
Loop Level Speculation in a Task Based Programming Model

Rahulkumar Gayatri
Barcelona Supercomputing Center

Barcelona, Spain
Email: rgayatri@bsc.es

Rosa. M Badia
Barcelona Supercomputing Center

Barcelona
Artificial Intelligence Research Institute (IIIA),

Spanish National Research Council (CSIC), Spain
Email: rosa.m.badia@bsc.es

Eduard Aygaude
Barcelona Supercomputing Center

Barcelona, Spain
Universitat Politècnica de Catalunya,

Spain
Email: eduard.aygaude@bsc.es

Abstract—Uncountable loops (such as while loops in C)
and if-conditions are some of the most common constructs in
programming. While-loops are widely used to determine the
convergence in linear algebra algorithms or goal finding prob-
lems from graph algorithms, to name a few. In general while-
loops are used whenever the loop iteration space, the number
of iterations a loop executes is unknown. Usually in while-loops,
the execution of the next iteration is decided inside the current
loop iteration (i.e. the execution of iteration i depends on the
values computed in iteration i-1). This precludes their parallel
execution in today’s ubiquitous multi-core architectures. In this
paper a technique to speculatively create parallel tasks from the
next iterations before the current one completes is proposed.
If consecutive loop-iterations are only control dependent, then
multiple iterations can be executed simultaneously; later in the
execution path, the runtime system will decide to either commit
the results of such speculatively executed iterations or undo the
changes made by them. Data dependences within or between
non-speculative and speculative work are honored to guarantee
correctness. The proposed technique is implemented in SMPSs,
a task-based dataflow programming model for shared-memory
multiprocessor architectures. The approach is evaluated on a
set of applications from graph algorithms and linear algebra.
Results are promising with an average increase in the speedup
of 1.2x with 16 threads when compared to non speculative
execution of the applications. The increase in the speedup is
significant, since the performance gain is achieved over an
already parallelized version of the benchmarks.

Keywords-SMPSs; Iteration space; Speculation; Program-
ming Models;

I. INTRODUCTION

Loops and conditionals are some of the most commonly
used programming constructs, of which while-loops and if-
conditions are predominant. As any loop can be converted
into a while-loop, our current work is focused on while-loops
and if-conditions. Goal finding problems and convergence
algorithms like the Jacobi method and Gauss-Seidel [2]
from linear algebra are some of the most common areas
where while-loops are used. Such loops run until either a
goal is found or some threshold is reached. This implies
that the number of iterations that the loop executes is
unknown until termination. An attempt to parallelize such
loops, without the knowledge of the loop-iteration space,
leads to the sequential execution of these iterations. The

main reason for the sequential execution of the loops is the
inability to predict the execution of iteration i until some
values from iteration i-1 have been updated. Hence even
though in practice these loops execute for multiple iterations
before termination, they cannot be executed in parallel. For
example, consider the following pseudo-code of a while-loop
which executes until a certain goal is found:

1 while(!goal_achieved)
2 {
3 newBFD = pop_queue();
4 subst(refCFG, newBFD, newCFG);
5 dimemas(newCFG, trace, dimOUT);
6 extract(newBWD, dimOUT, finalOUT);
7 check(finalOUT, goal_achieved);
8 }

Listing 1: Example pseudo code

Every iteration of the while loop in Listing 1, pops a new
element newBFD from a queue. The subst function uses
newBFD and a configuration parameter, refCFG as input
to generate a new configuration parameter called newCFG.
The dimemas function uses newCFG and a trace parameter
to generate an output called dimOUT. The extract function
then uses newBFD and dimOUT to generate the final output
called finalOUT. A check is then performed to evaluate
whether finalOUT is the goal that is being searched. The
loop terminates when the goal is reached.
The functions in a single iteration of Listing 1 are dependent
on each other and hence should be executed sequentially to
maintain correctness. But since every iteration is based on
an element popped inside the iteration, consecutive iterations
are independent of each other. This implies that multiple
iterations can be executed in parallel. In effect the while-
loop shown in Listing 1 consists of only inter-loop paral-
lelism but not intra-loop parallelism. In most cases, such a
loop runs for multiple iterations before termination, but no
information can be obtained about the available parallelism
due to the lack of knowledge of the loop-iteration space.
On multi-core architectures such sequential execution of
loop-iterations hamper parallelism and lead to an under-
utilization of the available resources. An ideal case would
be to execute multiple iterations of the loop simultaneously.

