same number of times (once or twice) and at the same speed(s). If
the energy is greater than or equal to wf2rel, then necessarily there is one execution; and if it is lower than wf2rel, then
necessarily there are two executions.

First, we prove that in any solution, the energy consumed for the execution of each successor task, also called
leaf, is the same. If it was not the case, since each task has the same weight, and since each leaf is independent from
the other and only dependent on the source of the fork, if a leaf Ti is consuming more than another leaf Tj , then we
could execute Ti the same number of times and at the same speed than Tj , hence matching the deadline bound and the
reliability constraint, and obtaining a better solution. Thanks to this result, we now assume that all leaves are executed
at the same speed(s), denoted fleaf. The source task may be executed at a different speed, fsrc.

Next, let us show that the energy consumption of the source is always greater than or equal to that of any leaf in
any optimal solution. First, since the source and leaves have the same weight, if we invert the execution speeds of the
source and of the leaves, then the reliability of each task is still matched, and so is the execution time. Moreover, the
energy consumption is equal to the energy consumption of the source plus n times the energy consumption of any leaf
(recall that they all consume the same amount of energy). Hence, if the energy consumption of the source is smaller
than the one of the leaves, permuting those execution speeds would reduce by (n − 1) × ∆ the energy, where ∆ is
the positive difference between the two energy consumptions. Thanks to this result, we can say that the source should
never be executed twice if the leaves are executed only once since it would mean a lower energy consumption for the
source (recall that n ≥ 2).

This result fully characterizes the shape of any optimal solution. There are only three possible scenarios: (i)
no task is re-executed; (ii) the n successors (leaves) are all re-executed but not the source; (iii) all tasks are re-
executed. We study independently the three scenarios, i.e., we aim at determining the values of fsrc and fleaf in each
case. Conditions on the deadline indicate the shape of the solution, and we perform the case analysis for deadlines

D ≤ w
frel

(1+2n
1
3 )

3
2√

1+n
.

Let us assume first that the optimal solution is such that each task is executed only once (scenario (i)). From the
proof of Theorem 1 in [3], we obtain the optimal speeds with no re-execution and without accounting for reliability;
they are given by the following formulas:
• if D < 2w

fmax
, then there is no solution, since the tasks executed at fmax exceed the deadline;

• if 2w
fmax

≤ D ≤ w
fmax

(1 + n
1
3 ), then fsrc = fmax and fleaf = w

Dfmax−wfmax;

• if w
fmax

(1 + n
1
3 ) < D, then fsrc = w

D (1 + n
1
3 ) and fleaf = w

D
1+n

1
3

n
1
3

.
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Since there is a minimum speed frel to match the reliability constraint, there is a condition when fleaf < frel
that makes an amendment on some of the items. Note that in all cases, if D > 2w

frel
, then both the source and the leaves

are executed at speed frel, i.e., fsrc = fleaf = frel (recall that we consider the case with no re-execution).
• If 2w

fmax
≤ D ≤ w

fmax
(1 + n

1
3 ), then we need fleaf = w

Dfmax−wfmax ≥ frel, hence the condition: D ≤

min
(

w
fmax

(1 + n
1
3 ), w( 1

frel
+ 1

fmax
)
)

. In this case, fsrc = fmax and fleaf = w
Dfmax−wfmax.

• If D > min
(

w
fmax

(1 + n
1
3 ), w( 1

frel
+ 1

fmax
)
)

, then the previous results do not hold anymore because of the
constraint on the speed of the leaves. We must further differentiate cases, depending on where the minimum is
reached.

• If w
fmax

(1 + n
1
3 ) ≤ w( 1

frel
+ 1

fmax
), then

– if w
fmax

(1 + n
1
3 ) < D ≤ w

frel
1+n

1
3

n
1
3

, we are in the third case with no reliability, and therefore fsrc =

w
D (1 + n

1
3 ) and fleaf = w

D
1+n

1
3

n
1
3

; the upper bound on D guarantees that fleaf ≥ frel, while the lower
bound on D guarantees that fsrc ≤ fmax;

– if w
frel

1+n
1
3

n
1
3

< D ≤ 2w
frel

, then the speed of the leaves is constrained by frel, and we obtain fleaf =

frel and fsrc = w
Dfrel−wfrel. From the lower bound on D, we obtain fsrc < n

1
3 frel, and since

w
fmax

(1 + n
1
3 ) ≤ w( 1

frel
+ 1

fmax
), we have fsrc < n

1
3 frel ≤ fmax.

