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Abstract—As our expectations of what computer systems can
do and our ability to capture data improves, the desire to
perform ever more computationally intensive tasks increases.
Often these tasks, comprising vast numbers of repeated com-
putations, are highly interdependent on each other – a closely
coupled problem. The process of Landscape-Evolution Modelling
is an example of such a problem. In order to produce realistic
models it is necessary to process landscapes containing millions
of data points over time periods extending up to millions of
years. This leads to non-tractable execution times, often in the
order of years. Researchers therefore seek multiple orders of
magnitude reduction in the execution time of these models. The
massively parallel programming environment offered through
General Purpose Graphical Processing Units offers the potential
for multiple orders of magnitude speedup in code execution times.
In this paper we demonstrate how the time dominant parts of a
Landscape-Evolution Model can be recoded for a massively par-
allel architecture providing two orders of magnitude reduction
in execution time.

Index Terms—Parallel; LEM; GPU; CUDA;

I. INTRODUCTION

Our ability to capture information about the world we
live in and process this information has been growing at a
phenomenal rate in recent years [1]. This has fuelled the
desire to perform more realistic modelling of the world – far
outstripping the ability for a single computer to keep pace.
One such problem is that of modelling long-term landscape-
evolution. Realistic models require high-resolution landscape
representation (millions of sample points) and simulation of
processes acting upon the landscape over thousands to millions
of years in order to simulate the key landscape shaping pro-
cesses such as erosion and deposition. A Landscape-Evolution
Model (LEM), can be decomposed, for a single time step
(normally an annual time interval), into the following stages:

• Determine the levels of precipitation on an area of land
• Calculate how much will contribute to runoff (i.e. ac-

counting for losses due to interception, evapotranspiration
and infiltration)

• Calculate which directions the runoff will flow across the
land

1Work carried out whilst studying at Newcastle University

• Accumulate the total runoff across each part of the
landscape

• Compute the erosion (via water or mass-movement pro-
cesses) and where this material will be deposited.

This process takes minutes to compute for a single time step
and small area (∼ 2 million cells), but becomes non-tractable
when modelling over large temporal / spatial scales. To run the
sequential model considered here for 1 million years over a
data set of 2 million cells (far smaller than desired) is currently
estimated to take around 390 days to complete.

Although a LEM can be readily formulated at a conceptual
level, traditionally its implementation has required simplifica-
tion of existing process knowledge in order to achieve man-
ageable execution times. Reduced complexity models, such as
CHILD [2], CEASAR [3] or LAPSUS [4] all make significant,
but different, model process or scale compromises, to achieve
run times of a few days or less. Inevitably these compromises
lead to unrealistic model behaviour, which often requires
parametization of physically meaningless tuning variables in
order to maintain numerical stability. Clearly the ideal solution
is to minimise the compromises by maximising computational
efficiency. Nonetheless, modelling landscape-evolution at the
scale of, for example, an entire river basin and over important
landscape forming time-scale (i.e. millions of years), presents
a significant computational challenge.

Past research into reducing the computational cost has
focused on code optimisation, data input optimisation and
alternative sequential algorithms (e.g. advances in algorithms
for water flow routing [5]). However, these improvements fall
short of the requirements needed for tractable run-times for
the next generation of LEMs.

Parallel computing is one approach with the potential to
reduce execution times by orders of magnitude. To parallelize
the model between time steps would be difficult as flow-
directions in one time step can be altered by erosion / deposi-
tion in the previous time step – leading to significant changes
in the flow patterns which in turn lead to significant changes
in erosion / deposition – though parallelization within each
time step is comparatively easy. Conventional parallel com-
puting facilities exploit coarse grained parallel programming
techniques in which large sections of the original problem can



be computed independently of each other reducing execution
time by orders of magnitude. LEMs, however, exhibit a more
close coupling.

Over the past decade the graphics card industry has been
developing massively parallel processing cards for the gaming
industry. Primarily developed for rendering 3D scenes onto
a display, these cards have evolved to become arrays of
hundreds of computational units. The Fermi architecture cards
from NVIDIA, feature up to 512 General Purpose Graphical
Processing Units (GPGPUs) – offering levels of parallelism
previously unseen on a single card, or computer.