39



But when the loop-predicate evaluates to false, i.e., when
the goal achieved evaluates to true, the information should
be propagated across the iterations and the loop should be
terminated.
To overcome this problem we implement and evaluate the
technique of speculative generation and execution of loop
iterations ahead of time. If there are loop carried dependen-
cies between iterations of the loop, i.e, if values produced in
iteration i-1 are consumed in iteration i, then the execution
of iteration i-1 can only be overlapped with generation of
iteration i. In the cases where consecutive loop iterations
are independent, as in Listing 1 iteration i and iteration
i-1 can be simultaneously executed. But the results from
iteration i should be committed only after its validity is
confirmed. The idea is an extension to our previous work
on speculative updates to shared memory locations using
Software Transactional Memory (STM) [7].
We implement our idea in StarSs[10], a task based program-
ming model with support for heterogeneity. StarSs has im-
plementations for widely used multi-core architectures such
as Symmetric Multiprocessors (SMP), the Cell Broadband
Engine (Cell B./E.), Graphical Processing Units (GPU) and
clusters. In this paper we focus on SMPSs, an implementa-
tion of StarSs for Symmetric Multiprocessors. Programmers
write sequential applications and annotate parts of the code
as units of computation or tasks. The SMPSs runtime
exploits the inherent parallelism. The SMPSs framework
is explained in more detail in Section 2. To evaluate a
valid loop predicate for the next iteration of the loop, a
synchronization is used at the end of the iteration. The use
of the synchronization pragma blocks the task generation
at the end of the loop iteration. This inability to generate
tasks from multiple iterations restricts parallelism. Hence we
speculatively generate tasks from iterations ahead in time.
In the rest of the paper we use the terminology, speculative
tasks for tasks that are speculatively generated. Depending
on the type of loop-carried dependencies, speculative tasks
are either simultaneously executed or blocked until their
dependencies have been resolved. If the loop iterations are
control dependent, then tasks from consecutive iterations are
executed simultaneously, but committing the results of such
speculative tasks is postponed until later stages of execution
when their validity is confirmed.
The main contributions of the paper are :

• Speculative generation and execution of tasks from
multiple loop iterations.

• Overlapping task generation with task execution in case
of synchronization pragmas. This reduces the overhead
of task generation which is not present in the sequential
execution.

• Evaluation of the performance on graph algorithms and
linear algebra applications.

The work presented in this paper is organized as follows:
Section 2 explains the SMPSs programming model. Section
3 discusses in detail the need for speculation in SMPSs.
Section 4 discusses at a higher level, the changes made to
the SMPSs compiler and the runtime to introduce speculative
generation and execution of tasks. Section 5 presents the
results and detailed analysis of applications from the domain
of graph algorithms and linear algebra. We evaluate our idea
of speculative task generation on these applications. Section
6 presents our conclusions.

II. SMPSS

SMP Superscalar (SMPSs)[11] is a task based program-
ming model. It is based on data flow analysis done at the
runtime. SMPSs consists of a source-to-source compiler
and a runtime. The programmer writes sequential code and
annotates parts of the code that can potentially be executed
in parallel. SMPSs compiler provides pragmas for such
annotations. These annotated parts of code are treated as
tasks or independent units of computation. The annotation of
tasks does not guarantee their parallel execution. The SMPSs
runtime analyzes the data dependencies between the tasks
and schedules them only after their dependencies have been
resolved.

A. SMPSs Syntax

The syntax for annotating tasks is:

1 #pragma css task [clauses]
2 function definition / function declaration

Listing 2: Syntax of a Task Declaration

The clauses indicate the directionality of the parameters
passed to the task. The types of clauses supported by the
SMPSs compiler are:

1 input ([list of parameters]) //read only
2 output ([list of parameters]) //write only
3 inout ([list of parameters]) // read and

write
4 reduction ([list of parameters]) // allows

parallel updates

Listing 3: Clauses in a task declaration

In Listing 4, subst function from Listing 1 is annotated as
a task

1 #pragma css task input(refCFG,newBFD) \
2 output(newCFG)
3 void subst(refCFG, newBFD, newCFG);

Listing 4: Example of a task pragma

Since refCFG and newBFD are used to produce newCFG in
the subst task, they are passed to input and output clauses
respectively.
Reduction clause in SMPSs relaxes the dependency tracking
for memory locations passed in this clause. This allows
the tasks to concurrently update those memory locations.

40



1 2

7 8 9

3 4 5 6

Figure 1: TDG of Kmeans.

Protection of such parallel updates is the responsibility of
the programmer. In our previous work [7], we explored
the idea of speculatively updating shared memory locations
in SMPSs. Technique of optimistic updates to the shared
memory using Software Transactional Memory (STM)[9]
versus pessimistic updates using locks was evaluated and
analyzed. The results showed better performance of STM
when used in applications with high lock contention. The
current work is an extension from the speculative updates
performed on shared memory to the speculative generation
and execution of tasks.

B. SMPSs Runtime

SMPSs runtime comprises of a main thread and multiple
worker threads. The main thread of SMPSs executes the ap-
plication code and builds a Task Dependency Graph (TDG)
based on the data accesses performed by the tasks. The data
flow analysis used to build the TDG is done based on the
directionality information of the parameters passed to the
task through its clauses. The TDG consists of nodes which
represent a single instance of a given task and edges, whose
directions denote the data dependencies between the tasks.
An edge from task A to task B indicates a data dependency
from A to B. Hence the execution of A should precede the
execution of B. The TDG of Kmeans for a single iteration is
shown in Figure 1. Nodes with same color represent multiple
instances of the same task. For example, from Listing 7,
subst task from multiple loop iterations will have the same
color. Tasks with no incoming edges indicate that all their
data dependencies have been resolved and are scheduled on
different worker threads of the SMP. This guarantees the
correctness of the application.
In this way SMPSs shifts the burden of identifying data
dependencies, movement of data among the processors and
scheduling independent tasks to different threads from the
programmer to the runtime. The SMPSs runtime only detects
data dependences between tasks. Control dependences have
to be forcefully applied by the explicit use of synchroniza-
tion pragmas.

