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Abstract—In this paper we study the performance of the 
Lustre file system using five scientific and engineering 
applications representative of NASA workload on large-scale 
supercomputing systems such as NASA’s Pleiades. In order to 
facilitate the collection of Lustre performance metrics, we 
have developed a software tool that exports a wide variety of 
client and server-side metrics using SGI's Performance Co-
Pilot (PCP), and generates a human readable report on key 
metrics at the end of a batch job. These performance metrics 
are (a) amount of data read and written, (b) number of files 
opened and closed, and (c) remote procedure call (RPC) size 
distribution (4 KB to 1024 KB, in powers of 2) for I/O 
operations.  RPC size distribution measures the efficiency of 
the Lustre client and can pinpoint problems such as small 
write sizes, disk fragmentation, etc. These extracted statistics 
are useful in determining the I/O pattern of the application 
and can assist in identifying possible improvements for users’ 
applications. Information on the number of file operations 
enables a scientist to optimize the I/O performance of their 
applications. Amount of I/O data helps users choose the 
optimal stripe size and stripe count to enhance I/O 
performance. In this paper, we demonstrate the usefulness of 
this tool on Pleiades for five production quality NASA 
scientific and engineering applications. We compare the 
latency of read and write operations under Lustre to that with 
NFS by tracing system calls and signals.  We also investigate 
the read and write policies and study the effect of page cache 
size on I/O operations. We examine the performance impact 
of Lustre stripe size and stripe count along with performance 
evaluation of file per process and single shared file accessed 
by all the processes for NASA workload using parameterized 
IOR benchmark.  

Key words: Lustre file system, I/O performance evaluation, 
benchmarking, computational fluid dynamics, climate 
modeling, Read and Write Policy, I/O cache effect, I/O latency. 

I. INTRODUCTION  
Several scientific and engineering applications running 

on petaflop class supercomputers deal with increasingly 
large data sets, and thus, the time required for input and 
output of data can become a significant bottleneck [1]. It is 
important for supercomputers to be not only balanced with 
respect to the compute processor, memory, and 
interconnect, but also with respect to the I/O performance. 
That is, it is not just the number of petaflops per second that 
matters, but also how many gigabytes per second or 
terabytes per second of data can applications really move in 
and out of disks that will affect whether these high 
performance computing systems can be used productively 
for new scientific discoveries. It is important that 

application scientists begin to examine the characteristics of 
the I/O resources available to them and how to best utilize 
their capabilities. Parallel file systems such as Lustre [2-4] 
are becoming very large, especially when supporting 
petaflop class systems such as NASA’s Pleiades system. In 
order to address these issues, the performance, stability, 
robustness, and reliability of the Lustre parallel file system 
needs to be studied.  

In addition, recently the Open Scalable File Systems 
(OpenSFS) Benchmarking Workgroup has been formed 
with a plan to provide an I/O benchmark suite for the 
scalable parallel file system administrators and users of 
petaflop class computing facilities [5].  NASA is a member 
of OpenSFS and its benchmarking working group. As a first 
step, this group aims to characterize the I/O workloads of 
parallel file systems deployed at various high-performance 
computing facilities. Using these characteristics, the 
working group will develop a suite of I/O benchmarks to 
emulate these workloads. 

Recently, several researchers have conducted 
performance evaluation and characterization of parallel file 
systems such as CXFS, GPFS, PVFS2, Lustre, etc. Saini et 
al used I/O benchmarks and applications on SGI Altix and 
NEC SX-8 super clusters [6]. Using the MADbench2 
benchmark Borrill et al studied the I/O performance on 
several supercomputers ([7-8]. Yu et al characterized the 
performance of several I/O benchmarks on the Lustre file 
system [9]. These investigations did not collect 
performance metrics of Lustre file system using 
performance monitors or measured the overhead of I/O 
operations using system calls and signals.  

To the best of our knowledge, our contributions in this 
paper are as follows: 

• Conducted a survey of the NASA scientific and 
engineering workload applications to characterize the 
I/O requirements and thus define the parameters for 
I/O benchmarks.  

• Developed the NAS Lustre Performance (NLP) 
package to collect Lustre performance data at the end 
of a batch job. 

• Used our newly developed performance tool to collect 
Lustre performance data for five production quality 
NASA applications from different disciplines such as 
structured and unstructured computational fluid 
dynamics, climate and cosmology [12-16]. 

• Investigated the latency of read and write system calls 
under Lustre and NFS on Pleiades [2-4, 17-18]  



 

 

• Investigated the read and write policies of Lustre. 
• Investigated the effect of page cache on I/O. 
• Investigated the optimal Lustre stripe size and stripe 

count on Pleiades using I/O parameters representative 
of NASA workload. 

• Modeled and parameterized the NASA workload   
using IOR benchmark [19] to study the performance 
of file per process and single shared file paradigms. 

The remainder of the paper is organized as follows. 
Section II gives details of the NASA I/O workload. In 
section III we present the computing platform and I/O file 
system used in this paper. Section IV presents performance 
metrics of the Lustre parallel file system. Section V 
describes the I/O benchmarks used in the present study. 
Section VI presents the methodology followed in the paper. 
Section VII gives an overview of production level 
applications used. Section VIII gives the results of our 
investigation. Finally, Section IX contains the conclusion 
and future work. 