Researchers are now exploiting these cards to solve large
scale, closely coupled, problems. Here we show how we
have exploited this technology to achieve over two orders
of magnitude execution-time reduction for the two most
time-consuming elements, those of flow-direction and flow-
accumulation, within an existing LEM.

The rest of this paper is structured as follows. In Sec-
tion II we describe and analyse through profiling, an exist-
ing sequential LEM and identify the flow-routing and flow-
accumulation methods as the major bottle-necks in computa-
tion which restricts the scope of grid-based LEMs. Section III
discusses previous attempts to address the flow-routing and
accumulation problems. Section IV discusses massively paral-
lel processing including a description of the General Purpose
Graphical Processing units and the Compute Unified Device
language. This is followed, in Section V by a description of
our parallel approaches to reducing the execution times for the
flow direction and flow accumulation methods. Performance
results for our work are presented in Section VI. Finally we
provide conclusions in Section VII.

II. DESCRIPTION AND ANALYSIS OF AN EXISTING
SEQUENTIAL LEM

We aim to reduce the execution time of the LEM soft-
ware developed by Wainwright [6] – referred to here as
CybErosion. CybErosion models the evolution of a landscape
over a period of time in response to erosion and sediment
depositional processes (i.e. the sediment flux). Both fluvial
and slope-system dynamics are modelled as a response to
changing model inputs (temperature and precipitation) and as
a consequence of system feedbacks. The model inputs vary
through time and as the landscape is reshaped, the boundary
conditions for each model run also vary. Thus the LEM is
run iteratively with each iteration representing a defined time
interval appropriately matched to the input data. Due to the
long periods of time over which the simulations will run these
are normally on the order of a year, though this need not be
the case and ideally would be much less.

A. Processing Pipeline for CybErosion

CybErosion consists of five main sequentially executed
stages (Figure 1), described further below:

1) Data input – read digital landscape representation and
climate parameters

Flow Direction

Flow 
Accumulation

Topographic 
and Climate 
modelling

Erosion / 
Deposition 

computation

Data input

Fig. 1. Processes stages in performing a LEM

2) Topographic and Climate modelling – compute the
volume of water which falls on the landscape

3) Flow-direction calculation – calculate water-flow-
directions across the landscape

4) Flow-accumulation – calculate flow-accumulation
across the landscape

5) Sediment erosion, transport and deposition compu-
tation – model erosion, sediment transport and deposi-
tional processes and recalculate the modified landscape.

Data Input: The availability of grid-based Digital Elevation
Models (DEMs) has made regular two dimensional grids
of cells the preferred landscape representation for LEMs.
Alternative approaches discretize the landscape using a more
irregular representation (CASCADE [7]), such as triangulated
irregular networks (CHILD [2]). CybErosion adopts the more
common format representing the landscape as a regular two
dimensional grid of cells, each containing a single value
representing the height of the land in that cell – we continue
to use this approach. Ideally cells should be as small as
possible to capture surface detail. However, the infeasibility of
capturing accurate data at such resolution and the infeasibility
to computationally model such landscapes has led to the use
of large cells - on the order of 100 × 100 m for small areas
ranging up beyond 1× 1 km for larger areas.

Figure 2 illustrates the DEMs used in this paper (derived
from OS Land-Form PROFILE DTM (2010) data[8]): region
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Fig. 2. A Digital Elevation Model for the Upper Thames and adjacent watersheds (scale in meters)

A represents the 46 million cell DEM at 10 m by 10 m with
a height range of 9 to 331 m; and region B the 25 million
cell DEM at 10 m by 10 m with height range of 12 to 331
m. Down-sampling of the 25 million cell DEM was used to
produce the 11 million cell DEM at 15 m by 15 m; the 6
million cell DEM at 20 m by 20 m; and the 1 million cell
DEM at 50 m by 50 m. For brevity the heights are shown
as integers, the real values are double precision floating point
values. It should be noted that past experiments have indicated
that using single precision floating point numbers tends to lead
to significant rounding errors which quickly propagate through
the DEM leading to unnatural artefacts.