C. Synchronization

In case of control dependencies, the main thread of
SMPSs has to be explicitly blocked. For this SMPSs pro-
vides synchronization pragmas such as:

1 #pragma css wait on(a)

Listing 5: Task wait pragma

Listing 5 pragma will halt the main thread until the last task
updating ”a” has finished execution.

1 #pragma css barrier

Listing 6: Barrier Pragma

Listing 6 halts the main thread until all previously gener-
ated tasks have been executed. The use of synchronization
pragmas has a negative effect on parallelism. For example as
mentioned earlier, if functions from Listing 1 are annotated
as tasks, a synchronization is required at the end of every
iteration of the loop.
To parallelize Listing 1 using SMPSs, the functions are
annotated as tasks in the following way:

1 #pragma css task input(newBFD,refCFG) \
2 inout(newCFG)
3 void subst(refCFG, newBFD, newCFG);
4
5 #pragma css task input(newCFG,trace) \
6 output(dimOUT)
7 void dimemas(newCFG, trace, dimOUT);
8
9 #pragma css task input(newBWD,dimOUT) \

10 output(finalOUT)
11 void extract(newBWD, dimOUT, finalOUT);
12
13 #pragma css task input(finalOUT) \
14 output(goal_achieved)
15 void check(finalOUT, goal_achieved);
16
17 while(!goal_achieved)
18 {
19 newBFD = pop_queue();
20 subst(refCFG, newBFD, newCFG);
21 dimemas(newCFG, trace, dimOUT);
22 extract(newBWD, dimOUT, finalOUT);
23 check(finalOUT, goal_achieved);
24
25 #pragma css wait on(goal_achieved)
26 }

Listing 7: SMPSs pseudo code for Listing 1

For each iteration, one instance of these tasks will be added
to the TDG. Since the tasks in a single loop iteration are
dependent on each other they cannot be executed simulta-
neously. A wait pragma is used at the end of the iteration,
to calculate the loop predicate for the next iteration. Since
each of the 4 tasks can potentially be executed on different
threads, a wait pragma is required to evaluate the loop
predicate for the next iteration. Figure 2 shows the TDG for
Listing 7. Even though multiple iterations are independent of
each other, the wait pragma at the end of the loop-iteration
limits the ability to extract parallelism from the loop. The
wait-pragma is a necessity due to the lack of knowledge of
the loop-iteration space. The synchronization pragma (wait-
pragma) along with dependencies between tasks does not

41



subst
Task

dimemas
Task

extract
Task

check
Task

iteration i-1 iteration i iteration i+1wait wait

Time

subst
Task

dimemas
Task

extract
Task

check
Task

subst
Task

dimemas
Task

extract
Task

check
Task

Figure 2: TDG of Listing 7

allow extraction of any parallelism.
In order to avoid this problem, we present a technique of
speculative generation of tasks from multiple iterations.

III. SPECULATION IN SMPSS

To extract more parallelism from a while-loop, we spec-
ulatively generate tasks. We achieve this by avoiding the
use of synchronization pragmas that block the generation
of work. Later the speculatively generated tasks will be
validated by the runtime. Figure 3 shows the TDG for
Listing 7, when the wait-pragma is avoided. From Figure

subst
Task

Time

subst
Task

subst
Task

dimemas
Task

dimemas
Task

dimemas
Task

extract
Task

extract
Task

extract
Task

check
Task

check
Task

check
Task

iteration i-1

iteration i

iteration i+1

Figure 3: Ideal Speculative TDG of Listing 7

3 we observe an increase in the parallelism extracted from
Listing 7. But this is an ideal case. The reason is explained
in Section 4.
We describe the terminology that will be used in rest of the
paper:

1) Valid tasks - Valid tasks are tasks that are generated
even with the synchronization pragma. Skipping the
synchronization pragma, does not guarantee the valid-
ity of generation of certain tasks. Hence tasks gener-
ated from iterations where our speculation succeeds
are called valid tasks.

2) Invalid tasks - Tasks generated from iterations where
speculation fails are invalid tasks. Updates made by
these tasks have to be discarded to maintain correct-
ness.

