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Abstract—Hardware Transactional Memory (HTM) exposes
parallelism by allowing possibly conflicting sections of code,
called transactions, to execute concurrently in multithreaded
applications. However, conflicts among concurrent transactions
result in wasted computation and expensive rollbacks. Under
high contention HTM protocol overheads can, in many cases,
amount to several times the useful work done. Blindly scheduling
transactions in the presence of contention is therefore clearly
suboptimal from a resource utilization standpoint, especially in
situations where several scheduling options exist.

This paper presents HARP (Hardware Abort Recurrence
Predictor), a hardware-only mechanism to avoid speculation
when it is likely to fail. Inspired by branch prediction strategies
and prior work on contention management and scheduling in
HTM, HARP uses past behavior of transactions and locality
in conflicting memory references to accurately predict conflicts.
The prediction mechanism adapts to variations in workload
characteristics and enables better utilization of computational
resources. We show that an HTM protocol that integrates
HARP exhibits reductions in both wasted execution time and
serialization overheads when compared to prior work, leading
to a significant increase in throughput (~30%) in both single-
application and multi-application scenarios.

I. INTRODUCTION

The problem of extracting thread level parallelism through

speculative execution has received a lot of attention from

both industry and academia [13, 18]. In particular, Hardware

Transactional Memory (HTM) [14] offers performance com-

parable to fine-grained locks while, simultaneously, enhancing

programmer productivity by largely eliminating the burden of

managing access to shared data. Recent usability studies sup-

port this thesis [8, 19], suggesting that Transactional Memory

(TM) can be an important tool for building parallel applica-

tions. For these reasons, HTM is getting increasing attention

from the industry [9, 10, 11], and IBM has released their

first chip with built-in HTM support, the BlueGene/Q [23].

More recently, Intel has published ISA extensions (TSX) that

provide support for basic HTM and lock elision, with the

intention of supporting these in upcoming products [16].

An HTM system allows concurrent speculative execution

of blocks of code, called transactions, that may access and

update shared data. However, in the presence of data conflicts

transactions may abort, i.e., the results of speculative execution

are discarded. This results in wasted work, expensive rollbacks

of application state, and inefficient utilization of computational

resources. While conflicts due to concurrent accesses to shared

data cannot be completely eliminated, mechanisms to avoid

starting a transaction when it is likely to fail are necessary for

maximizing computational throughput. Moreover, in scenarios

where multiple scheduling options are available, having such
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mechanisms can expose additional parallelism and improve

resource utilization.

While single application performance is still important,

systems where multiple parallel applications coexist are ex-

pected to become increasingly common in the near future. The

performance of HTM in scenarios with abundant transactional

threads is still an open question, and solutions that provide

efficient utilization of computational resources and good per-

formance are required for TM to gain wide acceptance. In

the past, considerable work has been done on contention

management, but mostly in the field of Software TM (STM) [1,

12, 20]. These proposals typically react after aborts happen,

without trying to avoid future conflicts. Conversely, a few

HTM proposals exist that try to avoid execution of possibly

conflicting transactions [3, 5, 24]. However, these solutions

do not provide full hardware support and rely on expensive

and specialized software runtime routines and data structures.

Moreover, the efficacy of these proposals in scenarios with

multiple concurrently executing applications is unclear.

In this paper, we introduce Hardware Abort Recurrence

Predictor (HARP), a comprehensive hardware proposal that

identifies groups of transactions that are likely to be executed

concurrently without conflicts. Our proposal allows other

threads or applications to utilize computational resources when

the expected duration of contention is long, providing better

throughput when running several applications, and potentially

higher parallelism when several threads of the same applica-

tion are available for scheduling. Moreover, HARP dynam-

ically chooses a contention avoidance mechanism based on

expected duration of contention, in order to maximize resource

utilization, while minimizing the amount of wasted work

due to transaction aborts. HARP avoids software overheads

by using simple hardware structures to record transactional

characteristics. More specifically, we notice strong temporal

locality in contended addresses in transactional applications.

By detecting when conflicting locations change, we can iden-

tify when contention is likely to dissipate.

To evaluate HARP, we compare it against “Bloom Filter

Guided Transaction Scheduling” (BFGTS) [3], a state-of-

the-art transaction scheduling technique, and LogTM [17], a

well established HTM design. Our evaluation includes single-

application setups, comprising a scenario with the same num-

ber of threads as cores, and a scenario with more threads than

cores. We provide insights on when using more threads can

extract additional parallelism, and show that HARP outper-

forms LogTM and BFGTS on average by 109.7% and 30.5%

respectively. Moreover, we are the first to study the perfor-

mance implications of a transactional multi-application setup

where, again, our technique outperforms the other evaluated
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Fig. 2: Overheads of evaluated systems at different commit throughputs.
Eigenbench with varying transaction sizes, 128K iterations and 16 cores.

proposals. In addition, we show that HARP is significantly

more accurate in terms of predictions and resource utilization

for all the evaluated setups. Compared to BFGTS, HARP

has on average 1.7× and 2.2× better abort rates for single-

application and multi-application workloads respectively.

II. BACKGROUND AND RELATED WORK

Initial efforts on Software TM (STM) contention managers

by Scherer and Scott use a set of heuristics to abort transac-

tions and choose backoff duration when facing a conflict [20].