Model data such as the initial height of cells within the
DEM, temperatures and the rainfall patterns are read at this
stage. Originally CybErosion used flat ASCII files to repre-
sent this data. Alternatively the DEM can be read from a
compressed TIFF file using the GDAL [9] library. This has
advantages in both storage space requirements and time to
read (store) data. We have added GDAL support to both the
original CybErosion model and our parallel implementation.

Topographic and Climate modelling: Initially each cell is
assigned values associated with its surface properties including
sediment calibre, soil water content and biomass, with soil
erodibility based on the k factor [10]. These constrain some of

the physical processes modelled in Sediment erosion, transport
and deposition computation, but also evolve through time
in response to changing model inputs and as a dynamical
feedback response to the geomorphological processes acting
upon the cell. Hence, these properties are updated every
time step. As the focus for this paper is parallel algorithm
development the LEM temperature and precipitation inputs
are considered constant at 15◦C and 327 mm respectively and
applied uniformly across the DEM.

Flow-direction calculation: Here the direction that water
will flow from a cell is computed, known as the cell aspect.
Two common approaches are single-flow-direction (SFD) (re-
ferred to as D8) and multi-flow-direction (MFD) [11], [12],
in both cases cells consider their eight neighbours when
determining flow-direction. CybErosion uses SFD, where the
entire flow goes to the neighbour with the steepest downwards
slope (computed as fall / distance) – ‘steepest descent’ method
– where distance is the scalar distance between the centres of
two cells. For the cardinal directions this is the DEM ‘cell
size’ whilest other directions are

√
2×‘cell size’. For MFD a

proportion of the flow will go to each lower neighbour relative
to the slope differences between all lower neighbours. Powers
of 2 are used to indicate aspects, allowing for storage of MFD,
starting with East as 20 incrementing clockwise (Figure 3).
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Fig. 3. Flow Numbering

Cells with no lower neighbours are part of a sink or plateau
and are assigned an aspect of 0.

Sinks are areas in the DEM which entering water cannot
leave (Figure 4(a)), plateaux are areas of equivalent height
cells where water can leave (Figure 4(b)). Sinks and plateaux
can be natural or artefacts of data acquisition and/or pro-
cessing. Completely flat plateaux do not occur naturally, but
occur in DEMs as a result of measurement precision and
height averaging at comparatively low spatial resolution. To
route water from a plateau we can assign arbitrary aspects
allowing water flow to cells at the edge of the plateau with
lower elevations. Sinks can be removed by ‘flooding’ an area
with water until it becomes a plateaux, but as sinks may
interact with each other (Figure 4(c)) this is a non-trivial task.
CybErosion, originally designed for synthetic DEMs, does not
support sink filling, however, we address this problem in our
parallel version.

An example of SFD is given in Figure 5. Figure 5(a)
indicates the height elevations for a 5 by 5 grid. The flow-
direction for the highlighted cell (6) is computed by identifying
the neighbour with steepest decent – the 4 immediately to the
left (decent = (6 − 4)/‘cell size’). Figure 5(b) indicates the
flow-directions for all the cells in this grid. Sequential code
for solving the flow-direction problem, both SFD and MFD,
requires O(n) time to compute, where n is the number of cells
within the DEM.

Flow-accumulation: We need to compute the amount of
water flowing across each cell. In-coming precipitation is
weighted for each cell using a run-off coefficient calculated
from the surface properties. At the watersheds the weighted
flow is the product of the water which lands on those cells
and its weighting. Further down the valley this will be the
cumulative sum of all grid cells for which their flow-direction
path takes them through the given cell. Figure 6, continues
our example, indicating how much water would flow through
each cell in our grid assuming unit runoff (i.e. runoff =
precipitation). The yellow cells feed into the orange cell giving

(a) Sink (b) Plateau (c) Interacting sinks

Fig. 4. 2D View
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Fig. 5. Flow-direction modelling
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Fig. 6. Flow-accumulation

a total flow across the orange cell of 8.
Sediment erosion, transport and deposition computa-

tion: The final phase uses well-established equations ([6]) to
determine the amount of erosion (including diffuse hillslope
and concentrated channel erosion) or deposition at a location
based on the flow across the cell. Although we anticipate that
this stage of the simulation would show significant improve-
ment through parallelisation this is yet to be implemented.