• If w
fmax

(1 + n
1
3 ) > w( 1

frel
+ 1

fmax
), then for w( 1

frel
+ 1

fmax
) < D ≤ 2w

frel
, the leaves should be executed at

speed fleaf = frel, and for the source, fsrc = w
Dfrel−wfrel. Note that the lower bound on D is equivalent to

w
Dfrel−wfrel < fmax, and hence the speed of the source is not exceeding fmax.

As stated above, if D > 2w
frel

, both the source and the leaves are executed at speed frel (with no re-execution).
However, if the deadline is larger, re-execution will be used by the optimal solution (i.e., it will become scenario (ii)).
Let us consider therefore the scenario in which leaves are re-executed, to compare the energy consumption with the
first scenario. In this case, we consider an equivalent fork in which leaves are of weight 2w, and a schedule with no
re-execution. Then the optimal solution when there is no maximum speed is:

fsrc =
w

D
(1 + 2n

1
3 ) and fleaf =

w

D

1 + 2n
1
3

n
1
3

.

If fleaf ≥ 1√
2
frel, then there is a better solution to the original problem without re-execution. Indeed, the solution

in which the leaves (of weight w) are executed once at speed f ′leaf = max(fleaf, frel) is such that:
• the reliability constraint is matched (f ′leaf ≥ frel);
• the deadline constraint is matched (f ′leaf ≥ fleaf, and fleaf corresponds to the solution with re-execution, i.e.,
w/fsrc + 2w/fleaf ≤ D);

• the energy consumption is better, as stated by Lemma 2 if f ′leaf = frel.

Therefore, we are in scenario (ii) when fleaf < 1√
2
frel, i.e., D > w

frel

√
2 1+2n

1
3

n
1
3

.
Moreover, depending whether fsrc ≥ frel or fsrc < frel:
• if fsrc ≥ frel, i.e., D ≤ w

frel
(1 + 2n

1
3 ), then the solution is valid;

• if fsrc < frel, then we must in fact have fsrc = frel, and then fleaf = max( 2w
Dfrel−wfrel, fmin).

Note that these values do not take into account the constraints fmax and fmin. Therefore, they are lower bounds on the
energy consumption when the leaves are re-executed.

Finally, we establish a bound D0 on the deadline: for larger values than D0, we cannot guarantee that re-execution
will not be used by the optimal solution, and hence we will have fully characterized the cases for deadlines smaller
than D0. Since we have only computed lower bounds on energy consumption for the scenario (ii), this bound will not
be tight. We know that the minimum energy consumption is a function decreasing with the deadline: if D > D′, then
any solution for D′ is a solution for D. Let us find the minimum deadline D such that the energy when the leaves are
re-executed is smaller than the energy when no task is re-executed.
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As we have seen before, necessarily if D ≤ w
frel

√
2 1+2n

1
3

n
1
3

, then it is better to have no re-execution, i.e., D0 ≥
w
frel

√
2 1+2n

1
3

n
1
3

. Let D = w
frel

√
2 1+2n

1
3

n
1
3

+ ε. We suppose also that D ≤ w
frel

(1 + 2n
1
3 ), i.e., the solution with re-

execution is valid (fsrc ≥ frel).
• The energy consumption when the leaves are re-executed is greater than
E2 = wf2src + 2nwf2leaf = w3

D2 (1 + 2n
1
3 )3.

• With no re-execution, the deadline is large enough so that each task can be executed at speed frel, and therefore
the energy consumption is

E1 = (1 + n)wf2rel = 2 w3

(D−ε)2 (1 + n)

(
1+2n

1
3

n
1
3

)2

.