II. NASA I/O WORKLOAD  
Based on our survey of the NASA scientific and 
engineering applications, we characterized the I/O 
requirements of typical applications run on our system 
based on the following parameters:  
• access pattern (random/sequential and read/write),  
• size of each read and write operation,  
• file type (shared: all processes read/write one shared 

file, or one-file-per-processor: each process 
reads/writes its own separate file), and  

• programming interface (POSIX, MPI-IO, HDF5, 
Parallel-HDF5, NetCDF and pNetCDF). 

The major results of this survey include: 

• Random access is rare for NASA applications; I/O 
access is dominated by sequential operations. 

• Write is dominated by append-only writes  
• I/O read and write sizes vary widely: from a few KB to 

several GB. 
• The majority of applications perform sequential I/O 

where each process/rank sends its data to the master 
(rank 0), which then writes the data to a single file. The 
advantages of this approach are that it is simple and the 
performance is reasonable for small IO sizes. The 
disadvantages are that it is not scalable and efficient, 
slow for large number of processes (ranks) or data 
sizes, and may not be possible if rank 0 is memory 
constrained. 

• Few applications use HDF5 and NetCDF. 

Five production-quality NASA applications were 
selected that provide good coverage of the above set of I/O 
characteristics [12-16]. They are described in Section VII. 

III. COMPUTING PLATFORM AND I/O FILE SYSTEM 
NASA’s Pleiades supercomputer system is located at 

NASA Ames Research Center. Pleiades comprises 11,776 
nodes (126,720 cores) based on four different Intel Xeon 
processors: Harpertown, Nehalem-EP, Westmere-EP and 
Sandy Bridge-EP. The nodes are interconnected with three 
generations of InfiniBand (IB) network in a hypercube 
topology: DDR, QDR and FDR data rates. In this study, we 
used only the Westmere-EP based nodes using QDR IB 
interconnect [18]. Pleiades has two file systems, namely, an 
NFS home file system and a Lustre parallel file system. 
A. Home File System: NFS 

The home file system on Pleiades is exported from an 
SGI XE500 with two quad-core Nehalem processors and 
48 GB of RAM. It is a Network File System (NFS) 
mounted on all of the Pleiades front-ends, bridge nodes and 
compute nodes [17]. It consists of a single 4 + 1 RAID 5 
volume on an SGI IS220 controller, providing 1 TB of 
usable storage [18].  

B. Parallel File System: Lustre 
The Lustre file system is composed of four components: 

Lustre clients, object storage servers (OSS), object storage 
targets (OST), and Metadata servers (MDS). Figure 1 is a 
schematic diagram of these four components of Lustre.  

 
Figure 1.  Lustre components. 

The file metadata is controlled by a MDS and stored on 
a Metadata Target (MDT). OSSs manage a set of OSTs by 
controlling I/O access and handling network requests to 
them. OSSs contain metadata about the files stored on their 
OSTs. OSTs are block storage devices that store user file 
data in one or more objects, with each object stored on a 
separate OST.  

Pleiades has six Lustre file systems each containing one 
MDS and one MDT, eight OSSs, 60 to 120 OSTs that 
provide a total of 6.8 PB of storage and serve thousands of 
compute nodes. MDT sizes range from 0.6 TB to 0.9 
TB [18]. Sizes of OSTs are from 7.1 TB to 15 TB. Total 
space available in each file system is from 424 TB to 
1.7 PB. The default stripe size and stripe count are 4 MB 



 

 

and 1, respectively. Currently, Lustre version 1.8.6 is used 
to manage these file systems. 

IV. LUSTRE PERFORMANCE METRICS 
Lustre provides a wealth of performance information on 

both clients and servers via the Linux proc file system. This 
includes the client read and write remote procedure 
call (RPC) size distribution, metadata operation counters, 
distributed lock manager metrics, and the per block-device 
I/O sizes. This performance data can be used to characterize 
the performance of one or more Lustre clients in 
aggregate!usually in terms of a single batch job!and also 
of the Lustre servers themselves.  

The bulk of the analysis performed in this paper is the 
result of examining the RPC size distributions and metadata 
operation counts when running various applications on 
Pleiades. Lustre, being a POSIX-compliant file system, 
presents a unified file system interface such as open(), 
read(), write(), etc. to the user. In Linux, this unified 
interface is achieved through the Virtual File System (VFS) 
layer. There is a thin layer in Lustre called Lustre Lite  
(llite) that is hooked with VFS to present that interface. The 
file operation requests that reach llite go through the whole 
Lustre software stack to access the Lustre file system.  

It is worth noting that for many reasons, there is not a 
one-to-one correspondence between system calls and RPCs, 
and also between RPCs and disk I/O. For example, when 
buffered I/O is used (as opposed to direct I/O), applications 
write system calls result in dirtying pages in the page cache. 
Lustre will aggregate multiple pages together when sending 
an RPC. Thus, a series of small sequential writes may result 
in a much larger RPC being sent to the server. For read 
system calls to sequential locations in a file, the Lustre 
read-ahead mechanism can result in a larger read RPC 
being issued than the size specified in the system call itself. 

V. I/O BENCHMARKS 
In this section we describe the I/O benchmarks used in 

our study. 
A. Sequential I/O Benchmark 
Sequential Write Read (SWR) is a single process I/O 
benchmark that writes and reads any size of file using 
various block sizes, stripe sizes and stripe counts. This 
benchmark mimics sequential I/O where all the processes 
send data to a master process, which writes to disk. 
B. IOR HPC Benchmark: 

Lawrence Livermore National Laboratory (LLNL) 
developed Interleaved Or Random (IOR) benchmark to 
procure their supercomputers [19].  It can do 
parallel/sequential read/write operations that are typical in 
scientific applications. It has options for one file per process 
or single shared file accesses by all the processes.  
Furthermore, its API provides the option for modern file 
systems such as POSIX (shared or unshared), MPI-IO, 
pHDF5, and pNetCDF.  