B. CybErosion Runtimes and Profiling

Wainwright [6] reports run times of 72 hours for an 800,000-
year simulation on a Pentium 4 processor using a synthetic
DEM (smoothed numerical surface) comprising 51 by 100
cells of size 100 × 100 m using CybErosion. Optimisation
of this code, referred to as CybErosion-slim, has reduced run
time to ∼4.5 hours on an Intel 980X processor. However, this
grid size is wholly inadequate for modelling real catchments
at high spatial resolution.

Figure 7 illustrates the number of seconds spent in each ma-
jor function within CybErosion-slim for various input DEMs.
The DEMs were either synthetically generated, containing no
sinks or plateaux, or by resampling the topographical map
of the Upper Thames catchment area (see Figure 2) at pro-
gressively lower resolution. The Upper Thames DEMs contain
plateaux but sinks were removed as CybErosion(-slim) does
not process them. As the size of the synthetic DEM becomes
larger, the flow-accumulation part dominates execution time.
However, when using the real data from the Upper Thames
the plateau routing code execution time becomes significant.
CybErosion(-slim) was unable to correctly process the flow-
accumulation for the Thames DEM, hence the almost zero
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Fig. 7. Performance analysis of CybErosion

execution time in these cases, the results were included here
only to illustrate that a real world DEM significantly increases
the flow-direction computation of the model. We focused our
attention on massively parallel solutions to both of these
processes.

III. ADDRESSING THE FLOW ROUTING AND
ACCUMULATION PROBLEM ON LARGE GRIDS

Sequential algorithms for deriving flow routing and accu-
mulation from DEMs have been available for over 20 years
[13], [11] and strategies to address sink and plateau problems
have been widely reported during this interval [14], [15], [16],
[17]. Alternate routing methods, based upon MFD, have been
proposed such as DEMON [18] and D∞ [19]. The relative
merits of these methods were discussed by Erskine [20] and
although it is acknowledged that MFD produces more realistic
drainage patterns in certain areas, the computational overhead
introduced, especially for large DEMs, has seen it largely
ignored in favour of the more efficient SFD. The influence of
routing choice on LEM outcome is, however, unequivocal [21].

Flow routing and flow-accumulation are common methods
required for hydrological modelling and form a regular ad-
dition to the toolboxes of modern Geographical Information
Systems such as ArcGIS and GRASS. Considerable effort has
been undertaken to maximise these methods when applied to
large grids. Perhaps the most influential work was undertaken
by a team from Duke University, which concentrated on
developing an efficient I/O system allowing large grids to be
efficiently processed on machines with comparatively small
amounts of RAM [5], [22]. This work powers one of the
most optimised tools for this type of hydrological analysis,
Terraflow [23], most commonly used through the r.terraflow
tool implemented within GRASS [24]. However, this have
come at the cost of coding complexity and thus far none of
the available LEMs utilizes these methods.

Parallel processing has not gone unnoticed by the hydro-
logical community. Recent papers have suggested appropriate
strategies for parallel implementation [25], [26], [27]. Ortega

and Reuda [28] described a flow-accumulation algorithm writ-
ten to utilize CUDA on NVIDIA GPGPUs, reporting up to
8 times speedup for flow-accumulation in comparison to a
sequential version of the same algorithm on grids up to 16
million cells.