We now check the condition E1 ≤ E2:

2
w3

(D − ε)2
(1 + n)

(
1 + 2n

1
3

n
1
3

)2

≤ w3

D2
(1 + 2n

1
3 )3

2

(D − ε)2
1 + n

n
2
3

≤ 1 + 2n
1
3

D2

D2

(D − ε)2
≤ n

2
3 + 2n

2 + 2n

D ≤ w

frel

(1 + 2n
1
3 )

3
2

√
1 + n

= D0

Furthermore, note that D0 <
w
frel

(1 + 2n
1
3 ) for n > 2, hence the hypothesis that fsrc ≥ frel is valid for the

values considered. Finally, if the deadline is smaller than the threshold value D0, then we can guarantee that the
optimal solution will not do any re-execution. However, if the deadline is larger, we do not know what happens (but it
can be computed as a function of fmin, fmax and frel).

Beyond the case analysis itself, the result of Proposition 2 is interesting: we observe that in all cases, the source task
is executed faster than the other tasks. This shows that Proposition 1 does not hold for general DAGs, and suggests that
some tasks may be more critical than others. A hierarchical approach, that categorizes tasks with different priorities,
will guide the design of type B heuristics in Section 5.

4 VDD-HOPPING model
Contrarily to the CONTINUOUS model, the VDD-HOPPING model uses discrete speeds. A processor can choose
among a set {f1, ..., fm} of possible speeds. A task can be executed at different speeds.

Let α(i,j) be the time of computation of task Ti at speed fj . The execution time of a task Ti is Exe(Ti) =∑m
j=1 α(i,j), and the energy consumed during the execution is Ei =

∑m
j=1 α(i,j)f

3
j . Finally, for the reliability, the

approximation used in Equation (2) still holds. However, the reliability of a task is now the product of the reliabilities
for each time interval with constant speed, hence Ri =

∏m
j=1(1− λ0 e−dfjα(i,j)). Using a first order approximation,

we obtain

Ri = 1− λ0
m∑
j=1

e−dfjα(i,j) = 1− λ0
m∑
j=1

hjα(i,j), where hj = e−dfj , 1 ≤ j ≤ m. (5)

We first show that only two different speeds are needed for the execution of a task. This result was already known
for the bi-criteria problem makespan/energy, and it is interesting to see that reliability does not alter it:

Proposition 3. With the VDD-HOPPING model, each task is computed using at most two different speeds.

Proof. Suppose that a task is computed with three speeds, f1 ≤ f2 ≤ f3, and let hj = e−dfj , for j = 1, 2, 3. We
show that we can get rid of one of those speeds. The proof will follow by induction. Let αi be the time spent by the
processor at speed fi. We aim at replacing each αi by some α′i so that we have a better solution. The constraints write:
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1. Deadline not exceeded:
α1 + α2 + α3 ≥ α′1 + α′2 + α′3. (6)

2. Same amount of work:
α1f1 + α2f2 + α3f3 = α′1f1 + α′2f2 + α′3f3. (7)

3. Reliability preserved:
α1h1 + α2h2 + α3h3 ≥ α′1h1 + α′2h2 + α′3h3. (8)

4. Less energy spent:
α1f

3
1 + α2f

3
2 + α3f

3
3 > α′1f

3
1 + α′2f

3
2 + α′3f

3
3 . (9)

We show that α′1 = α1 − ε1, α′2 = α2 + ε1 + ε3, and α′3 = α3 − ε3 is a valid solution:
• Equation (6) is satisfied, since α1 + α2 + α3 = α′1 + α′2 + α′3.

• Equation (7) gives ε1 = ε3

(
f3 − f2
f2 − f1

)
.

• Next we replace the α′i and εi in Equation (8) and we obtain h2(f3 − f1) ≤ h1(f3 − f2) + h3(f2 − f1), which
is always true by convexity of the exponential (since hj = e−dfj ).