VI. METHODOLOGY 
In this section we describe the methodology adopted in 

this study. All I/O runs were done during production time 
so performance depends on other jobs running on the 
system. We ran each benchmark five times and present the 
best value. 

A. Package for Collecting Lustre Performance Metrics 

We have developed the NAS Lustre Performance (NLP) 
package, based on two components of SGI’s PCP 
package [10], to collect Lustre performance data and 
produce human-readable reports at the end of each Pleiades 
batch job. The package consists of two main components. 
First is an agent that uses the Performance Metrics Domain 
Agent  (PMDA) interface [11] to collect performance 
metrics provided by Lustre in the proc file system. In 
general, a PMDA collects a specific set of metrics and 
implements a specific set of API calls that are used by 
another daemon to fetch the data when it is needed.  

As the second component of the NLP package, we have 
implemented a set of scripts that gathers metrics from the 
agent, aggregates them together, and generates the Lustre 
performance report for each job. The Lustre metrics are 
collected from each compute node in a job using a script 
that invokes the performance metrics value 
dumper  (pmval) command [20] provided in the 
Performance Co-Pilot (PCP) package. The pmval command 
retrieves the value of a metric from a local or remote host. 
The metadata, bytes read, bytes written, and RPC histogram 
are collected and stored on a per file system basis. The RPC 
histograms require some additional processing. The Lustre 
clients store the histograms on a per-OST basis, therefore 
the RPC counts must be added up for all OSTs on each file 
system. The metrics are collected at the beginning and end 
of each job. The delta is calculated, and a report is 
generated that is included in the output for the user's job. 

Sample performance statistics for the Enzo application 
reads and writes to Lustre file system extracted by the NLP 
package is shown in Tables I and II. The statistics block 
lists the number of Lustre operations and the volume of 
Lustre I/O generated for each file system. The I/O volume 
is listed in total, and is broken out by RPC size. The 
following metadata operations statistics are also listed: 

• Number of file opens and closures on the Lustre file 
system 

• Number of stat and statfs query operations invoked by 
commands such as "ls -l" and “du” 

• Total amount of data read and written in gigabytes. 

TABLE I.  EXTRACTED PERFORMANCE METRICS USING NLP 
PACKAGE. 

I/O 
RPC Size (KB) 

4 8 16 32 64 128 256 512 1024 
#  Read 12243 264 56 81 242 269 543 1812 26572 
# Write 393 62 198 155 96 74 199 595 52606 



 

 

TABLE II.  EXTRACTED PERFORMANCE METRICS USING NLP 
PACKAGE. 

Number of files stats Amount of data (GB) 
Open Close stat statfs Read  Write  
5303 5769 12460 0 54 56 

The read and write operations are further broken down 
into buckets based on RPC size. In Table I, the first bucket 
reveals that 12243 data reads occurred in blocks between 0 
and 4 KB in size, 264 data reads occurred with RPC sizes 
between 4 KB and 8 KB, and so on. As noted before, the 
RPC size data may be affected by library and system 
operations and, therefore, could differ from expected 
values. That is, small reads or writes by the program might 
be aggregated into larger RPC operations, and large reads 
or writes might be broken into smaller pieces. High counts 
in the smaller buckets in the I/O pattern of the application 
are an indication of I/O inefficiency. 

These client-side metrics can also be useful in detecting 
problems after a Lustre upgrade. For example, a recent 
regression in the read ahead code caused some previously 
well-behaved access patterns - resulting in mostly 1 MB 
RPCs – to generate 8 KB RPCs instead. Comparison of per-
job Lustre metrics for similar workloads, before and after 
an upgrade, can help to uncover future regressions in the 
Lustre file system client code. 

B. IOR Parameters 
The IOR benchmark provides an option of choosing 

several parameters [19]. Table III gives IOR parameters we 
used in our study. With appropriate choice of the IOR 
parameters, one can emulate I/O pattern to closely match 
the data access pattern of applications. 

TABLE III.  IMPORTANT IOR BENCHMARK PARAMETERS. 

Parameter Description Parameter Choices 
  API   File format POSIX, MPI-IO, HDF5 
  FilePerProc   One/file/proc, shared  True or False 
  WriteFile   Write file on disk True or False 
  ReadFile   Read file from disk True or False 
  NumTasks   Number of tasks  System limited 
  BlockSize   Blocks to write/task KB, MB or GB 
  TransferSize   I/O transaction/task Divisible by BlockSize 

C. Lustre Parameters: Stripe Size and Stripe Counts 

A key feature of the Lustre file system is its capability 
to distribute the pieces of a file across several OSTs, 
essentially a set of parallel IO disks, using a technique 
called file striping.  

A file is striped when data is separated into stripes 
(small chunks), so that read and write operations can access 
multiple OSTs concurrently. Stripe size is the amount of 
data to store on one OST before moving to the next. Stripe 
count is the number of OSTs over which to stripe a file.  

File striping will most likely improve performance of 
applications that read or write to a single or multiple large 

shared files. Striping will likely have little effect for the 
following types of I/O patterns:  

• Sequential I/O where a single process performs all 
the I/O, (stripe size will have little effect, but stripe 
count does have a large effect). 