Further developments focused on user-level support to reduce

contention, by either using runtime metrics like commit rate or

dynamically discovering pairs of transactions that should not

be executed in parallel [1, 12, 22]. All proposals mentioned

above are reactive – imposing measures after conflicts happen

without trying to avoid future conflicts.

In the field of HTM there has been less research on this area.

Exponential backoff, as introduced in LogTM [17], is the most

common contention management mechanism adopted in HTM

designs. This was later used by Bobba et al. [7] for a thorough

analysis identifying several performance pathologies present

in HTM systems, including some that are closely related to

contention management issues. The solutions proposed were

not investigated in depth as it was not the focus of the paper.

Adaptive Transaction Scheduling (ATS) by Yoo and

Lee [24] proposes queuing transactions in a centralized hard-

ware queue if the amount of contention seen surpasses a

preset threshold. ATS has little impact on performance when

contention is low, and ensures single global lock performance

for contended scenarios with small hardware and software

requirements. However, serializing all transactions when con-

tention intensity increases can be overly pessimistic, as not

all transactions have to be highly contended. Moreover, like

backoff-based policies, this mechanism is reactive and takes

action after contention is already present in the system.

Blake et al. were the first to introduce proactive mechanisms

to manage contention. Proactive Transaction Scheduling (PTS)

is one such technique [5]. PTS employs a global software

graph structure that maintains the confidences of conflict,

with nodes representing transactions and edges representing

the confidence level of a conflict reoccurring in the future.

PTS can schedule more optimistically than ATS, thus attaining

better performance. However, PTS needs to query a global

data structure at the beginning of each transaction and update

it when committing or aborting.

Bloom Filter Guided Transaction Scheduling (BFGTS) [3]

outperforms PTS by employing a hardware accelerator and

better Bloom filter manipulations using a metric termed sim-

ilarity – a measure of memory locality present throughout

different executions of a transaction. If two transactions with

high similarity conflict, the conflict is likely to be persistent.

However, this approach may not be accurate because two

transactions could conflict very infrequently while still having

high similarity, especially if they perform a large number of

reads over the same locations. BFGTS is largely implemented

using (1) software data structures that store confidences of con-

flict, per-transaction Bloom filters, and similarity values; and

(2) runtime routines that execute when the system serializes,

commits, or aborts a transaction. These routines can be larger

than the transaction itself, and may not be compatible with

arbitrary transactional codes (e.g., different languages). Per-

core hardware support includes a list of transactions running

in remote cores, an additional 2KB cache, and a Bloom filter

to infer memory locality. This hardware performs a prediction

in a few cycles at the beginning of a transaction, but cache

misses can increase prediction latency.

III. OVERVIEW AND MOTIVATION

Overview example: Figure 1 illustrates how abort prediction

enables efficient utilization of parallel resources with a simple

example. It shows two cores, each executing two threads from

the same application. Each thread has two transactions, where

the first is short (Tx0) and the second is long (Tx1).

The example assumes an initial state where software threads

Th0 and Th2 are both allowed to execute Tx0 concurrently

and eventually transaction Tx0 in Th0 aborts, meaning that

Core0 mispredicted the conflict. An HTM system without

abort prediction support would now blindly try to re-execute

the transaction, possibly leading to more conflicts and ineffi-

cient resource utilization. However, if the system is aware of

contention it can proactively take steps to avoid it. At time 1 ,

Core0’s predictor decides to stall the transaction because it

predicts a conflict is likely to happen with a short transaction.

Thus, in this case, waiting until the short transaction finishes

makes sense. When Core1 commits its transaction (Tx0), its

predictor allows the execution of the next transaction (Tx1)

of the same thread Th2, and the stalled execution in Core0

can be resumed with the approval of its predictor. Core0 can

now successfully commit its transaction, but when trying to

move on to the next transaction (Tx1), the predictor preempts

the thread because a conflict is predicted using past history

(explained in depth later). Now, at time 2 , the conflict is

against a transaction known to be long, so the system decides

to yield the thread Th0, and Th1 is granted permission to start

execution. The example ends with both running transactions

committing in parallel. Note that if Th0 had not yielded and

Tx1 is contended, Core0 would have probably wasted time or

even experienced a series of aborts until Core1’s transaction
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Fig. 3: Chronological distribution of conflicting addresses for a transaction of interest in Intruder (left) and Yada (right). The x axis represents cumulative
abort count. Each different grey scale level represents a different conflicting address.

commits, whereas with abort prediction support a different

transaction has executed and committed meanwhile.

Why do we need a hardware solution? Previous techniques

rely on software components in their designs. To understand

the overheads imposed by such components and the prediction

mechanism in general, we perform an experiment using Eigen-

bench [15], a flexible exploration tool for TM systems. We

configure Eigenbench to have no contention and to maximize

total transactional execution time.

We evaluate LogTM and BFGTS using its best performing

configuration. Figure 2 shows our experiments on a range of

transaction sizes (smaller transactions demand higher commit

throughput). The smallest transaction size evaluated performs

one read operation and a small amount of work with the

read data. Since there is no contention, LogTM scales al-

most linearly with any transaction size. BFGTS experiences

a notable performance degradation with small and medium

size transactions. Even with relatively large transactions (more

than 100 reads) the performance gap under no contention is

significant. The hardware accelerator of BFGTS performs a

quick decision at the beginning of each transaction, however,

having to interrupt the normal flow of execution on every

commit (and abort) to execute additional code is the main

cause of the slowdown seen in the chart. With a hardware

solution we aim to minimize these overheads and deliver

performance close to LogTM in uncontended scenarios.