IV. MASSIVELY PARALLEL PROGRAMMING

The General Purpose Graphical Processing Unit (GPGPU)
is a massively parallel programming architecture based around
the Single Programme Multiple Data (SIMD) paradigm. Each
thread within a kernel executes the same program and has
access to a (relatively) small data cache. Execution is organised
into ‘Warps’, within which up to 32 threads of execution
perform the same instruction at the same time with code
divergence causing warps to split. Thousands of concurrent
threads are hardware managed allowing for massively parallel
execution. This does, however, remove the ability to interact
between threads, as different threads may be scheduled at
different times. Synchronisation is only possible between
threads in the same block – a collection of up to 1024 threads
of execution.

In comparison to a conventional CPU, a GPGPU is a much
simpler device consisting of a computation and a floating point
unit (Figure 8). Although early GPUs had inaccurate floating
point units, later generations (since Nvidia G80, 2006) support
the IEEE floating point standard, increasing their applicability
to scientific computations. GPGPUs also provide significantly
higher memory bandwidth in comparison to CPU memory
bandwidth (∼ 9× for the GTX580 GPGPU verses i7-3930K
CPU).

The Compute Unified Device Architecture (CUDA) [29],
[30] provides extensions to C / C++ for developing kernels,
along with libraries for binding GPGPU and CPU code. As
the GPGPU lacks support for global barrier synchronization
and inter-process communication, kernels tend to be short to
allow fallback to the main CPU for exchange of data.

V. PARALLEL LANDSCAPE-EVOLUTION MODELLING

Our current parallel implementation has focused on the two
most time consuming parts of the existing LEM. Those of
flow-direction assignment and flow-accumulation. Figure 9
illustrates the stages of the CyberErosion model that we have

Control

Cache

DRAM DRAM
CPU GPGPU

ALUALU

ALUALU

Fig. 8. Comparison of CPU and NVIDIA GPGPU Architecture
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Fig. 9. Processes stages in performing the parallel LEM

parallelised (the highlighted stages). The second line of Figure
9 illustrates the extra sub-stages we have added into the flow-
direction code in order to process sinks. We describe each of
these processes in more detail below.

A. Flow-Direction

Flow-direction (c.f. Section II) consists of four sub-stages:
aspect assignment, plateau detection, (where necessary) sink
filling and plateau routing. Plateau detection and plateau rout-
ing are almost the same. To prevent plateaux being processed
as sinks they must be first identified. However, once filled,
sinks become plateaux. We therefore run a simplified version
of the plateau-routing algorithm as the plateau detection algo-
rithm and consider it no further here.

1) Aspect Assignment: The aspect of a cell can be deter-
mined independently of all other cells for both SFD (D8) or
MFD. Although the number of active threads on a GPGPU is
much smaller than the size of a DEM, the number of virtual
threads is far greater, allowing us to allocate one virtual thread
per cell with the GPGPU taking responsibility for optimally
scheduling these virtual threads. Algorithm 1 presents pseudo
code for the kernel code to calculate SFD. Where c and r
represent the column and row within the DEM, aspect[c, r] is
the cell aspect, slope is the downslope of the cell, cellSize

Algorithm 1 Calculate Aspect D8 (c,r)
aspect[c, r]← 0
maxDiff ← 0
for i = 0→ 7 do
r′ ← r + δr[i]
c′ ← c+ δc[i]
d← (i%2 = 1) ? 1 :

√
2

if (z[c, r]− z[c′, r′])/(d ∗ cellSize) > maxDiff then
slope[c, r]← (z[c, r]− z[c′, r′])/(d ∗ cellSize)
aspect[c, r]← 2i

maxDiff ← slope[c, r]
end if

end for

is the size of a cell and δc[i] & δr[i] represent the change in
c & r when moving in direction 2i. Aspect assignment can
be performed in O(n/p) time where n is the number of cells
within the DEM and p is the number of processing units. MFD
is similar to Algorithm 1 with addition of proportioning slope
and multiple aspects.