• Multiple nodes perform I/O, but access files at 
different times.  

• Multiple nodes perform I/O simultaneously to 
different files that are small (each < 100 MB).  

Storing a single file across multiple OSTs may increase 
the bandwidth available when accessing the file. However, 
striping has disadvantages, namely, increased overhead due 
to network operations and having to access multiple servers. 

VII. SCIENCE AND ENGINEERING APPLICATIONS 
We used the following five production quality full 

applications representative of NASA’s workload to collect 
the Lustre performance metrics on Pleiades. Brief 
description of these applications is given below. 

OVERFLOW-2 is a general-purpose Navier-Stokes solver 
for CFD problems [12]. The code uses finite differences in 
space with implicit time stepping. It uses overset-structured 
grids to accommodate arbitrarily complex moving 
geometries. The dataset used is a wing-body-nacelle-pylon 
geometry (DLRF6), with 23 zones and 36 million grid 
points. The input dataset is 1.6 GB in size, and the solution 
file is 2 GB. 

CART3D is a high fidelity, inviscid CFD application that 
solves the Euler equations of fluid dynamics [13]. It 
includes a solver called Flowchart, which uses a second-
order, cell-centered, finite volume upwind spatial 
discretization scheme, in conjunction with a multi-grid 
accelerated Runge-Kutta method for steady-state cases. In 
this study, we used the geometry of the Space Shuttle 
Launch Vehicle (SSLV) for the simulations. The SSLV 
uses 24 million cells for computation, and the input dataset 
is 1.8 GB and output file is 1 GB. The application requires 
16 GB of memory to run. 

USM3D is a 3-D unstructured tetrahedral, cell-centered, 
finite volume Euler and Navier-Stokes flow solver [14]. 
Spatial discretization is accomplished using an analytical 
reconstruction process for computing solution gradients 
within tetrahedral cells.  The solution is advanced in time to 
a steady-state condition by an implicit Euler time-stepping 
scheme. The test case used 10 million tetrahedral meshes, 
requiring about 16 GB of memory and 10 GB of disk space. 
Input and output files are 1 GB and 8 GB respectively. 

MITgcm (MIT General Circulation Model) is a global 
ocean simulation model for solving the fluid equations of 
motion using the hydrostatic approximation [15]. The 
MITgcm test case uses 50 million grid points and requires 
32 GB of system memory and 20 GB of disk to run. Input 



 

 

file is 1 GB. It writes checkpoint file of 8 GB of data using 
Fortran I/O. The test case is a ! degree global ocean 
simulation with a simulated elapsed time of two days. 

Enzo is an adaptive mesh refinement (AMR), grid-based 
hybrid parallel code for astrophysics and cosmology 
simulations and uses hybrid physics (fluid + particle + 
gravity + radiation) and has physics capabilities like ideal 
magneto hydro dynamics (MHD), radiation transport (ray 
tracing and flux limited diffusion), star particle class, 
metallicity-dependent cooling, and several new hydro 
solvers [16]. Input and output files are 54 GB and 56 GB 
respectively. The root grid is read into the root core and 
then partitioned to separate cores using MPI 
communication.  

VIII. RESULTS 
In this section we present the performance metrics 

(amount of read and write, number of file opens and 
closures and RPC size distribution) for five NASA 
applications extracted by the NLP package we developed. 
We also present the latency of open and close operations by 
monitoring all the relevant system calls using a Linux utility 
called Strace for both NFS and Lustre file system. Finally, 
we characterize the Pleiades Lustre file system to determine 
the optimal stripe size and stripe counts that can enhance 
the performance of the applications.  

A. Extraction of Performance Metrics  

In this section we present the performance metrics such 
as total amount of data read and written, total number of file 
opens and closures and RPC size distribution of write and 
read data.  

1) Amount of Read and Write Data  

Figure 2 shows total amount of data read and written by 
the five applications for our chosen datasets. Amount of 
read data is 1 GB, 2 GB, 4 GB, 6 GB, and 54 GB for 
MITgcm, Overflow, Cart3D, USM3D and Enzo 
respectively.  The smallest grid read is by MITgcm, 
whereas Enzo reads the largest. All five applications 
perform sequential I/O where the master process reads the 
input data and then either broadcasts (Cart3D) or uses 
sends/receives to communicate the relevant portions to the 
other processes. Amount of write data is 9 GB, 3 GB, 1 GB, 
1 GB, and 56 GB for MITgcm, Overflow, Cart3D, USM3D 
and Enzo respectively. For write, the master process 
collects data from other processes and then writes to the 
file. For applications with large grid files or large output 
files (i.e. checkpoint, restart, or visualization files) 
sequential I/O is a bottleneck, especially with large numbers 
of cores. Although these applications perform sequential 
I/O, they can benefit from using large stripe size and stripe 
counts as discussed in Section VIII-C-2. 

 
Figure 2.  Amount of read and write data for five applications. 