• Finally, Equation (9) gives us ε1f31 + ε3f
3
3 > (ε3 + ε1)f32 , which is necessarily true since f1 < f2 < f3 and

f → f3 is convex (barycenter).
Since we want all the α′i to be nonnegative, we take

ε1 = min

(
α1, α3

(
f3 − f2
f2 − f1

))
and ε3 = min

(
α3, α1

(
f2 − f1
f3 − f2

))
.

We have either ε1 = α1 or ε3 = α3, which means that α′1 = 0 or α′3 = 0, and we can indeed compute the task
with only two speeds, meeting the constraints and with a smaller energy.

We are now ready to assess the problem complexity:

Theorem 3. The TRI-CRIT-VDD-CHAIN problem is NP-complete.

The proof is similar to that of Theorem 1, assuming that there are only two available speeds, fmin and fmax. Then
we reduce the problem from SUBSET-SUM. Note that here again, the problem turns out to be NP-hard even with one
single processor (linear chain of tasks).

Proof. Consider the associated decision problem: given an execution graph, m possible speeds, a deadline, a relia-
bility, and a bound on the energy consumption, can we find the time each task will spend at each speed such that the
deadline, the reliability and the bound on energy are respected? The problem is clearly in NP: given the time spent
in each speed for each task, computing the execution time, the reliability and the energy consumption can be done in
polynomial time. To establish the completeness, we use a reduction from SUBSET-SUM [11]. Let I1 be an instance
of SUBSET-SUM: given n strictly positive integers a1, . . . , an, and a positive integer X , does there exist a subset I of
{1, . . . , n} such that

∑
i∈I ai = X? Let S =

∑n
i=1 ai.

We build the following instance I2 of our problem. The execution graph is a linear chain with n tasks, where:
• task Ti has weight wi = ai;
• the processor can run at m = 2 different speeds, fmin and fmax;

• λ0 =
fmax

100 maxi=1..n ai
;

• fmin =
√
λ0fmax maxi=1..n ai = fmax

10 ;
• frel = fmax; d = 0.

The bounds on reliability, deadline and energy are:
• R0

i = Ri(frel) = 1− λ0 wi
frel

for 1 ≤ i ≤ n;
• D0 = 2X

fmin
+ S−X

fmax
;

• E0 = 2Xf2min + (S −X)f2max.
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Clearly, the size of I2 is polynomial in the size of I1.

Suppose first that instance I1 has a solution, I . For all i ∈ I , Ti is executed twice at speed fmin. Otherwise, for
all i /∈ I , it is executed at speed fmax one time only. The execution time is 2

∑
i∈I ai
fmin

+
∑
i/∈I ai
fmax

= 2X
fmin

+ S−X
fmax

= D.
The reliability is met for all tasks not in I , since they are executed at speed frel. It is also met for all tasks in I:
∀i ∈ I, 1 − λ20

x2
i

f2
min
≥ 1 − λ0 wi

fmax
. The energy consumption is E =

∑
i∈I 2aif

2
min +

∑
i/∈I aif

2
max = 2Xf2min +

(S −X)f2max = E0. All bounds are respected, and therefore the execution speeds are a solution to I2 (and each task
keeps a constant speed during its whole execution).

Suppose now that I2 has a solution. Since we consider the VDD-HOPPING model, each execution can be run
partly at speed fmin, and partly at speed fmax. However, tasks executed only once are necessarily executed only at
maximum speed to match the reliability constraint.

Let I = {i | Ti is executed twice in the solution}. Let Y =
∑
i∈I ai. We have 2Y = Y1+Y2, where Y1 is the total

weight of each execution and re-execution (2Y ) of tasks in I that are executed at speed fmin, and Y2 the total weight
that is executed at speed fmax. We show that necessarily Y1 = 2X = 2Y , i.e., no part of any task in I is executed at
speed fmax.