2) Plateau Routing: We adapt the sequential algorithms
proposed by Arge [22]. A parallel breadth-first search algo-
rithm [31] is used to perform plateau routing. The kernel in
Algorithm 2 is repeatedly called until no cell updates its value
for shortestPath. Before execution, shortestPath is set to
0 for cells with a non-zero aspect,∞ otherwise. The height to
which cell [c, r] will flow when it leaves the plateau is stored
in lowHeight. Figure 10 illustrates a routing towards two exit
points (grey cells) for a plateau. Alternative routing can emerge
from this approach – the flow pattern in Figures 11(a) and
11(b) are each of the same length. Sequential implementations
of breadth first search would normally only show one of these
solutions, however, due to the non-deterministic ordering of
kernel invocations both solutions are observed. Either solution
is valid as there is no way to determine which is more
appropriate from a hydrological point of view, we are happy to
accept this result. Each kernel invocation for plateau routing
will require O(n/p) time to perform. However, the number
of calls to this kernel depends on the longest path within a
plateau.

Algorithm 2 Calculate Plateau Routing (c,r)
for i = 0→ 7 do
d← (i%2 = 1) ? 1 :

√
2

if shortestPath[c + δc[i], r + δr[i]] + d <
shortestPath[c, r] then
aspect[c, r]← 2i

shortestPath[c, r] ← shortestPath[c + δc[i], r +
δr[i]] + d
lowHeight[c, r]← lowHeight[c+ δc[i], r + δr[i]]

end if
end for



(b) (c)(a)Fig. 10. Example: Breadth-first search plateau routing
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Fig. 11. Alternative Routing

3) Sink Filling: Our approach is based on the work by
[5], [22] and comprises: (i) delineating all watersheds (the
boundary of an area of land for which all water will drain
to the same point), (ii) construct a undirected weighted graph
to represent the relationships between these watersheds (the
lowest point at which water can flow from one watershed to
another), and (iii) raise the height of each watershed until all
watersheds can flow out of the DEM.

The first step of delineating watersheds is achieved by
assigning a unique watershedID value to each sink cell and a
watershedID value of 0 to cells flowing out of the DEM. As
most sinks consist of more than one cell we need to consolidate
each sink into just one watershedID. This is achieved by
repeatedly calling the kernel presented in Algorithm 3 until
no watershedID’s are updated. Each kernel call will require
O(n/p) time, with the number of calls bounded by the longest
dimension of the largest sink.

Algorithm 3 Delineate sinks (c,r)
for i = 0→ 7 do
r′ ← r + δr[i]
c′ = c+ δc[i]
if z[c′, r′] = z[c, r] AND watershedID[c, r] >
watershedID[c′, r′] then
watershedID[c, r]← watershedID[c′, r′]

end if
end for

Algorithm 4 Propagate watersheds (c,r)
if watershedID[c, r] is set

then return
end if
if watershedPointer[c, r] is unset then
r′ ← r + δr[log2(aspect[c, r])]
c′ = c+ δc[log2(aspect[c, r])]
watershedPointer[c, r]← [c′, r′]

end if
if watershedID[watershedPointer] is set then
watershedID[c, r]←
watershedID[watershedPointer]

else
watershedPointer[c, r]←
watershedPointer[watershedPointer[c, r]]

end if

Watershed delineation is completed by propagating the
watershedID for a sink to all cells flowing to that sink.
The kernel presented in Algorithm 4 uses index pointer
jumping [32] to compute this in O(log(j)) kernel calls where
j is the length of the longest path within a watershed and each
kernel call taking O(n/p) time.

We now generate the triples {w1, w2, h}, where w1 and w2
are watershedID’s and h is the lowest boundary between
the two watersheds, for all touching watersheds. We use a
hash table to store these triples as there may be thousands
of watersheds at this stage. Algorithm 5 describes the kernel
for identifying watershed boundaries and storing these within
the hash table. The Fermi architecture does not support an
atomic minimum operation on double precision floating point
numbers, required for this kernel. However, it is possible to

Algorithm 5 Identify watershed boundaries (c,r)
for i = 0→ 7 do
r′ ← r + δr[log2(aspect[c, r])]
xc′ = c+ δc[log2(aspect[c, r])]
if watershedID[c, r]! = watershedID[c′, r′] then

if z[c, r] ≥ z[c′, r′] then
if {watershedID[c, r], watershedID[c′, r′], h}

or
{watershedID[c′, r′], watershedID[c, r], h}
is already in the hash table
then

Store the minimum of (z[c, r], h) at this
location in the hash

else
Add {watershedID[c, r],
watershedID[c′, r′], z[c, r]} to the hash table

end if
end if

end if
end for



implement an atomic minimum operation using the atomic
compute and exchange operation. As there is no global syn-
chronisation primitive it is possible for two (or more) threads
to request storage space for the same pair of watershedIDs,
thus duplicating storage. However, as the next stage is to sort
the hash table, these duplicates can easily be removed.