Consecutive iterations of the loop can either be control
or data dependent on each other. If loop iterations are
data dependent, then SMPSs runtime will add dependencies
between speculative and non-speculative tasks and guarantee
the execution of speculative tasks only after the dependen-
cies are resolved. But if the loop iterations are only control
dependent, then simultaneous execution of speculative and
non-speculative tasks is possible. Since control dependence
is enforced using synchronization pragmas, avoiding the

pragma would lead to independent tasks being speculatively
added to the TDG. This leads to generation and simultaneous
execution of speculative tasks along with non-speculative
tasks.
Speculative execution of loop-iterations implies that the
main thread of SMPSs generates tasks from multiple iter-
ations without a check of the loop predicate. Hence before
the results of such speculatively generated tasks are com-
mitted, their validity needs to be ascertained by the worker
threads executing these tasks. The information regarding the
evaluation of validity of such speculative tasks, has to be
made available to the worker threads executing these tasks.
Also, if the evaluation fails, i.e., if the speculative tasks are
invalid, updates made to the memory by such tasks have to
be undone.
To implement the idea of speculative task generation in
SMPSs, two of the main issues to be tackled are:

1) Evaluating the validity of tasks - How to propagate
information required to evaluate the validity of spec-
ulatively generated tasks to worker threads?

2) Rollback of invalid tasks - How to undo results and
rollback the changes made by the invalid tasks ?

The following two sections tackle the challenges mentioned
above.

A. Pragma for speculation in SMPSs

A new pragma has been added to the SMPSs compiler
to annotate a while-loop as speculative. This directive states
that the tasks from the loop that follows this pragma will
be speculatively generated and if possible executed ahead in
time. To annotate a while-loop as being speculative, a new
directive is added to the SMPSs framework. The speculate
pragma along with its clauses is shown below:

1 #pragma css speculate values(x) wait(y)

Listing 8: Speculation Pragma

The clauses for this pragma are:
• values: contains parameters of tasks which are called

from inside the while loop. The values of these pa-
rameters must be protected from invalid tasks. Instead
of guarding all the updates performed by these tasks,
the programmer can indicate the task parameters whose
values need to be protected. Such parameters are passed
to the values clause.

• wait: contains variables whose values determine the
continuation of the loop.

By using the speculate pragma, Listing 7 can be transformed
into:

1 #pragma css speculate values(finalOUT) \
2 wait(goal_achieved)
3 while(!goal_achieved)
4 {
5 newbd = pop_queue() ;

42



6 subst(refCFG, newBFD, newCFG);
7 dimemas(newCFG, trace, dimOUT);
8 extract(newBWD, dimOUT, finalOUT);
9 check(finalOUT, goal_achieved);

10 }

Listing 9: Speculative loop for Listing 7

As observed in Listing 9, there is no wait pragma at
the end of the loop-iteration. The speculate pragma will
generate tasks from multiple iterations of the loop but will
check for their validity before committing their results. The
information in the finalOUT will be protected by updates
from invalid tasks since it has been passed to the values
clause (line 1 Listing 9). The values of goal achieved will
be used to verify the validity of speculatively generated
tasks (line 2 of Listing 9).

IV. IMPLEMENTATION

To implement the idea of speculative task generation and
execution in SMPSs, the existing compiler and runtime of
the SMPSs framework are modified. The compiler trans-
forms the input code in order to convey the information re-
garding two important aspects of speculative task generation
and execution to the runtime:

1) Evaluating the validity of a speculative task.
2) Rolling back of updates done by invalid tasks.

The compiler marks the speculative tasks with special flags
to differentiate them from regular tasks. The runtime uses
this information to achieve speculative execution of tasks.

A. SMPSs compiler modifications

The SMPSs compiler was extended to include the specu-
late pragma along with its clauses, values and wait (Listing
8). In order to evaluate the validity of a speculative task, the
SMPSs worker thread executing this task should either be
provided with the value of the loop-predicate corresponding
to its respective iteration or should have the necessary infor-
mation to evaluate this value. We use the latter technique.
The SMPSs compiler generates a guard function when it
encounters the speculate pragma. This function evaluates
the loop-condition predicate. The function is composed of
a single statement, namely the expression from the loop
condition. For example, the guard function for Listing 9 is:

1 int guard (void *speculate_params[1])
2 {
3 return (!*(speculate_params[0]));
4 }
5 speculate_params[0] = &goal_achieved ;

Listing 10: Guard function for Listing 9

Threads executing the speculative tasks use this function to
evaluate the validity of the tasks.
The compiler parses and analyzes the expressions used
in the loop predicate. It then adds addresses of each of

these parameters to the speculate params structure. This
structure and the guard function are passed as additional
parameters to the task. In Listing 10, we observe that the
speculate params contains a single element namely the
address of goal achieved . The worker thread will pass
the speculate params as a parameter to the guard function
and evaluate the validity of the speculative task. This is
the transformation done by the SMPSs compiler to the
application code to assist the runtime in evaluating the
validity of the speculative task.
The SMPSs compiler marks the task parameters with special
flags. Based on the clauses the task parameters are marked
them with input, output or inout flags. The SMPSs runtime
uses this information to analyze the data flow and build
the TDG. To aid the runtime in differentiating between
parameters passed to the values clause and other task pa-
rameters a new speculation flag is added to the SMPSs
framework. The compiler iterates over each of the task
parameters annotated inside the while-loop and compares
them with variables passed to the values clause. If there is a
match, it marks the parameter found with a new flag called
css speculation flag. This indicates to the runtime that the
updates performed on this variable needs to be protected
while executing the speculative tasks. This additional flag
is added only to the parameters that are passed into the
values clause. For example in Listing 9, only the parameter
finalOUT from extract task is be marked with this flag. In
this way the compiler transforms the given application code
in order to assist the SMPSs runtime in tackling of the issues
mentioned at the start of this section.