First let us show that 2X ≤ 2Y . The energy consumption of the solution of I2 is E = Y1f
2
min + Y2f

2
max + (S −

Y )f2max = Y1f
2
min + (S−Y1 +Y )f2max. By differentiating this function (with regards to Y1, E′ = f2min− f2max < 0),

we can see that the minimum is reached for Y1 = 2Y (since Y1 ∈ [0, 2Y ]). Then, for Y1 = 2Y , since the solution is
such that E ≤ E0, we have E − E0 = (Y −X)(2f2min − f2max) ≤ 0, and therefore X ≤ Y .

Next let us show that Y1 ≤ 2X . Suppose by contradiction that Y1 > 2X , then the execution time of the solution
of I2 is D = Y1

fmin
+ Y2

fmax
+ S−Y

fmax
= Y1

fmin
+ S−Y1+Y

fmax
. By differentiating this function (with regards to Y1), we can see

it is strictly increasing when Y1 goes from 2X to 2Y . However, when Y1 = 2X + ε, D −D0 = ε
fmin

+ Y−X+ε
fmax

> 0
(indeed, each value of the sum is strictly positive). Hence, Y1 ≤ 2X .

Finally, let us show that Y1 = 2X = 2Y . Since I2 is a solution, we know that E ≤ E0, and therefore 2X − Y1 ≥
(Y + X − Y1)

f2
max

f2
min
≥ (Y + X − Y1) (the last equality is only met when Y + X − Y1 = 0). Hence 2X ≥ X + Y ,

which is only possible if 2X = X + Y . This gives us the final result: Y1 = 2X = 2Y (all inequalities are tight).
We conclude that

∑
i∈I ai = X , and therefore I1 has a solution. This concludes the proof.

In the following, we propose some polynomial time heuristics to tackle the general tri-criteria problem. While
these heuristics are designed for the CONTINUOUS model, they can be easily adapted to the VDD-HOPPING model
thanks to Proposition 3.

5 Heuristics for TRI-CRIT-CONT

In this section, building upon the theoretical results of Section 3, we propose some polynomial time heuristics for the
TRI-CRIT-CONT problem, which was shown NP-hard (see Theorem 1). Recall that the mapping of the tasks onto
the processors is given, and we aim at reducing the energy consumption by exploiting re-execution and speed scaling,
while meeting the deadline bound and all reliability constraints.

The first idea is inspired by Proposition 1: first we search for the optimal solution of the problem instance without
re-execution, a phase that we call deceleration: we slow down some tasks if it can save energy without violating one
of the constraints. Then we refine the schedule and choose the tasks that we want to re-execute, according to some
criteria. We call type A heuristics such heuristics that obey this general scheme: first deceleration then re-execution.
Type A heuristics are expected to be efficient on a DAG with a low degree of parallelism (optimal for a chain).

However, Proposition 2 (with fork graphs) shows that it might be better to re-execute highly parallel tasks before
decelerating. Therefore we introduce type B heuristics, which first choose the set of tasks to be re-executed, and
then try to slow down the tasks that could not be re-executed. We need to find good criteria to select which tasks to
re-execute, so that type B heuristics prove efficient for DAGs with a high degree of parallelism. In summary, type B
heuristics obey the opposite scheme: first re-execution then deceleration.

For both heuristic types, the approach for each phase can be sketched as follows. Initially, each task is executed
once at speed fmax. Then, let di be the finish time of task Ti in the current configuration:
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- Deceleration: We select a set of tasks that we execute at speed fdec = max(frel,
maxi=1..n di

D fmax), which is the
slowest possible speed meeting both the reliability and deadline constraints.

- Re-execution: We greedily select tasks for re-execution. The selection criterion is either by decreasing weights wi,
or by decreasing super-weights Wi. The super-weight of a task Ti is defined as the sum of the weights of the
tasks (including Ti) whose execution interval is included into Ti’s execution interval. The rationale is that the
super-weight of a task that we slow down is an estimation of the total amount of work that can be slowed down
together with that task, hence of the energy potentially saved: this corresponds to the total slack that can be
reclaimed.

We introduce further notations before listing the heuristics:
- SUS (Slack-Usage-Sort) is a function that sorts tasks by decreasing super-weights.