The sequential algorithm presented by Arge [22] is used to
compute, for each watershed i, the height to which all cells
in watershed i must be raised (raised[i]) in order to allow
all water to flow out of the DEM. The process of raising
cells within the watersheds can now be performed in parallel
in O(n/p) time. This kernel sets z[c, r] to the maximum of
z[c, r] and raise[watershedID[c, r]). Thus creating plateaux
in place of each of the sinks. Running the plateau routing
algorithm over the DEM will now give us a fully conditioned
(routed) DEM.

B. Flow-Accumulation

The Correct Flow kernel, Algorithm 6, is used to compute
flow-accumulation. The available runoff from each cell is
first placed into resultGrid[c, r] and correct[c, r] is set to
false for all cells. The function inv() inverts a direction (e.g.
inv(64) = 4). The kernel works by only allowing a cell to
compute its flow-accumulation when all flowing-in neighbours
are marked as correct (true if no cells flow in). The kernel is
repeatedly called until correct[c, r] is true for all cells. Kernel
calls requires O(n/p) time with the longest path in the DEM
determining the number of iterations.

VI. RESULTS

A. Deployment environment

The test environment for this work consists of an Asus
P6T7 WS Supercomputer motherboard populated with an Intel
i7 980X Extreme 6 core processor along with 12GB corsair
dominator DDR3 12800 RAM. The graphics processors are
a 3GB Gainward Nvidia GTX580 (512 cores) along with a
448 core, 3GB C2050 Tesla card. The system ran Windows 7
running from a OCZ-AGILITY3 ATA SSD.

Algorithm 6 Correct Flow (c,r)
accumulation← 0
for i = 0→ 7 do
r′ ← r + δr[i]
c′ ← c+ δc[i]
d← (i%2 = 1) ? 1 :

√
2

if aspect[c′, r′] & inv(2i) = inv(2i) then
if correct[c′, r′] = false

then return
end if
accumulation← accumulation+
resultGrid[c′, r′]

end if
end for
resultGrid[c, r]← accumulation
correct[c, r]← true

Simulations were run for the 1, 6, 11, 25 and 46 million cell
DEMs, for the parallel case along with equivalent direction and
accumulation methods as implemented in the r.terraflow[23]
code incorporated within GRASS 6.4. As our optimised se-
quential code (CybErosion-slim) was incapable of running
such large ‘real’ DEMs, synthetic DEMs were produced at
sizes of 5,100, 253,800, 397,488, 601,644 and 1 million cells.
These synthetic DEMs were designed to contain no sinks
as these cannot be handled by CybErision(-slim). Thus, the
sequential results are an underestimate for the time to process
a real DEM. To aid comparison, the 5,100 cell synthetic DEM
was also run through the parallel implementation.

B. Overall execution time

Figure 12 illustrates the execution time for CybErosion-
slim and our massively parallel model, showing a reduction
of execution time of over two orders of magnitude. For
extremely small grids (∼5,100 cells), CybErosion-slim is able
to outperform the parallel model – due to the overheads of
the parallel implementation. However, this quickly reverses
for ‘real’ sized DEMs. The average time for running the first
10 iterations of the parallel code is lower in all cases than the
single iteration case, due to two main factors: the overheads
for running the simulation are associated with the first and last
iterations; and the original Thames watershed contains a large
number of sinks and plateaux which are progressively removed
in the parallel implementation through erosion and deposition
during the first few iterations. This latter effect can be seen
in Figure 13 in which the flow-accumulation remains constant
across the ten iterations whilst the flow-direction stage is much
higher for the first two iterations before becoming a more
constant small value. This can also be observed from the
number of watersheds (before flooding) whereby in the case
of the 25 million cell DEM this decreases from 14,703 in
iteration one to 2,834 by iteration four.