B. SMPSs runtime changes

The main thread of SMPSs starts executing the thus
transformed code by the compiler.

1) Main thread of SMPSs: During execution, the SMPSs
main thread detects a task as being a speculative task if at
least one of its parameters is marked with the speculation
flag. This implies that a task is speculative if and only
if one of its parameters is passed to the values clause of
the speculate pragma. The tasks which appear inside the
speculative loop but whose parameters need not be protected
from invalid instances are not marked as speculative tasks.
For example in Listing 9, only instances of extract are
marked as speculative. Since the values updated by instances
of subst, dimemas and check are not required to be
valid at the end of the loop (i.e., when the loop terminates),
protecting the updates done by the invalid instances of these
tasks would be a waste of resources.
Every iteration of the loop is control dependent on the loop
predicate of the corresponding iteration. Hence when the
main thread detects a speculative task, it adds an input
dependency between tasks that access the addresses passed
to the speculate params array and the current task. The
dependency is added only between the current speculative

43



task and previous instances of the tasks which update the
memory locations passed to the speculate params structure.
The dependency is required to maintain the validity of
the values which are used to evaluate the guard function.
In Listing 9, to confirm the validity extract, we need a
valid value of goal achieved, updated inside check from
the previous iteration. Hence an input dependency is added
between check task from the previous iteration to the extract
task of the current iteration. The speculative task is then
added to the TDG of the application. Figure 4 shows the
TDG of Listing 9 along with its dependencies. If there

subst
Task

Time

subst
Task

subst
Task

dimemas
Task

dimemas
Task

dimemas
Task

extract
Task

extract
Task

extract
Task

check
Task

check
Task

check
Task

iteration i-1

iteration i

iteration i+1

Figure 4: Realistic Speculative TDG of Listing 9

are data dependencies within or between non speculative
and speculative tasks, then the SMPSs runtime honors them
by adding edges leading into these tasks in the TDG.
This guarantees the correctness of the application. In such
cases, the speculative tasks from consecutive iterations are
generated but not executed. Even though this leads to only
overlapping task generation with task execution, it is an
important performance gain since it reduces the runtime
overhead incurred due to synchronization.

2) Worker threads of SMPSs.: The thread executing the
speculative task, makes a temporary copy of the parameters
marked with the css speculation task flag. The amount of
data to be buffered depends on the size of the parameter. The
SMPSs runtime has the information regarding the memory
accessed on behalf of each parameter since it uses this
information to analyze data dependencies between tasks.
For example in Listing 9 a temporary buffer is created for
finalOUT for each instance of the extract task. The instances
of extract tasks are then executed. After the execution a
check is made using the pointer to the guard function. If the
check evaluates to true, i.e., the speculation succeeds then
the speculative tasks successfully complete its execution.
Otherwise the updates done on the parameters passed to the
values clause are rolled back. If the check evaluates to false,
the results in buffers are copied to their actual memory loca-
tions. Rolling back in our case involves the copy of the buffer
values to the parameters marked with css speculation task
flag due to mis-speculation. The overhead involved in our
idea of speculative execution of tasks:

• For valid tasks: one memory copy.

• For invalid tasks: two memory copies, one before the
execution and one after execution as our speculation
failed.

Also there is an additional overhead involved in evaluating
the validity of the speculative task using the guard function.
In this way the main thread and worker threads of SMPSs
make use of the information provided by the compiler
to achieve the speculative execution of tasks from loop-
iterations ahead in time.

C. Amount of Speculation Allowed

The amount of speculation allowed implies how many
iterations should be speculatively generated ahead of time.
More speculation implies more generation of work resulting
into an increase in parallelism. But this may also lead to an
increase in the number of speculatively generated invalid
tasks. The trade off is between an increase in parallelism
versus time and resources spent on the execution of invalid
tasks. The maximum task count in SMPSs is 1000 by
default 1. This implies that the main thread continues to
generate tasks until either it is explicitly blocked or the
number of nodes in the TDG reaches 1000. Hence if
we do not limit the number of speculative tasks that are
generated, the main thread will generate 1000 tasks, i.e.,
1000/tasks per iteration iterations. Often this may lead to
the generation of a large number of invalid tasks. Hence in
order to control this, a new environment variable was added
to the SMPSs runtime(css speculation tasks). By default,
the value of this environment variable is 10. This implies
that tasks from 10 iterations ahead in time will be added to
the TDG. The main thread then stops the task generation
until these tasks have been executed and again generates
tasks from another 10 iterations in case the loop needs to
be continued. The programmer can use this environment
variable to control the amount of speculation.

V. RESULTS

We tested our idea on four applications from the domain
of linear algebra and graph algorithms. The performance
comparison is done between SMPSs version of these
applications using the speculate clause and without (i.e.,
the version which uses synchronization pragma at the end
of loop iteration).