- ReExec is a function that tries to re-execute the current task Ti, at speed fre-ex = 2c
1+cfrel, where c = 4

√
2
7 cos 1

3 (π − tan−1 1√
7
)−

1 (≈ 0.2838) (note that fre-ex is the optimal speed in the proof of Theorem 1). If it succeeds, it also re-executes
at speed fre-ex all the tasks that are taken into account to compute the super-weight of Ti. Otherwise, it does
nothing.

- ReExec&SlowDown performs the same re-executions as ReExec when it succeeds. But if the re-execution of the
current task Ti is not possible, it slows down Ti as much as possible and does the same for all the tasks that are
taken into account to compute the super-weight of Ti.

We now detail the heuristics:
Hfmax. In this heuristic, tasks are simply executed once at maximum speed.
Hno-reex. In this heuristic, we do not allow any re-execution, and we simply consider the possible deceleration

of the tasks. We set a uniform speed for all tasks, equal to fdec, so that both the reliability and deadline constraints
are matched. Note that heuristics Hfmax and Hno-reex are identical except for a constant ratio on the speeds of each

task, fmax

fdec
. Therefore, the energy ratio EHfmax

EHno-reex
is always equal to

(
fmax

fdec

)2
(for instance, if fmax = 1 and fdec = 2/3,

then the energy ratio is equal to 2.25).
A.Greedy. This is a type A heuristic, where we first set the speed of each task to fdec (deceleration). Let Greedy-

List be the list of all the tasks sorted according to decreasing weights wi. Each task Ti in Greedy-List is re-executed at
speed fre-ex whenever possible. Finally, if there remains some slack at the end of the processing, we slow down both
executions of each re-executed task as much as possible.

A.SUS-Crit. This is a type A heuristic, where we first set the speed of each task to fdec. Let List-SW be the list of
all tasks that belong to a critical path, sorted according to SUS. We apply ReExec to List-SW (re-execution). Finally
we reclaim slack for re-executed tasks, similarly to the final step of A.Greedy.

B.Greedy. This is a type B heuristic. We use Greedy-List as in heuristic A.Greedy. We try to re-execute each
task Ti of Greedy-List when possible. Then, we slow down both executions of each re-executed task Ti of Greedy-List
as much as possible. Finally, we slow down the speed of each task of Greedy-List that turn out not re-executed, as
much as possible.

B.SUS-Crit. This is a type B heuristic. We use List-SW as in heuristic A.SUS-Crit. We apply ReExec to List-SW
(re-execution). Then we run Heuristic B.Greedy.

B.SUS-Crit-Slow. This is a type B heuristic. We use List-SW, and we apply ReExec&SlowDown (re-execution).
Then we use Greedy-List: for each task Ti of Greedy-List, if there is enough time, we execute twice Ti at speed fre-ex
(re-execution); otherwise, we execute Ti only once, at the slowest admissible speed.

Best. This is simply the minimum value over the seven previous heuristics, for reference.
The complexity of all these heuristics is bounded by O(n4 log n), where n is the number of tasks. The most

time-consuming operation is the computation of List-SW (the list of all elements belonging to a critical path, sorted
according to SUS).

6 Simulations
In this section, we report extensive simulations to assess the performance of the heuristics presented in Section 5. The
heuristics were coded in OCaml. The source code is publicly available at [2] (together with additional results that were
omitted due to lack of space).
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6.1 Simulation settings
In order to evaluate the heuristics, we have generated DAGs using the random DAG generation library GGEN [9].
Since GGEN does not assign a weight to the tasks of the DAGs, we use a function that gives a random float value in
the interval [0, 10]. Each simulation uses a DAG with 100 nodes and 300 edges. We observe similar patterns for other
numbers of edges, see [2] for further information.

We apply a critical-path list scheduling algorithm to map the DAG onto the p processors: we assign the most urgent
ready task (with largest bottom-level) to the first available processor. The bottom-level is defined as bl(Ti) = wi if
Ti has no successor task, and bl(Ti) = wi + max(Ti,Tj)∈E bl(Tj) otherwise.