2) Number of File Opens and Closes 
 Figure 3 shows the number of files opened and closed 

by three applications (USM3D, Overflow and Cart3D) for 
cores ranging from 32 to 128. For all three applications, the 
number of file opens and closures are under 60 and increase 
with increasing number of cores as each core writes its own 
intermediate data during computation. However, major 
potions of the I/O are done while reading in a grid file at the 
beginning and writing a checkpoint or restart file at the end.  
Figure 4 shows the corresponding data for MITgcm and 
Enzo. Number of file opens and closures for these two 
applications is much higher than those of Figure 3. It is 
clear that MITgcm and Enzo are I/O intensive and will 
benefit from using optimal stripe size and stripe count (see 
Section VIII-C-2).  Large numbers of file opens and 
closures in MITgcm and Enzo lead to poor scalability as 
overhead (latency) in open, close and read/write in Lustre is 
very high (see Section VIII-B). 

 
Figure 3.  Number of files opens and closes for three applications. 

 
Figure 4.  Number of file opens and closes for MITgcm and Enzo. 



 

 

3) RPC Size Distribution:  

In this subsection we present RPC size distribution of 
read and write as measured by our newly developed tool for 
five applications (Overflow, Cart3D, USM3D, MITgcm 
and Enzo) under Lustre on Pleiades.   
Overflow: Figure 5 shows RPC size distribution under 
Lustre for Overflow on number of cores ranging from 8 to 
128. Most of the reads and writes (number of RPC blocks 
ranging from 1550 to 1950) are with RPC size of 1024 KB 
on all the cores. Number of reads (input grid file of 2 GB) 
with RPC size 4 KB increase gradually from 264 to 2016 
with increasing core counts from 8 to 128 whereas 
corresponding writes (3 GB restart/output file) remain 
almost constant between 22 and 27. Number of reads is 
higher than writes by a factor of 10 and 20 for 256 KB and 
512 KB RPC sizes. However, for an RPC size of 1024 KB, 
number of writes is higher than reads by 400.  Large 
number of RPC for 4 KB is an indication of inefficiency of 
Lustre file system. 

 
Figure 5.  RPC size distribution under Lustre for Overflow. 

Cart3D: Figure 6 shows RPC size distribution under Lustre 
for Cart3D on number of cores ranging from 8 to 128. Most 
of the reads (input grid file is 4 GB) and writes (output file 
of 1 GB) are either for RPC sizes 4 KB or 1024 KB. For an 
RPC size of 4 KB, number of reads are always much higher 
than number of writes and increase with core counts. 
However, for an RPC size of 1024 KB, number of reads is 
almost constant ranging from 1662 to 1672 and there are no 
writes. 

 
Figure 6.  RPC distribution under Lustre for Cart3D. 

 
USM3D: Figure 7 shows RPC size distribution for USM3D 
for 32, 64 and 128 cores. Most of the writes (1 GB) are 
done using RPC size of 1024 KB.  However, reads (6 GB 
grid file) are done using RPC sizes of 4 KB and 1024 KB. 

 
Figure 7.  RPC size distribution under Lustre for USM3D. 

 
MITgcm: Figure 8 shows RPC size distribution for 

MITgcm for cores ranging from 64 to 240. Most reading 
(grid file of 1 GB) is done using RPC size 4 KB whereas 
most of the writes (check-point file of 8 GB) use 1024 KB 
RPC size. In addition to the checkpoint file, MITgcm does a 
lot of other writes amounting to 1 GB as is evident from the 
very the high numbers of file opens and closures (see 
Figure 4) and uses RPC sizes ranging from 4 KB to 1024 
KB. Most of the writes (8 GB out of total of 9 GB) are a 
final checkpoint file and a remaining 1 GB is written by 
thousands of cores, which need to perform I/O and these 
small I/O operations (including open, close, read, write, 
etc.) are very expensive (see Section VIII-B). This 
performance bottleneck in MITgcm related to opening and 
closing thousands of files has been detected for the first 
time by our Lustre performance metric extraction tool.  

 
Figure 8.  RPC size distribution under Lustre for MITgcm 

 
Enzo: Figure 9 shows RPC size distribution of Enzo for 
RPC sizes ranging from 4 KB to 1024 KB. Amount of read 
and write data is 54 GB and 56 GB respectively. Most of 
the reads and writes are done using an RPC size of 4KB and 
1024KB. For 4 KB, the number of reads and writes are 
12243 and 393 respectively and corresponding numbers for 
1024 KB are 36576 and 52606.   



 

 

 
Figure 9.  RPC size distribution under Lustre for Enzo. 

In summary, large number of RPC for 4 KB is an 
indication of inefficiency of Lustre file system because 
latency for 4 KB RPC size is 256 times higher than 1024 
KB RPC size. 
B. Lustre Read and write Latency 

The performance indicator that most directly impacts 
clients is latency. Writes are typically fast until Lustre's per-
OST dirty page limit is reached. Reads are typically issued 
immediately and, when Lustre read ahead is triggered, will 
result in large RPCs. However, even for well-formed client 
RPCs, other factors can impact the per-request latency (e.g. 
server load from other jobs, on-disk and memory 
fragmentation on the server, and network problems). 

Determining the latency distribution for high-level 
Lustre metrics and the key internal operations that drive 
them would benefit us in a couple of ways. First, looking at 
shifts in the distribution from the norm would allow us to 
determine when the system is performing poorly. Second, 
examining the latency of underlying operations will help 
drive root cause analysis. For example, slow writes can be 
caused by a number of different factors, including waiting 
for block allocations, slow disk controllers, and waiting for 
a journal checkpoint to complete.  

It is not necessary for an application to do I/O in very 
large chunks because Lustre and the page cache will 
aggregate I/O. Typically, Lustre client nodes will do their 
best to aggregate I/O into 1 MB chunks and keep up to 8 
I/O requests "in flight" at a time, per OST. There is a per 
syscall (Linux system calls) overhead for locking and such, 
so using 1 MB or larger read/write requests will minimize 
this overhead.  