1) Gauss-Seidel Method - Gauss-Seidel method is a
technique for solving n equations of a linear system
of equations, Ax=b. The coefficients of the equation
are improved in every iteration using the formula,
xk+1=D−1(b-Rxk), where D is the diagonal compo-
nent of A and R is the remainder. The algorithm runs

1This is the SMPSs runtime feature for memory management and to
control the size of the graph

44



in a loop until the absolute approximate error is less
than a prespecified tolerance for all unknowns. Hence
at the end of every iteration a wait is performed to
check the convergence. To avoid this a wait, speculate
pragma is used.

2) Jacobi - Jacobi is a classical linear iterative solver
which approximates all the unknown variables at a
time.

3) Kmeans - In statistics and machine learning, k-means
clustering is a method of cluster analysis which aims
to partition n observations into k clusters where each
observation belongs to the cluster with the nearest
mean.

4) Lee-routing - Given a maze, this benchmark finds
the shortest-distance paths between pairs of starting
and ending points. We present the results of Lee-
routing separately since this is the only application
in our analysis where in the loop iterations are control
dependent.
The above mentioned applications were executed on
a IBM dx360 M4 node. It contains 2x E5-2670
SandyBridge-EP 2.6GHz cache 20MB 8-cores. Thread
affinity was controlled by assigning one thread to each
core.
The applications were executed with two different
problem sizes. Jacobi and Gauss-Seidel were executed
with 4096 and 8192 unknowns respectively. Kmeans
was executed with 1 million and 10 million data points
respectively.

Performance evaluation is done on four major aspects of
speculative execution, namely,

1) Speedup - Speedup of the speculative versions of the
application

2) Normalized execution - Normalized execution time
of the applications compared to their non-speculative
version using the formula
Nt = Tns / Ts, where,
Tns - time taken by non speculative version
Ts - time taken by speculative version .

3) Amount of speculation allowed - Iteration window
space for speculation.

4) Task wait time - Time spent by threads in waiting for
tasks.

A. Speedup

Figure 5 shows the speedup of the speculative version of
the Jacobi algorithm with two different problem sizes. The
wait at the end of every iteration of the loop to check for the
convergence is avoided. Tasks from consecutive iterations
are data dependent and hence we can only overlap the
generation of speculative tasks with the execution of tasks
from the current iteration. But by increasing the problem size
we achieve a higher performance due to the inherent intra-
loop parallelism present in the algorithm. An increase in

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of threads

Speedup of Jacobi
problem size=4096
problem size=8192

Figure 5: Speedup of Jacobi algorithm.

the problem size implies an increase in the number of tasks
generated in each iteration and an increase in the number of
speculative tasks added to the TDG. Both of them combined
allow effective use of the available resources which leads to
a higher speedup with an increase in the problem size. Fig 6

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of threads

Speedup of Gauss-Seidel
problem size=4096
problem size=8192

Figure 6: Speedup of Gauss Seidel algorithm.

shows the speedup of the speculative version of Gauss-Seidel
algorithm for similar problem sizes. Gauss-Seidel converges
faster but does not scale similar to Jacobi. Also similar
to Jacobi, tasks from consecutive iterations of Gauss-seidel
algorithm are data dependent. With an increase in problem
size there are more tasks are speculatively added to the TDG
which allows a better usage of available resources. Hence
we observe an increase in the speedup with higher number
of threads for a larger problem size.

Fig 7 shows the speedup of Kmeans algorithm with 1
million and 10 million data points. In every iteration of
kmeans, the cluster centers are updated and the error is
calculated. If the error is less than a specified tolerance level
then the loop terminates. Tasks from every iteration update
on the same block of clusters. Hence tasks from consecutive
iterations are data dependent. But since in a single loop,
parallel updating of clusters can be done, we obtain a lot of
intra-loop parallelism which is seen in the figure since both
the problem sizes scale similarly. Speculative tasks are only
added to the TDG and executed only when possible.

45



 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of threads

Speedup of Kmeans
problem size = 1M
problem size=10M

Figure 7: Speedup of Kmeans algorithm

B. Normalized Results

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

1 2 4 6 8 10 12 14 16

N
t

Number of threads

Speculative version normalized to non-speculative version

Jacobi-4096
Gauss Seidel-4096

Kmeans-1M

Figure 8: Normalized Speculative execution.