We choose a reliability constant λ0 = 10−5 [1] (we obtain identical results with other values, see below). Each
reported result is the average on ten different DAGs with the same number of nodes and edges, and the energy con-
sumption is normalized with the energy consumption returned by the Hno-reex heuristic. If the value is lower than 1,
it means that we have been able to save energy thanks to re-execution.

We analyze the influence of three different parameters: the tightness of the deadline D, the number of processors
p, and the reliability speed frel. In fact, the absolute deadline D is irrelevant, and we rather consider the deadline
ratio DEADLINERATIO = D

Dmin
, where Dmin is the execution time when executing each task once and at maximum

speed fmax (heuristic Hfmax). Intuitively, when the deadline ratio is close to 1, there is almost no flexibility and it is
difficult to re-execute tasks, while when the deadline ratio is larger we expect to be able to slow down and re-execute
many tasks, thereby saving much more energy.

6.2 Simulation results
First note that with a single processor, heuristics A.SUS-Crit and A.Greedy are identical, and heuristics B.SUS-Crit
and B.Greedy are identical (by definition, the only critical path is the whole set of tasks).
Deadline ratio. In this set of simulations, we let p ∈ {1, 10, 50, 70} and frel = 2

3fmax. Figure 1 reports results for
p = 1 and p = 50. When p = 1, we see that the results are identical for all heuristics of type A, and identical for all
heuristics of type B. As expected from Proposition 1, type A heuristics are better (see Figure 1a). With more processors
(10, 50, 70), the results have the same general shape: see Figure 1b with 50 processors. When DEADLINERATIO is
small, type B heuristics are better. When DEADLINERATIO increases up to 1.5, type A heuristics are closer to type
B ones. Finally, when DEADLINERATIO gets larger than 5, all heuristics converge towards the same result, where all
tasks are re-executed.
Number of processors. In this set of simulations, we let DEADLINERATIO ∈ {1.2, 1.6, 2, 2.4} and frel = 2

3fmax.
Figure 2 confirms that type A heuristics are particularly efficient when the number of processors is small, whereas
type B heuristics are at their best when the number of processors is large. Figure 2a confirms the superiority of type B
heuristics for tight deadlines, as was observed in Figure 1b.
Reliability frel. In this set of simulations, we let p ∈ {1, 10, 50, 70} and DEADLINERATIO ∈ {1, 1.5, 3}. In Figure 3,
there are four different curves: the line at 1 corresponds to Hno-reex and Hfmax, then come the heuristics of type A
(that all obtain exactly the same results), then B.SUS-Crit and B.Greedy that also obtain the same results, and finally
the best heuristic is B.SUS-Crit-Slow. Note that B.SUS-Crit and B.Greedy return the same results because they have
the same behavior when DEADLINERATIO = 1: there is no liberty of action on the critical paths. However B.SUS-
Crit-Slow gives better results because of the way it decelerates the important tasks that cannot be re-executed. When
DEADLINERATIO is really tight (equal to 1), decreasing the value of frel from 1 to 0.9 makes a real difference with
type B heuristics. We observe an energy gain of 10% when the number of processors is small (10 in Figure 3a) and of
20% with more processors (50 in Figure 3b).
Reliability constant λ0. In Figure 4, we let λ0 vary from 10−5 to 10−6, and observe very similar results throughout
this range of values. Note that we did not plot Hfmax in this figure to ease the readability.
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Figure 1: Comparative study when the deadline ratio varies.
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Figure 2: Comparative study when the number of processors p varies.
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Figure 3: Comparative study when the reliability frel varies.
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Figure 4: Comparative study when λ0 varies.

6.3 Understanding the results
A.SUS-Crit and A.Greedy, and B.SUS-Crit and B.Greedy, often obtain similar results, which might lead us to un-
derestimate the importance of critical path tasks. However, the difference between B.SUS-Crit-Slow and B.SUS-Crit
shows otherwise. Tasks that belong to a critical path must be dealt with first.