In view of the aforesaid, we have measured the latency 
for writing and reading 8 bytes of data on the Lustre file 
system. We used the Linux utility Strace to track all the 
system calls and signals for read and write operations under 
both NFS and Lustre [2-4, 17, 21]. In order to open a file to 
read or write 8 bytes and then close it, the following system 
calls are invoked by the Fortran run time library: getcwd, 
open, ioctl, fstat, lseek, ftruncate, write, and close. The 
getcwd function determines the path name of the existing 
directory. To open a file one uses the fopen function, which 
returns a file pointer. Once the file is opened, the file 
pointer is used to let the I/O library perform input and 
output operations on the file. ioctl is for device-specific read 

/write operations. The fstat function obtains information 
about an open file associated with the file descriptor and 
writes it to the area pointed to by the buffer. The lseek is to 
change the position of a file pointer. The ftruncate truncates 
the file. The close is to close the file. 

To assess the overhead of write and read operations 
under Lustre, we also ran the Strace benchmark under NFS. 
We ran the benchmark five times and found that latency is 
almost constant. Figure 10 shows the average write latency 
for 8 bytes of data for each of these nine system calls on 
both Lustre and NFS file systems. Write latency for open, 
fstat, ftruncate and write on Lustre is higher by a factor of 
1.6, 39.9, 3.6 and 2.0 than that on NFS respectively. 

 
Figure 10.  Write latency for 8 bytes on Lustre and NFS file systems. 

Figure 11 show the average read latency for 8 bytes of 
data for each of these seven system calls on both Lustre and 
NFS file systems. Read latency for fstat, read and close on 
Lustre is higher by a factor of 83.1, 3.1 and 22 than on NFS 
respectively.  

 
Figure 11.  Read latency for 8 bytes on Lustre and NFS file systems. 

C. Modeling I/O Behavior of Applications 
In this subsection we model the I/O of four applications 

used in this paper (Overflow, Cart3D, USM3D and 
MITgcm). These four applications perform sequential I/O 
(reading grid file and writing checkpoint/restart file), i.e., all 
the processes send data (using MPI-Send/Recv or 
MPI_Gather) to rank 0, which writes it to the file. For read, 
rank 0 reads the data from file and then sends (using 
MPI_Send/Recv or MPI_Bcast) to other ranks.  Memory of 
a node we studied is 24 GB. File size was chosen to be 8 
GB and 56 GB to ensure that for 8GB data comes from 
memory cache and for 56 GB it comes from disk. We did 
not include application Enzo as it uses HDF5 format. In 
addition, we present results on multiple OSTs with various 
stripe sizes and block sizes to find an optimum set of Lustre 



 

 

parameters that can give the highest I/O performance for the 
NASA applications investigated in this paper. 

1) Performance on a Single OST 

We investigated the write and read policies on both NFS 
and Lustre on Pleiades. We ran the SWR benchmark for 
writing and reading 8 GB and 56 GB files. It may be 
recalled that the Pleiades Westmere node (12 cores) has 24 
GB of memory. The kernel uses 1 GB and the rest is 
available for user applications. We wanted to investigate 
whether a write operation goes straight to disk or the data is 
stored in page cache before being written out and whether a 
read operation reads data from the disk or the memory 
buffer. Note that the I/O controllers have policies for both 
read and write operations:   
Read Policy: The read policy dictates whether the 
controller reads sequential sectors of the logical drive when 
seeking data or not.  
• Read-Ahead policy is one in which the controller reads 

sequential sectors of the logical drive prior to the 
issuance of the read instruction. This improves system 
performance if the data actually exists on sequential 
sectors of the logical drive.  

• No-Read-Ahead policy is one where the controller does 
not use read-ahead policy.  

• Adaptive Read-Ahead policy is one where the 
controller initiates read-ahead only if the two most 
recent read requests accessed sequential sectors of the 
storage disk. If subsequent read requests access random 
sectors of the disk, then the controller reverts back to 
no-read-ahead policy. The controller continues to 
monitor whether read requests are accessing sequential 
sectors of the disk or not, and can initiate read-ahead if 
necessary.    

Write Policy: The write policy controls whether the 
controller sends a write-request completion signal as soon 
as the data is in the buffer cache or after it has been written 
to disk.  
• Write-back caching is one in which the controller sends 

a write-request completion signal as soon as the data is 
in the controller cache but has not yet been written to 
disk. Write-back caching improves performance since 
subsequent read requests can more quickly retrieve 
data from the controller cache than they could from the 
disk. Write-back caching however entails a data 
integrity risk, since a system failure could prevent the 
data from being written to disk even though the 
controller has sent a write-request completion signal. In 
this case, data may be lost. Other applications may also 
experience problems when taking actions that assume 
the data is available on the disk.  

• Write-through caching is one in which the controller 
sends a write-request completion signal only after the 
data is written to the disk. Write-through caching 
provides better data security than write-back caching, 
since the system assumes and reports that a write has 
been completed only after it has been safely written to 
the disk.  