In all cases, the GTX580 outperforms the Tesla. Although
the Tesla is capable of performing double precision floating
point operations at full clock speed, as opposed to the quarter
speed of the GTX580, the extra cores, higher core clock and
memory speed seems to compensate for this limitation. Al-
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though the code uses double precision floating point numbers,
a substantial proportion of the code does not, hence the Tesla
card provides no advantage in this case.

C. Flow-Direction Modelling

We investigate the performance of the Flow-direction mod-
elling part of our parallel simulation in Figure 14. The
parallel implementation shows much better performance than
CybErosion-slim, exhibiting between two and three orders
of magnitude difference. CybErosion(-slim) does not process
sinks, and has a crude plateau-processing system, thus the
parallel implementation is performing more work. The parallel
code exhibits nearly two orders of magnitude reduction in
execution time over r.terraflow for the one million cell DEM.
However, this reduces as the size of the DEM increases. This
warrants further investigation.

D. Flow-Accumulation

The performance of our parallel implementation of flow-
accumulation is presented in Figure 15. For all but the smallest
(5,100 cell) DEM, the parallel code outperforms CybErosion-
slim. The parallel model outperforms r.terraflow, though by
less than an order of magnitude. This lower than expected per-
formance improvement can be attributed to the large number of
iterations required by the Correct flow algorithm to complete.
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Figure 16 exemplifies this problem for the 46 million cell
DEM. It takes only 293 iterations to achieve 99% of cells
correct, however, it then takes a further 17,118 iterations
to mark the remaining cells correct. This is due to long
runs of cells within the DEM, for example down the valley
axes, in which the algorithm becomes effectively sequential,
processing just one more cell down the axis per iteration.

Although the floating point arithmetic standard [33] is
conformed to by both the computer CPU and the GPGPU the
actual result values need not be identical due to alternative
interpretations of the standard and the lee-way in implementa-
tions. Along with the uncertainty of ordering of kernel threads
on the GPGPU it is not possible to generate exactly the
same results. However, floating point differences appear to
be insignificant when using double precision and as there is
no way to determine if one ordering of the kernel threads –
leading to one routing pattern over a flat – is more ‘correct’
than another these issues are tolerable.

VII. CONCLUSION

We have shown here that the majority of time in
CybErosion-slim is spent in computing the flow-directions and
flow-accumulations. We have developed a number of mas-
sively parallel algorithms to dramatically reduce the execution

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000

Pe
rc

e
n
ta

g
e
 C

o
m

p
le

te

Iteration

Fig. 16. Correct cells per iteration



times for these parts of the program. We have seen over
two orders of magnitude reduction in execution time for the
model, alongside a single order of magnitude reduction in
comparison to the most optimal sequential model (r.terraflow).
This will allow us to run our LEM at much greater temporal
/ spatial scale, without the need to reduce model complexity.
Additionally we will be able to add further to the model thus
producing a more realistic simulation.

We are aware of limitations in the current parallel code,
such as the long tail problem of the Correct flow process, and
are seeking alternative parallel algorithms to alleviate this.

So far we have only parallelised two of the four major
components within the process pipeline. The two remaining
components (topological and erosion modelling and depo-
sition computation), although numerically complex, require
little interaction between cells. Hence, parallelisation of these
components should yield good performance improvements.

Differences between floating point units in the CPU and
GPGPU along with the effects of the alternative ordering of
threads warrant further investigations. Recent developments of
the CUDA toolkit allow parallel code to be compiled for the
CPU which could lead to similar speedups.

It is interesting to note that although the Tesla card is ca-
pable of full speed double precision floating point operations,
in this modelling problem this additional performance is more
than offset by the extra cores and faster clock speed of the
cheaper (by a factor of 1

5 ) GTX580 card.
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