Detecting conflict recurrence: An efficient abort prediction

mechanism needs to track transaction characteristics in order

to anticipate when conflicts are going to happen. It must also

possess the capability to detect when conflicts dissipate. To

this end, we introduce the use of conflict lists. A transaction’s

conflict list contains the last few conflicting addresses that

triggered an abort; locality in such addresses is an indication

that contention between two transactions is recurring in nature.

These lists can be of small size, thus suitable for a hardware

approach such as ours where the amount of information that

can be kept is limited. To motivate this design choice, we show

a study done using two of the most contended applications of

the STAMP benchmark suite [8]: Intruder, a network packet

intrusion detection program, and Yada, a Delaunay mesh

refinement algorithm. For both applications we have looked

at the history of conflicting cacheline addresses that cause

an abort. More specifically, we monitored one transaction of

interest (long and contended) for one of the executed threads.

Figure 3 shows two bars for each application with the

chronological distribution of conflicting addresses that trig-

gered an abort for the studied transaction. Each upper bar

shows the entire sampling, while the lower bars show a

magnified view of a representative region. Each address has

a different grey scale level associated. The x axis quantifies

the total number of aborts seen so far, each being triggered

by a conflicting address. For better visualization, ten addresses

are considered for Intruder and five for Yada, enough to cover

more than 98% of the total number of aborts. As can be seen,

conflicting addresses present high temporal locality, with a

dominant address in both cases. These addresses with high

locality are easy to capture with the proposed conflict lists.

A conflict between two transactions is likely to be persistent

if one of the transactions accesses an address present in the

conflict list of the other transaction, and it has likely dissipated

otherwise. For example, in applications where contention is

data dependent, like Yada, two concurrent transactions may

conflict when operating over the same subset of data (ad-

dresses), and the conflict will likely dissipate when one of

the transactions starts operating over different data (i.e, the

transaction does not access addresses present in the other

transaction’s conflict list). Similarly, if contention is due to

accessing a data structure, like in Intruder, conflicts might be

present depending on which sections or nodes (addresses) of

the data structure are accessed by concurrent transactions. We

expect this observation to hold true for most TM use cases,

as such conflicts are often unavoidable in parallel programs.

HARP versatility: HARP is largely decoupled from specific

HTM conflict detection and management protocols, requiring

just the knowledge of conflicting addresses that trigger an

abort. This information is, typically, easy to gather in most

designs. Lazy conflict detection has been found to make a

system more robust under high contention [8, 21]. This is

because one transaction aborts only because another trans-

action has successfully committed. Though a lazy system as

a whole makes progress, individual threads waste substantial

computational resources due to aggressive speculation. Sim-

pler HTM implementations tend to use eager conflict detection

– e.g., implementations based on extensions to traditional

cache coherence protocols. A mechanism like HARP that aims

to (a) prevent concurrent execution of conflicting transactions,

(b) provide low abort rates, and (c) swap potentially conflicting

transactions for useful work; makes an eager system become

robust under high contention. In addition, eager systems

present the following advantages: (a) can benefit from fast

local commits, and (b) eager conflict detection lets HARP take

informed decisions earlier regarding the course of execution.

For these reasons we frame our study in eager systems.

A hardware approach like HARP transparently provides

support for arbitrary transactional codes (i.e., different lan-

guages or compilers), which may not be compatible in a

software-based approach with specialized routines. In addition,

HARP does not need to interrupt the normal flow of execution

on the core on every commit and abort as previous tech-

niques require [3, 5]. Finally, HARP’s prediction latency and

bookkeeping operations are not affected by inherent overheads

present in software routines, e.g., cache misses.
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IV. HARP DESIGN AND OPERATION

A. HARP Hardware Structures

Figure 4 illustrates the necessary per-core hardware struc-

tures to implement HARP. These structures track important

information about current and past transactional executions.

The Running Transactions Vector (RTV) has as many entries

as cores and tracks a list of transactions currently running

on remote cores. Each entry stores a static identifier (i.e.,

the program counter) of a remote transaction (if any) termed

TxID’s. The Abort Prediction Matrix (APM), Transaction

History Table (THT), and Conflict List Table (CLT) are tagless

structures with the same number of entries, which are indexed

by TxID. The APM contains a 2-bit saturating counter in each

cell. Each counter indicates the confidence of conflict between

two transactions. The THT and the CLT store past information

from previously executed instances of the transactions. Each

entry of the THT contains the following per-transaction infor-

mation: (a) the average size (TxSize) of committed instances,

(b) a 4-bit saturating counter that indicates the contention ratio

(CR), and (c) a 4-bit saturating counter indicating the number

of consecutively predicted conflicts (CPC) by HARP. The

CLT contains conflict lists stored in a set associative manner.

Each entry of a set stores an address of the transaction’s

conflict list (last few addresses that caused an abort). Finally,

a few additional registers and some glue logic is necessary.

These registers, collectively called Conflicting Transaction

Information (CTI), are used to store the TxID and conflict list

of a possibly conflicting transaction upon a predicted conflict.