A striking result is the impact of both the number of processors and the deadline ratio on the effectiveness of the
heuristics. Heuristics of type A, as suggested by Proposition 1, have much better results when there is a small number
of processors. When the number of processors increases, there is a difference between small and large deadline ratio.
In particular, when the deadline ratio is small, heuristics of type B have better results. Indeed, heuristics of type A
try to accommodate as many tasks as possible, and as a consequence, no task can be re-executed. On the contrary,
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heuristics of type B try to favor some tasks that are considered as important. This is highly profitable when the deadline
is tight.

Note that all these heuristics take in average less than one ms to execute on one instance, which is very reasonable.
The heuristics that compute the critical path (*.SUS-Crit-*) are the longest, and may take up to two seconds when there
are few processors. Indeed, the less processors, the more edges there are in the dependence graph once the task graph
is mapped, and hence it increases the complexity of finding the critical path. However, with more than ten processors,
the running time never exceeds two ms.

Altogether we have identified two very efficient and complementary heuristics, A.SUS-Crit and B.SUS-Crit-Slow.
Taking the best result out of those two heuristics always gives the best result over all simulations.

7 Conclusion
In this paper, we have accounted for the energy cost associated to task re-execution in a more realistic and accurate way
than the best-case model used in [24]. Coupling this energy model with the classical reliability model used in [21],
we have been able to formulate a tri-criteria optimization problem: how to minimize the energy consumed given a
deadline bound and a reliability constraint? The “antagonistic“ relation between speed and reliability renders this
tri-criteria problem much more challenging than the standard bi-criteria (makespan, energy) version. We have stated
two variants of the problem, for processor speeds obeying either the CONTINUOUS or the VDD-HOPPING model. We
have assessed the intractability of this tri-criteria problem, even in the case of a single processor. In addition, we have
provided several complexity results for particular instances.

We have designed and evaluated some polynomial-time heuristics for the TRI-CRIT-CONT problem that are based
on the failure probability, the task weights, and the processor speeds. These heuristics aim at minimizing the energy
consumption while enforcing reliability and deadline constraints. They rely on dynamic voltage and frequency scaling
(DVFS) to decrease the energy consumption. But because DVFS lowers the reliability of the system, the heuristics
use re-execution to compensate for the loss. After running several heuristics on a wide class of problem instances,
we have identified two heuristics that are complementary, and that together are able to produce good results on most
instances. The good news is that these results bring the first efficient practical solutions to the tri-criteria optimization
problem, despite its theoretically challenging nature. In addition, while the heuristics do not modify the mapping of
the application, it is possible to couple them with a list scheduling algorithm, as was done in the simulations, in order
to solve the more general problem in which the mapping is not already given.

Future work involves several promising directions. On the theoretical side, it would be very interesting to prove a
competitive ratio for the heuristic that takes the best out of A.SUS-Crit and B.SUS-Crit-Slow. However, this is quite
a challenging work for arbitrary DAGs, and one may try to design approximation algorithms only for special graph
structures, e.g., series-parallel graphs. Still, looking back at the complicated case analysis needed for an elementary
fork-graph with identical weights (Proposition 2), we cannot underestimate the difficulty of this problem.

While we have designed heuristics for the TRI-CRIT-CONT model in this paper, we could easily adapt them to
the TRI-CRIT-VDD model: for a solution given by a heuristic for TRI-CRIT-CONT, if a task should be executed at
the continuous speed f , then we would execute it at the two closest discrete speeds that bound f , while matching
the execution time and reliability for this task. There remains to quantify the performance loss incurred by the latter
constraints.

Finally, we point out that energy reduction and reliability will be even more important objectives with the advent
of massively parallel platforms, made of a large number of clusters of multi-cores. More efficient solutions to the
tri-criteria optimization problem (makespan, energy, reliability) could be achieved through combining replication with
re-execution. A promising (and ambitious) research direction would be to search for the best trade-offs that can
be achieved between these techniques that both increase reliability, but whose impact on execution time and energy
consumption is very different. We believe that the comprehensive set of theoretical results and simulations given in
this paper will provide solid foundations for further studies, and constitute a partial yet important first step for solving
the problem at very large scale.
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