Figure 12 shows write and read bandwidth for 8 GB and 
56 GB files. Write bandwidth is same for both 8 GB and 56 
GB file: averages are 223 MB/s and 217 MB/s for 8 GB and 
56 GB file respectively. On the other hand read bandwidth 
is 4853 MB/s and 370 MB/s for 8 GB and 56 GB file i.e. 
bandwidth for 8 GB file is higher than that for 56 GB file 
by a factor of 13. Clearly for 8 GB file, data is being read 
from page cache.  On the other hand, for the 56 GB file, 
data is being read from disk as there is not enough memory 
on the node to cache the 56 GB file. The disparity between 
the write bandwidth for both file sizes and the read 
bandwidth for the 8 GB file (being read from cache) would 
seem to indicate a write-through caching policy is in effect. 
However, we know that this is not necessarily the case 
under Linux unless one is performing direct I/O. Some 
mechanisms in Lustre may be limiting the single process, 
single OST throughput, including the per-OST limit of 32 
MB of dirty data and the per-OST maximum of eight 
outstanding RPCs at any given instance. Further testing is 
needed to find if one or a combination of these two factors, 
or possibly some other factor, is limiting write performance. 

 
Figure 12.  I/O bandwidth for 8 GB and 56 GB disk files. 

Figure 13 shows the write bandwidth of a single writer 
to a single OST by varying the block size for writing 56 GB 
file on a disk. It is clear from this figure that write and read 
bandwidth does not depend on the block size (amount of 
data transferred per read or write call). The average write 
bandwidth on NFS and Lustre is 270 MB/s and 220 MB/s 
respectively – better by 19% on NFS than that on the 
Lustre. The reason for this is that the latency for fstat and 
writes is much higher on Lustre (see Figures 10). Read 
bandwidth on Lustre is better by 66% than on NFS (385 
MB/s versus 232 MB/s respectively). 

 
Figure 13.  I/O bandwidth on NFS and Lustre using single OST. 



 

 

2) Performance on Multiple OSTs 
In this subsection, we present results for multiple OSTs 

with various stripe sizes and block sizes to find optimum 
Lustre parameters that can give the highest I/O 
performance. Figure 14 shows the write bandwidth on 16 
OSTs and for various stripe sizes ranging from 1 MB to 64 
MB and block sizes ranging from 4 KB to 16384 KB. 
Maximum write bandwidth is 714 MB/s for 1 MB block 
size and 32 MB stripe size. As mentioned earlier the write 
bandwidth for single OST is 220 MB/s so with 16 OSTs it 
has increased by a factor of 3.2. Lowest write bandwidth is 
for 4 KB block size and then it increases gradually until 256 
KB. The reason for this is that there is more overhead for a 
small block size compared to a large block size. Figure 15 
shows the corresponding results for read bandwidth. 
Maximum read bandwidth is 920 MB/s for 2 MB block size 
and 1 MB stripe size. It may be recalled that for single OST 
read bandwidth is 385 MB/s so with 16 OSTs it has 
increased by a factor of 2.4. Clearly, 16 OSTs increase both 
the write and read bandwidths, by factors of 3.2 and 2.4, 
respectively.  

 

Figure 14.  Write bandwidth for various stripe sizes on 16 OSTs. 

 
Figure 15.  Read bandwidth for various stripe sizes on 16 OSTs. 

Figure 16 shows the I/O (write and read) bandwidth for 
single OST and 16 OSTs. We notice that write bandwidth is 
much better with 16 OSTs compared to that on a single 
OST. Figure 17 shows the percentage improvement of I/O 
on 16 OSTs relative to 1 OST.  Maximum percentage 
improvement is 239% and 170% for write and read 
respectively. Maximum for write and read is for a block 
size of 1024 KB and 256 KB respectively.  

 
Figure 16.  I/O bandwidth single OST and 16 OSTs. 

 
Figure 17.  Percentage I/O improvement with 16 OSTs over 1 OST. 

D. File per Process vs. Single Shared File 
In this section we compare the performance of file-per-

process and single-shared-file approaches using IOR in 
POSIX mode. We used a transfer size of 16 MB and block 
sizes ranging from 16 MB to 8 GB. We used 8 cores per 
node). The aggregate file size ranged from 128 MB to 128 
GB. All the tests were conducted in non-dedicated mode, 
i.e. with users running on other parts of the system. To 
account for this, we ran each test 5 times and used the 
maximum performance rate (MB/s). 

In measuring the I/O performance, file caching due to 
page cache results in measured read bandwidth rate to be 
very high as the data is being buffered in memory rather 
than being written directly to the disk.  The page cache uses 
unused memory of a compute node to buffer I/O 
transactions and flush them to disk later on to improve I/O 
performance for small files. In order to avoid the caching 
effect on I/O performance, we used the I/O files to be much 
larger than compute node memory size.  As noted before, 
each Pleiades Westmere compute node has 24 GB of 
memory.  

Figure 18 shows the measured aggregate I/O bandwidth 
for 8 processes using one file per process and single shared 
file strategy for different aggregate file sizes. Aggregate file 
sizes was changed by changing the block size, i.e. aggregate 
file size = BlockSize*NumTasks, while TransferFile size 
was fixed at 16 MB.  When the file size is small (4 GB or 
less), file caching has a considerable effect on the 
performance. For read bandwidth there are clearly two 
performance regions on Pleiades. When the file size is from 
128 MB to 4 GB, read bandwidth for both single file per 



 

 

process and single shared file ranges from 5 GB/s to 9 
GB/s, which shows that the data clearly remains in the page 
cache after it is written. During this regime, the read 
performance corresponds to the memory read performance. 
As the file size increases, the page cache can no longer hold 
all the data and the read operation must get the data from 
the disk. The read performance degrades and gradually 
becomes stable when all data access is from disks. When 
the read data comes from disk, read bandwidth is 1 GB/s 
and 250 GB/s for file-per-process and single shared file 
respectively. We see no memory buffer or caching effect on 
write bandwidth for both single-file-per-process and single 
shared file and write rates vary from 790 MB/s to 1.295 
GB/s and 251 MB/s to 204 MB/s respectively. Write 
bandwidth for single file per process is higher than single 
shared file by a factor of 3.1 to 6.3.   