Figure 5 shows a communication overview between HARP

structures during transactional operations. At the beginning of

a transaction (Figure 5a) a prediction is performed. 1 The

RTV and APM are used to determine if a remote transaction

has a high confidence of conflict with the transaction starting

locally. If a conflict is found to be likely, 2 information about

the conflicting transaction is gathered from the THT to decide

whether to stall or yield the thread. Additionally, the conflict

list is read from the CLT and stored in the CTI. Otherwise,

if no conflict is predicted, 3 a non-blocking message is sent

through the coherent interconnect to inform remote cores to

update their RTVs, and the transaction starts its execution.

On transaction abort (Figure 5b), after the speculative state

is rolled back, 1 the confidence of future conflict between

the two transactions is incremented in the APM, statistics in

the THT and the conflict list in the CLT are updated, and a

message is sent to inform remote cores to update their RTVs.

On transaction commit, the previously conflicting TxID (if

any) stored in the CTI is used to update the confidence of

future conflict, the average transaction size is updated in the

THT, and a message is sent to inform remote cores.

B. HARP Operational Details

Performing a prediction: Figure 6 details with a flowchart the

process of predicting whether a transaction TxID will conflict

or not. HARP iterates over the RTV until a conflict is found

or the end of the RTV is reached (conflict not predicted).

The APM is indexed by TxID, the corresponding row of the

matrix can be seen as the set of confidences that TxID might

conflict with remote transactions. To know if a conflict with a

remote transaction TxIDr is likely to happen, TxIDr is used

to index by column, obtaining the cell with the confidence of

conflict. The confidences are represented using 2-bit saturating

counters, where the two upper states predict conflict and

the two lower states predict no conflict. If a conflict is not

predicted, the transaction can start its execution. Otherwise, if

a conflict is predicted, HARP uses the local knowledge stored

in the THT and CLT to infer the transactional characteristics of

the remote conflicting transaction. The conflicting transaction

identifier and its conflict list are stored in the CTI to later

adjust confidences of conflict at commit time. If the size of

the conflicting transaction exceeds a threshold, an exception is

thrown and its handler will yield the thread in a similar way

pthread_yield() does. Otherwise, HARP will stall the

execution until the conflicting transaction is no longer running.

Note that the CTI registers are part of the thread context, i.e.,

they are saved and restored on a context switch.

Identifying persistent conflicts and committing: We can

distinguish between two kinds of running transactions: (a)

the ones that start without predicting any conflict, and (b)

those that execute after stalling or yielding due to a prediction

(serialized). If the transaction was serialized, it has valid CTI

data in the registers. Throughout the execution of a serialized

transaction, the memory requests are compared against the

addresses in the conflict list (CTI registers) of the previously

predicted conflicting transaction. This is a crucial point to learn

if a conflict has dissipated or is still present. If the transaction

accesses an address present in the CTI conflict list, it means

that the conflict is potentially persistent, and the transaction

had a chance to execute simply because a potentially con-

flicting transaction instance was not concurrently running; in



Fig. 6: Flowchart depicting the process of performing a prediction in HARP for a certain transaction TxID.

this case, the confidence of conflict is increased at commit

time. If the transaction does not access an address in the

CTI conflict list, it means that the conflict between the two

transactions is perhaps no longer present, and the confidence of

conflict is decreased. Additionally, at commit time the average

transaction size and the contention ratio (CR) are updated, the

CTI registers are also cleared.

Aborting a transaction: When a transaction aborts due to a

conflict, the aborting core increases the confidence of conflict

between the two transactions in the APM. The contention ratio

(CR) in the THT is incremented, and the transaction’s conflict

list is updated in the CLT with the conflicting address. Since

conflict lists can have repeated elements, the replacement

policy is simple. There is no need to do a look up before

replacing; instead, an LRU bit decides which entry is replaced.

The broadcast message sent when a transaction aborts is

slightly larger, it also contains the core identifier and TxID

of the remotely conflicting transaction, and the conflicting

address. In this manner, besides remote cores updating their

RTVs, the remotely conflicting core can also update the

confidence of conflict and the conflict list of the remotely

conflicting transaction in its local structures. These remote

updates on abort are important because they make a transaction

aware of a potential conflict and a conflicting address.

Non-blocking communication: When a core starts or exits

(commits or aborts) a transaction, communication with remote

cores is necessary to keep the RTVs updated. This commu-

nication is done via small broadcast messages that include

the core identifier, the TxID, and the action being performed

(e.g., committing). These messages are non-blocking, which

can lead to outdated information in remote cores for a small

window of time, but this is not a correctness issue and

far less critical to performance than adding synchronization.

The number of such messages is small when compared to

coherence messages (~1% on average in our simulations).

Moreover, a large number of simultaneous messages implies

a high commit rate, where HARP would not need to interfere.

In high contention scenarios, HARP serializes conflicting

transactions, which reduces the number of messages. These

facts suggest that communication is not a limiting factor for

the design to scale (see Section V-F for related evaluation).

During the process of predicting a conflict, committing, or

aborting, all information is available locally. Such a distributed

approach eliminates synchronization overheads between cores

and contention when accessing the hardware structures.