Figure 8 shows normalized time of speculative execution
to non speculative execution for smaller problem sizes. All
three applications achieve higher performance with increas-
ing number of threads. The non speculative versions of the
applications generate enough parallelism to occupy smaller
number of threads . But with an increase in the number
of cores there are more execution resources to execute
speculative tasks. Hence speculative execution gains with
increasing number of threads. Jacobi and Kmeans offer intra-
loop parallelism to a higher degree which allows even the
non-speculative versions of their algorithms to scale. With
16 threads Jacobi and Kmeans show an increase of 1.21x and
1.26x respectively when compared to their non-speculative
versions. In comparison Gauss-Seidel gains only 1.14x. But
still it is a significant improvement since the comparison is
being done with a parallel version of the algorithm. Figure
9 shows normalized time of speculative execution to non
speculative execution for larger problem sizes. Comparing
Fig 8 and Fig 9, we observe a drop in the performance.
The applications chosen contains intra-loop parallelism even
without speculation. By increasing the problem sizes, there
is an increase in the amount of parallelism that can be
extracted from each iteration of the loop. This reduces the
effect of speculative execution since the parallelism present

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

1 2 4 6 8 10 12 14 16

N
t

Number of threads

Speculative version normalized to non-speculative version

Jacobi-8192

Gauss Seidel-8192

Kmeans-10M

Figure 9: Normalized Speculative execution.

in a single loop-iteration increases. But the graph also shows
that with increasing number of threads we can achieve better
performance even with higher problem sizes.

1) Lee-routing: We analyze the lee routing algorithm sep-
arately since this is the only algorithm in our chosen set of
applications where the loop iterations are control dependent.
The algorithm has two phases, expansion and traceback. The
idea of speculation is applied in the expansion phase. In this
phase, the algorithm searches for a shortest path between the
start and end points by performing a Breadth First Search.
Every iteration of this phase explores certain points and
checks for the end point. Hence it is possible to parallely
execute tasks from multiple iterations. The speedup shown
in Figure 10 is only for the expansion phase.

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of threads

Speedup of Lee-Routing
problem size is a maze of 512*512

Figure 10: Speedup of Lee-Routing algorithm.

Figure 11 shows the normalized execution time of spec-
ulative lee routing algorithm to non-speculative version. We
observe an improvement of 12x with 16 threads in this case.
Since tasks from multiple iterations can be simultaneously
executed, we gain the maximum from this application with
the idea of speculation.

C. Amount of Speculation Allowed

In Figure 12, we compare the speedup when the value
of css speculation tasks varies from 20 to 100. The results
shown in this Figure are from running the applications
with 8 threads for smaller data sizes. From the figure we

46



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Number of threads

Speculative version normalized to non speculative version

Lee-Routing

Figure 11: Normalized speedup of Lee-Routing algorithm.

 2

 3

 4

 5

 6

 7

 8

 9

K
m

eans

G
auss-Seidel

Lee-Routing

Jacobi

S
p

ee
d

u
p

Speedup with speculation on varying number of iterations

20 iterations

40 iterations

60 iterations

80 iterations

100 iterations

Figure 12: Comparing iteration space.

can observe that by increasing the window of iteration
space performance increases. But after a threshold, the
overhead incurred due to the invalid tasks overshadows the
performance benefits. Invalid tasks create an overhead and
hence have an effect in the speedup performance. Figure
12 also shows that the threshold for performance dip with
varying iteration spaces is specific to the application. Hence
we observe different optimal values css speculation tasks
for different applications.

D. Taskwait time by Threads

Speculative generation of tasks implies increase in the
number of tasks added to the TDG of the application. Since
task generation is not blocked due to the synchronization
pragmas, more parallelism is extracted from the input
code. This is true irrespective of the type of dependencies
(control or data) between or within tasks from speculative
and non-speculative iterations. This leads to a decrease in
time spent by threads waiting for tasks. We analyzed such
effects of speculative task generation on the number of
tasks generated and the corresponding effect on task wait
time by threads.
For this profiling we used Paraver[1], a flexible visualization
tool to analyze the characteristics of speculative task
generation. Figure 13 shows a histogram comparing the
wait times of speculative and non speculative versions of the
three applications executed on 8 threads each. The Y axis

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

K
m

eans

G
auss-seidel

Jacobi

%
 T

im
e 

sp
en

t 
in

 w
ai

ti
n
g
 f

o
r 

ta
sk

Average time spent by thread in waiting for a task

Task wait time using Speculation
Task wait time when No Speculation is used

Figure 13: Time spent by threads waiting for tasks.

Table I: Tasks Generated

Application % increase in tasks
Jacobi 13%

Gauss-Seidel 7.83%
Kmeans 10.92%

Lee-Routing 37%

shows the average execution time spent on waiting for tasks
by threads. Although by speculative execution we achieve
15-25% reduced time spent by threads in waiting for tasks,
similar improvement is not reflected in the performance.
The reason being, more number of tasks does not imply
their parallel execution. The latter is the characteristic of
the parallelism offered by the TDG. Speculative generation
of tasks implies generation of invalid tasks, whose updates
are not committed. This implies their execution is overhead
which does not improve performance.

E. Overhead of Invalid Tasks

As discussed in earlier sections, generation and execution
of invalid tasks is an overhead which is not present in the
non-speculative version of the application. Table 1 compares
% increase in speculative tasks when compared with non
speculative version. The data shown is when applications
are run on 8 threads. But this overhead is acceptable since
we gain performance benefits by speculatively generating
tasks ahead in time.