 
Figure 18.  I/O bandwidth of file per process and shared file.  

IX. CONCLUSIONS 
In this work, we analyzed the NASA scientific and 

engineering workload to develop a better understanding of 
the I/O strategies used by a diverse array of applications. 
We developed a performance metric tool to determine the 
RPC size distribution; useful information to pinpoint the 
bottlenecks because more I/O done using small RPCs points 
to inefficient use of Lustre file system. RPC size 
distribution measures the efficiency of the Lustre system. 
Knowledge of number of file opens and closes enables an 
application scientist to use I/O strategies to increase the 
performance of I/O in their applications. Information about 
amount of I/O data helps users choose the optimal stripe 
size and stripe counts to enhance I/O performance. The 
extracted statistics are useful in determining the I/O pattern 
of the application and can assist in identifying possible 
improvements of users applications. 

We also measured the overhead associated with write 
and read and write operations on both NFS and Lustre 
system. We examined the read and write policies on 
Pleiades Lustre file system and found that when compared 
to read performance, write performance behaved as if it 
were being performed using a write-through caching policy, 
and reads can have a higher performance when they come 
from page cache. Finally, we also investigated the “cache 
effect” on the I/O operations. 

We characterized the Pleiades Lustre file system to 
determine the optimal stripe size and stripe counts, which 

enhance the performance of the applications significantly. 
We studied the I/O performance for single file per rank and 
single shared file accessed by all the ranks on Pleiades. We 
have shown that the I/O performance on Pleiades is highly 
dependent on file access type, access pattern, size, and I/O 
transaction size. We found that performance of file per 
process is much better than that using single shared file. 

It is clear that increasingly larger-scale supercomputers 
will require that application developers examine the I/O 
capabilities that will be available to them and determine 
how best to utilize them.   

References 
[1] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, 

“I/O performance challenges at leadership scale,” in Proceedings of 
Supercomputing, SC09, November 2009. 

[2] Lustre: http://wiki.lustre.org/index.php/Main_Page 
[3] Lustre Operations Manual –Version 1.8, 

http://wiki.lustre.org/index.php/Lustre_Documentation 
[4]  F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang. 

Understanding Lustre filesystem internals. Technical Report, 
ORNL/TM-2009/117, Oak Ridge National Lab., National Center for 
Computational Sciences, 2009. 
http://wiki.lustre.org/index.php/Lustre_Center_of_Excellence_at_O
ak_Ridge_National_Laboratory 

[5] OpenSFS: Open Scalable File system Inc., http://www.opensfs.org/ 
[6] S. Saini, D. Talcott, R. Thakur, P. A. Adamidis, R. Rabenseifner, 

and R. Ciotti, “Parallel I/O Performance Characterization of 
Columbia and NEC SX-8 Superclusters,” in IPDPS, 2007. 

[7] J. Borrill, L. Oliker, J. Shalf, and H. Shan,“ Investigation of leading 
HPC I/O performance using a scientific-application derived 
benchmark,” in SC, 2007. 

[8] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton,“ HPC Global 
File System Performance Analysis Using a Scientific-Application 
Derived Benchmark,” Parallel Computing, vol.35, no.6, pp. 358–
373, 2009. 

[9] W. Yu, J. Vetter, and S. Oral. Performance characterization and 
optimization of parallel I/O on the Cray XT. In Proceedings of 22nd 
IEEE International Parallel and Distributed Processing Symposium 
(IPDPS'08), Miami, FL, 2008. 

[10] Performance Co-Pilot User's and Administrator's Guide and 
Performance Co-Pilot Programmer's Guide, 
http://oss.sgi.com/projects/pcp/documentation.html 

[11] PMDA: Performance Metrics Domain Agent, 
http://techpubs.sgi.com/library/manuals/4000/007-4993-
004/sgi_html/ch05.html 

[12] Overflow, http://aaac.larc.nasa.gov/~buning/ 
[13] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. High Resolution 

Aerospace Applications using the NASA Columbia Supercomputer, 
Proc. ACM/IEEE SC05, Seattle, Washington, Nov. 2005. 

[14] USM3D: http://tetruss.larc.nasa.gov/usm3d/ 
[15] M.I.T General Circulation Model (MITgcm), http://mitgcm.org/ 
[16] Enzo Version 2.0, http://enzo.googlecode.com 
[17] Linux NFS Overview: http://nfs.sourceforge.net/ 
[18] Pleiades. http://www.nas.nasa.gov/hecc/resources/pleiades.html 
[19] IOR HPC Benchmark: , http://sourceforge.net/projects/ior-sio 
[20] PMVAL: Performance Metrics Value Dumper, 

http://oss.sgi.com/projects/pcp/man/man1/pmval.1.html 
[21] strace(1): trace system calls/signals - Linux man page 

http://linux.die.net/man/1/strace, 
http://sourceforge.net/projects/strace/ 