Dynamically adaptable decay: The decay targets transactions

where contention varies with time, allowing them to execute

optimistically faster when contention dissipates. As shown in

Figure 6, the decay is applied after a conflict is predicted and

implements a simple algorithm as follows: if the number of

consecutively predicted conflicts by HARP is at least equal

to the transaction’s contention ratio, the confidence for the

recently predicted conflict is decremented and the CPC counter

is reset. Otherwise, the CPC counter is increased. This enables

transactions that commit often to decrement their confidences

of conflict faster, while contended transactions will need to

predict a larger number of consecutive conflicts in order to

see their confidences of conflict decremented by the decay. As

contention increases, the chances to apply the decay decrease

at a faster rate, since having a large number of consecutive

predicted conflicts is increasingly unlikely.

Execution example: Figure 7 presents a self-contained step-

by-step example of HARP’s operation.

V. EVALUATION

A. Simulation Environment

To evaluate HARP we compare it to two HTM baselines,

LogTM [17], a well established system; and a state-of-the-

art transaction scheduling technique: Bloom Filter Guided

Transaction Scheduling (BFGTS) [3]. In our experiments, both

HARP and BFGTS use the LogTM architectural framework

for basic TM support. We use the M5 full-system simula-

tor [2]. This simulator was made publicly available by the

BFGTS authors [4], thus assuring the BFGTS baseline is faith-

fully modeled. Queuing delay and resource contention in the

memory subsystem and in added structures has been accounted

for. The simulation parameters are detailed in Figure 8.

We use the best performing BFGTS configuration, which

skips most calculations in software routines when there is low

contention. HARP’s prediction cost is modeled as one cycle

per lookup in the APM, i.e., 15 cycles in the worse case.

Lower prediction cost can be achieved by fetching the entire

row of the APM, filtering the columns of interest, and using a

set of comparators in parallel – trading hardware footprint for
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Fig. 7: HARP execution diagram for a two core system. The box at the top depicts a sequence of events for Core0, matching those presented in
Figure 1. The rest of the figure shows changes in Core0’s HARP hardware structures at each step (shaded areas), outgoing messages are not
shown. The transaction begin at time 1 triggers the predictor, since no other transactions are running on the system, it can start normally.
At time 2 a remote message from Core1 is received and the RTV is updated accordingly. At time 3 the transaction aborts due to a conflict
with Tx0 running on Core1. At time 4 the transaction tries to restart, but this time the RTV is not empty, a conflict is predicted and the
CTI registers populated. Since the conflict is predicted against a transaction marked as “short” in the THT, the execution is stalled. Later, at
time 5 , a message is received indicating that the conflicting transaction has finished, allowing Core0 to retry again and start 6 . At time 7 ,
a message is received indicating Core1 started to execute Tx1, updating the RTV. At time 8 , the running transaction in Core0 commits
with valid CTI information because it was serialized. In this example, we consider that during the execution address A was touched, making
the previously predicted conflict potentially persistent, so the confidence of conflicting again in the future is increased. At time 9 , Core0
tries to start Tx1, but a conflict is predicted with a large remotely running transaction, yielding the current thread. Note that before yielding,
the CTI info is populated and will be saved as part of the thread context when yielding. At time 10 , a new thread Th1 is granted execution,
restores CTI information (null in this example), and starts executing Tx0. The transaction commits at time 11 , updating local information.

prediction latency. The transaction size threshold that decides

when to stall or yield is set to half the average time it takes

the kernel to perform a context switch in our system. Note that

after stalling, the transaction is not guaranteed to execute as a

new abort could be predicted. This transaction size threshold

allows for at least two consecutive stalls before having a

penalty larger than yielding.

We use the STAMP [8] benchmark suite with nine different

benchmark configurations. Figure 9 describes the input pa-

rameters used and the number of transactions defined in each

benchmark. We exclude Bayes because of its non-deterministic

exiting conditions, leading to inconclusive results due to high

runtime variability, as noted by many researchers [3, 6, 8].

B. Comparison of Hardware Costs

Figure 10 shows the storage requirements for HARP and

BFGTS. Implementing HARP requires an additional storage

of 2.06KB on each core, roughly 3% of a 64KB L1 cache.

HARP requires less storage than BFGTS. This is because

BFGTS uses an additional 2KB cache to speedup accesses to

its software data structures. Moreover, a cache needs additional

logic (e.g, tags), not considered in this comparison.

C. Evaluation Methodology

Our evaluation includes three different system setups: (a)

a setup with a single-application using the same number of

threads as cores, (b) a setup with a single-application where

four threads are assigned to each core, and (c) a setup with

two different applications where one thread of each application

is assigned to each core, i.e., two threads per core each from

a different application (multi-application workloads). While

single-application performance is still critically important, we

believe that for TM to be widely accepted, it also needs to

deliver good performance in such multi-application scenarios.



Cores 16 in-order 2GHz Alpha cores, 1 IPC
L1 Caches 64KB 2-way, private, 64B lines, 1-cycle hit
L2 Cache 16MB 16-way, shared, 64B lines, 32-cycle hit
Memory 4GB, 100-cycle latency
Interconnect Shared bus at 2GHz

Linux Kernel Modified v2.6.18

HARP 64 entries for APM, THT, and CLT
Structures 2 addresses per conflict list

BFGTS 2048bit signatures for BFGTS commit routines
Structures 2KB 16-way confidence cache, 64B lines, 1-cycle hit

Fig. 8: Simulation parameters.