VI. RELATED WORK

L.Rauchwerger and D.Padua have proposed a technique
to parallelize while-loops which involve linked-list traversal
in [13] . In this paper, the authors present a framework
for automatic transformation of while-loop if the remainder
is parallel. In [12], techniques to obtain vector like per-
formance on multiple issued pipelined processor has been
proposed.
OpenMP [5] is a shared memory programming model

47



that supports multiprocessor programming in C, C++ and
Fortran. Cilk [6] is another such programming model for
algorithmic multithreaded programming developed at MIT.
Although OpenMP and Cilk are both task based and loop
based programming models, they do not support dependency
aware task execution. The idea of speculating in a task based
programming model has been explored in [3]. The authors
of this paper have proposed the idea of branch prediction
and value speculation as techniques to skip synchronization
points in branches and loops in OmpSs [4].
The idea of executing on copies of data has been explored
in [8]. The authors of this paper execute the iterations on
copies of data and later commit the results. We execute the
tasks on the actual data and rollback when the speculation
fails. Ours is a more optimistic way of execution.

VII. CONCLUSIONS

The sequential execution of while-loop iterations heavily
restricts parallelism. With multi-core processors becoming
the norm in today’s computing, the inability to parallelize
such frequently used constructs is more prominent. In order
to overcome this problem, the idea of speculative generation
and possible execution of loop-iterations ahead in time is
proposed in this paper. We optimistically predict on the
execution of the future iterations of the loop. This optimism
arises from the fact that in practice such loops execute for
multiple iterations before terminating.
We implement our idea in SMPSs, a task based dataflow
programming model for Symmetric Multiprocessors. By use
of this idea, we gain an average speedup of around 1.2x
while executing the applications with 16 threads, for loops
where the consecutive iterations are data dependent.

VIII. FUTURE WORK

Currently speculatively generated tasks are executed irre-
spective of their validity and later rolled back in case the
speculation fails. This will lead to invalid tasks being exe-
cuted even if their validity has failed. In the future we plan to
optimize the speculation idea by implementing a mechanism
which will propagate the results across speculative tasks in
case the speculation fails.
Another important optimization is to generate speculative
tasks depending on the size of the data that needs to be
protected. Since making copies of data is an overhead in
our idea of speculation, we would like to find the threshold
where this overhead starts degrading the performance.

IX. ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European
Commission through the TERAFLUX project (FP7-249013)
and the HiPEAC-3 (contract FP7-ICT 287759) Network of
Excellence (FP7/ICT 217068), the support of the Spanish
Ministry of Education (TIN2007-60625, CSD2007-00050
and FI program), the Generalitat de Catalunya (2009- SGR-
980) and the national project (TIN2012-34557).

REFERENCES

[1] http://www.bsc.es/media/1364.pdf.

[2] http://www.iiserpune.ac.in/ pgoel/gaussseidel.pdf.

[3] N. Azuelos, Y. Etsion, I. Keidar, A. Zaksy, and E. Ayguade.
Introducing speculative optimizations in task dataflow with
language extensions and runtime support.

[4] A. Duran, E. Ayguade, R. M. Badia, and J. Labarta. Ompss:
a proposal for programming heterogeneous multi-core archi-
tectures. Parallel Processing Letters, Volume 21, Number 2,
p.173-193 (2011), pages 173–193, March 2011.

[5] A. Duran, J. M. Pérez, E. Eduard Ayguadé, R. M. Badia, and
J. Labarta. Extending the OpenMP Tasking Model to Allow
Dependent Tasks. In OpenMP in a New Era of Parallelism,
pages 111–122. Springer Berlin / Heidelberg, 2008.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In In Proceedings
of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’98, Montreal,
Canada, 1998. ACM.

[7] R. K. Gayatri, R. M. Badia, and E. Ayguade. Transactional
access to shared memory in starss, a task based programming
model. Europ-par, Rhodes Island, Greece, 2012. Springer
Berlin Heidelberg.

[8] C. T. M. F. V. N. R. Gupta. Copy or discard execution model
for speculative parallelization on multicores. In Proceedings
of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’2008, Montreal, Canada, 2008.
IEEE.

[9] T. Harris, J. Larus, and R. Rajwar. Transactional Memory.
Morgan and Claypool Publishers series, 2nd edition, 2010.

[10] J. M. Perez, R. M. Badia, and J. Labarta. A dependency-
aware task-based programming environment for multi-core
architectures. IEEE Int. Conference on Cluster Computing,
pages 142–151, September 2008.

[11] J. M. Perez, R. M. Badia, and J. Labarta. Handling
task dependencies under strided and aliased references. In
Proceedings of the 24th ACM International Conference on
Supercomputing, ICS ’10, pages 263–274, New York, NY,
USA, 2010. ACM.

[12] L. Rauchwerger and D. Padua. Parallelizing while loops for
multiprocessor systems. In IN PROCEEDINGS OF THE 9TH
INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM,
1995.

[13] L. Rauchwerger and D. A. Padua. Parallelizing while
loops for multiprocessor systems. In Proceedings of the
9th International Symposium on Parallel Processing, IPPS
’95, pages 347–356, Washington, DC, USA, 1995. IEEE
Computer Society.

48