Benchmark Input parameters Num Tx

Genome (G) -g4096 -s32 -n524288 5

Intruder (I) -a10 -l32 -n8192 -s1 3

KMeans-High (K) -m15 -n15 -t0.05 -i random50000 12 3

KMeans-Low -m40 -n40 -t0.05 -i random50000 12 3

Labyrinth (L) -i random-x96-y96-z3-n128.txt 3

SSCA2 (S) -s15 -i1.0 -u1.0 -l3 -p3 3

Vacation-High (V) -n8 -q10 -u80 -r65536 -t131072 1

Vacation-Low -n2 -q90 -u98 -r65536 -t131072 1

Yada (Y) -i ttimeu10000.2 6

Fig. 9: STAMP input parameters and number of transactions.

Hardware structure Equation of cost Cost (bytes)

Running Transactions Vector 16 entries × (1 TxID/entry × 48 bits/TxID) 96

Abort Prediction Matrix 64 entries × (64 counters/entry × 2 bits/counter) 1024

Transaction History Table 64 entries × ((1 counter/entry × 16 bits/counter) + (2 counters/entry × 4 bits/counter)) 192

Conflict List Table 64 entries × ((2 addresses/entry × 48 bits/address) + 1 LRU bit/ entry) 776

Conflicting Transaction Information (1 register × 48 bits/register) + (2 registers × 64 bits/register) 18

HARP Total Storage Sum of the above 2.06 KB

BFGTS Total Storage RTV-like structure (96 bytes) + Additional confidence cache (2 KB) + Bloom filter (2048 bits) 2.34 KB

Fig. 10: HARP and BFGTS hardware costs for one core.

Efficiency ratio =
useful tx (cycles)

useful tx + wasted tx + abort recovery + stall/yield/backoff + BFGTS commit routine (cycles)
(1)

In fact, as parallel programming becomes ubiquitous, future

systems would have several multithreaded applications running

concurrently in the common case. To the best of our knowl-

edge, we are the first to study multi-application transactional

scheduling in an HTM environment.

For the first setup where the same number of threads as

cores is used, it is inefficient to yield threads when aborts

are predicted. In order to compare BFGTS and HARP fairly,

we disable the yield option for this particular setup. This can

be accomplished by letting the kernel scheduler notify the

hardware when yielding is not useful, as the scheduler would

have the knowledge to make such decision. We expect such

operating system support to be present in an HTM system. For

the multi-application setup, we had to modify the design of

BFGTS because the original proposal was not able to deal with

multiple applications. In addition, we allow BFGTS to yield.

Originally the library would not yield when the number of

threads is not larger than the number of cores for a particular

application; but we observed that yielding judiciously benefits

BFGTS when threads from different applications are available.

We provide execution time breakdowns, scalability analysis,

and statistics for the evaluated workloads. Execution time

breakdowns are normalized to LogTM, and the following com-

ponents are shown – non-transactional time (non-tx), barriers

time (barrier), useful transactional time (useful-tx), wasted

work from aborted transactions (wasted-tx), time spent in

abort recovery (abort recovery), time spent due to contention

management handling (stall/yield/backoff ), and time spent by

BFGTS in the software commit routine. Prediction cost was

not visible in charts and it is attributed to other components

based on prediction outcome, e.g., to useful-tx if the transac-

tion starts and commits. The statistics that we show include a

metric that captures how effective contention management is

in BFGTS and HARP. This metric, shown in Equation (1), is

an efficiency ratio that compares the amount of useful cycles

with the inherent design overheads due to bad predictions and

serialization costs that lead to inefficient resource utilization.

D. Single-Application Results

One thread per core: Figure 11 presents the execution time

breakdown for the evaluated workloads. Overall, the backoff

strategy employed by LogTM fails to manage contention and

exhibits a large amount of wasted work and serialization

overheads (backoff time) when compared to BFGTS or HARP.

Dynamically avoiding the execution of transactions that are

likely to fail improves performance and scalability by over 2×

on average (see Figure 12), while abort rates diminish by 6×,

as shown in Figure 13. These are clear indicators that proposals

like BFGTS and HARP are likely to have a significant impact

when applied to any HTM system.

Performance improvements of HARP when compared to

BFGTS are due to (a) comprehensive hardware support, yet

with a smaller hardware footprint than BFGTS (see Sec-

tion V-B), thus avoiding software data structures and runtime

routines; and (b) greater prediction accuracy by focussing only

on addresses that actually cause contention. HARP performs

better than BFGTS for all the evaluated workloads, attaining

30.5% performance improvement on average.

The BFGTS commit routine accounts for a significant

amount of the execution time in workloads with small transac-

tions like Intruder (27%) and KMeans-High (11%). This is be-

cause the time spent in the routine, which is used to adjust con-

fidences of conflict, is constant and cannot be amortized when

executing short transactions. Hence, in general, workloads

with small transactions are penalized using BFGTS. However,

HARP use of conflict lists results in a small, fixed maintenance

cost that does not depend on workload characteristics. Having

a better transactional scheduling policy and fewer aborts can

also reduce non-transactional and barrier time. By executing

only those transactions that are likely to commit, interactions

with non-transactional code are minimized, e.g., the number

of stalls when trying to access transactionally modified data

is reduced. In addition, fewer aborts can reduce overall load

imbalance, as it happens in Vacation.
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Fig. 11: Normalized execution time breakdown for 16 threads in single-application workloads. L – LogTM; B – BFGTS; H – HARP.
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Fig. 12: Speedup of 16-threaded executions compared to sequential execution.

Benchmark Abort Rate (%) Efficiency Ratio

LogTM BFGTS HARP BFGTS HARP

Genome 65.3 3.6 3.7 0.64 0.65

Intruder 70.2 14.6 7.3 0.12 0.17

KMeans-H 23.9 9.9 5.3 0.20 0.34

KMeans-L 13.0 3.9 0.5 0.39 0.89

Labyrinth 15.5 7.8 12.7 0.35 0.36

SSCA2 0.0 0.0 0.0 0.83 1.00

Vacation-H 11.6 7.0 2.4 0.79 0.79

Vacation-L 10.0 3.2 1.2 0.87 0.89

Yada 56.8 6.6 5.0 0.13 0.18

Geomean 11.3 3.3 1.9 0.38 0.48

Fig. 13: Benchmark statistics for evaluated systems.

Regarding higher prediction accuracy, HARP offers promis-

ing abort rates (see Figure 13), obtaining near-linear speedup

in KMeans-Low. Moreover, these improvements in abort rate

are not due to overserializing transactions; as our efficiency ra-

tio demonstrates, HARP is 1.27× more efficient than BFGTS

in terms of useful computational cycles. This indicates that

the conflict lists and the dynamically adaptable decay quickly

adjust the confidences of conflict in accordance with actual

contention levels that are present at any given time. In fact, in

workloads like KMeans and Yada where contention varies with

time, the decay allows to optimistically execute transactions

faster when necessary – e.g., in Yada BFGTS overserializes

transactions that could run in parallel (note the large stall

time), but HARP decay logic detects this fact, allowing parallel

execution while maintaining a lower abort rate.

Four threads per core: We execute the benchmarks with

64 threads, pinning 4 threads to each core. Both BFGTS and

HARP present similar execution time breakdowns for all the

benchmarks when compared to their 16-threaded executions.

HARP attains an average speedup of 25.8% over BFGTS due

to no software runtime overheads and less serialization (stall

and yield time) as a result of better predictions, with average

abort rates of 4.1% for BFGTS and 2.8% for HARP.

However, an interesting point is to determine if such an

overcommitted system is beneficial by comparing these work-

loads to their 16 threaded counterparts. Workloads with few

transactions are not likely to benefit from an overcommitted

system. This is the case of Vacation, which only has one

transaction defined in the code, hence less room for improve-

ment when switching to a different thread. Also workloads like

SSCA2 and KMeans-Low where contention is minimal cannot

scale further, and the overheads of managing additional threads

can hurt scalability – e.g., in SSCA2 there is a significant loss

of scalability from 10× to 3.5× (see Figure 14).

Yada exhibits significant benefits for all the evaluated sys-

tems when using 64 threads, as Figure 14 shows, where striped

bars indicate configurations with better scalability than in the

16-threaded setup. Yada has the largest number of transactions

(six). Moreover, its transactions are large with moderate con-

tention. With these characteristics it is easier to find additional

parallelism when switching between different threads, because

the chances of executing a non-conflicting transaction are

higher. In addition, large transactions help amortize yield time

costs. Yada is the only benchmark that significantly improves

its efficiency ratio when using 64 threads, from 0.18 to 0.31 for

HARP. Our results suggest that large transactional codes, with

medium or large transactions, may be necessary to benefit from

overcommitted setups. This is likely to become a common case

as more transactional applications become available.
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Fig. 14: Speedup of 64-threaded executions compared to sequential execution.
Striped bars indicate significant performance boost compared to 16-threaded
executions.

E. Multi-Application Results

In this setup, each core executes two threads from different

applications. We only consider the ’-High’ versions of KMeans

and Vacation, and evaluate all the possible combinations of

2 applications out of the 7 possible, which amounts to 21
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Fig. 15: Normalized execution time breakdown for multi-application workloads. L – LogTM; B – BFGTS; H – HARP.
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Fig. 16: Speedup compared to single core execution.

Benchmark Abort Rate (%) Efficiency Ratio

LogTM BFGTS HARP BFGTS HARP

GL 90.1 32.4 3.7 0.28 0.46

GS 34.8 2.9 1.1 0.54 0.81

IK 46.9 21.4 15.2 0.09 0.09

IS 43.2 17.9 14.7 0.11 0.10

IV 37.6 25.6 3.1 0.40 0.79

KV 17.1 11.6 2.8 0.57 0.86

KY 23.2 8.3 4.4 0.29 0.54

LS 0.0 0.0 0.0 0.36 0.37

YL 94.2 41.5 3.1 0.39 0.45

Geomean (ALL) 24.1 7.3 3.3 0.38 0.47

Fig. 17: Benchmark statistics for evaluated systems.

different workloads. The workloads are named with the initials

of each application, the legend is in Figure 9 – e.g., ’GL’ exe-

cutes Genome and Labyrinth. To make accurate measurements,

we synchronize the two applications at the beginning of their

parallel sections. When an application reaches the end of its

parallel section, that application is no longer considered for

execution. Similarly, when a core finishes all of its threads

(applications), that core is considered to be available for other

tasks, and hence does not contribute to the execution time. To

measure scalability, the slowest core is considered.

Figure 15 shows the execution time breakdown and Fig-

ure 16 the scalability results. We show a representative selec-

tion of 9 workloads, plus the geometric mean which considers

the 21 evaluated workloads. LogTM fails to deliver good

performance, experiencing a large number of aborts and high

backoff overheads. Thus, policies that cannot dynamically

decide what is the best course of action are not suitable for

future systems where parallel applications might be dominant.

However, BFGTS and HARP deliver higher performance

because they can swap potentially wasted computation for

potentially useful work.

HARP performs better than BFGTS for all the evaluated

workloads, achieving a 29.5% improvement on average. This

is due to four main reasons. First, BFGTS is overly pessimistic

in general, leading to a larger serialization time (stall and

yield). We observe a notably larger number of predicted con-

flicts in GL, GS, KV, KY, and IV; in the latter BFGTS predicts

4× more conflicts. Second, HARP makes better predictions

than BFGTS; as Figure 17 indicates, even though HARP

predicts a lower number of conflicts, it still attains remarkably

better abort rates. Hence, HARP allows for increased parallel

execution of transactions while keeping lower abort rates.

Third, BFGTS decides whether to stall or yield depending on

the number of cache lines touched by the transaction, which

we find is less accurate than HARP’s approach that uses actual

execution time. Finally, as observed before, small transactions

(Intruder and KMeans) penalize BFGTS performance by in-

creasing the software commit routine time.

Labyrinth and Intruder have lower scalability and signifi-

cantly larger execution time than KMeans and SSCA2. Hence,

scalability for IK, IS, and LS tends to be close to that seen

in Labyrinth and Intruder for single-application (Figure 12).

However, for combinations where the execution time is more

evenly distributed, like IV and KY, we can observe how

scalability is significantly higher than the one reported for

Intruder and Yada respectively. YL achieves 6.1× speedup,

higher than both Yada and Labyrinth when executed as single

applications.

F. Sensitivity analysis

System parameters: We evaluate our technique changing two

major system parameters. First, we modified the size of HARP

hardware structures to have no collisions (i.e., two different

TxID’s mapping to the same entry) for the multi-application

setup, since for single-application no collisions were found.

Our results with no collisions did not show any significant

changes in the abort rates of the affected multi-application

workloads. This is because very few collisions were present

in the first place, one in GS and one in GY.

Second, we looked into conflict lists size sensitivity.

Throughout our evaluation, we have used conflict lists of size

2. We evaluate single-application workloads with conflict lists

of size 1 and 4. Low contention applications like SSCA2

are not affected by the conflict lists size, due to their low

conflict rates. High contention applications like Labyrinth,

Yada, and Intruder did not experience significant variation

either due to a single dominant conflicting address, as shown in
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Fig. 18: Communication and prediction overheads of evaluated systems at
different commit rates. Using Eigenbench with varying transaction sizes, 128K
iterations and 16 cores.

Figure 3. However, ’-High’ versions of KMeans and Vacation

present moderate contention and show a significant drop in

performance when using conflict lists of size 1. This is because

they have a larger set of conflicting addresses, with no domi-

nant address, which makes HARP schedule too optimistically.

Overall, we find that conflict lists of size 2 offer the best trade-

off between performance and hardware cost.

Communication and prediction overheads: We expect un-

contended scenarios demanding high commit throughput to

expose communication and prediction overheads. We repeat

the experiment from Section III, see Figure 18, adding HARP

and a version of HARP that stores and maintains the THT and

CLT structures in software (HARP-SW). HARP experiences

a 7% slowdown for the smallest transaction size, due to

communication and prediction latencies not being amortized.

However, HARP rapidly closes the gap in performance with

respect to LogTM, confirming that broadcast messages do not

hinder scalability. In contrast, both HARP-SW and BFGTS

have a severe performance drop, mainly due to additional code

executed at commit time, which can make executed transaction

several times larger. HARP-SW remains slightly better than

BFGTS because its software operations are simpler.

Multi-application using four applications: We also evaluate

a multi-application setup using four applications concurrently,

which amounts to 35 different workloads. HARP again out-

performs BFGTS by 20.3% on average, and attains scalability

similar to that seen in the two application setup, 6.5×. In this

scenario collisions did not affect performance either.

VI. CONCLUSIONS

In spite of much research, HTM performance is susceptible

to degradation when contention is present. Moreover, parallel

programming is becoming the norm, and systems with several

parallel applications will be increasingly common. Techniques

that minimize the amount of wasted work due to misspec-

ulation and maximize computational resource utilization are

necessary for TM to gain wide acceptance.

This work proposed HARP, a hardware mechanism that

efficiently predicts future conflicts and avoids speculation

when the probability of contention is high. The resources thus

freed are, when it is deemed advantageous, utilized to schedule

possibly non-conflicting codes, thereby improving concurrency

and throughput. The design provides seamless support for both

single-application and multi-application scenarios. Our inves-

tigation has shown that HARP outperforms, by a substantial

margin, both LogTM, a popular HTM proposal, and BFGTS,

the state-of-the-art proactive transaction scheduling scheme

prior to this work. This is achieved with modest hardware

support comprising three simple tagless structures in each

core. Since HARP does not rely on software runtimes and

data structures, it presents little management overhead, while

simultaneously keeping the architecture relatively independent

of the software that runs on it. In addition, HARP predic-

tions can be leveraged to implement aggressive power saving

schemes when no useful computation can be scheduled. We

see this area as a potential direction for future work.
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