
Lawrence Berkeley National Laboratory
LBL Publications

Title
Particle Advection Performance Over Varied Architectures and Workloads

Permalink
https://escholarship.org/uc/item/13x486pc

Authors
Childs, Hank
Biersdorff, Scott
Poliakoff, David
et al.

Publication Date
2014-12-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13x486pc
https://escholarship.org/uc/item/13x486pc#author
https://escholarship.org
http://www.cdlib.org/

Particle Advection Performance Over Varied Architectures and Workloads

Hank Childs*
∞, Scott Biersdorff*, David Poliakoff*, David Camp∞

 and Allen D. Malony*

* University of Oregon
∞
 Lawrence Berkeley National Laboratory

DISCLAIMER: This document was prepared as an account of work sponsored by the United States Government. While this

document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents
of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof or the Regents of the University of California.

Acknowledgements: This work was supported by the Director, Office of Advanced Scientific Computing
Research, Office of Science, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. The
study used many machines. The research used resources of the Keeneland Computing Facility at the Georgia
Institute of Technology, which is supported by the National Science Foundation under Contract OCI-0910735. It
used resources of the National Energy Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The research
was supported by a Major Research Instrumentation grant from the National Science Foundation, Office of
Cyber Infrastructure, “MRIR2: Acquisition of an Applied Computational Instrument for Scientific Synthesis
(ACISS),” Grant OCI-0960354.

Particle Advection Performance Over Varied Architectures and Workloads

Hank Childs∗†, Scott Biersdorff∗, David Poliakoff∗, David Camp† and Allen D. Malony∗
∗ University of Oregon

† Lawrence Berkeley National Laboratory

Abstract—Particle advection is a foundational operation
for many flow visualization techniques, including streamlines,
Finite-Time Lyapunov Exponents (FTLE) calculation, and
stream surfaces. The workload for particle advection problems
varies greatly, including significant variation in computational
requirements. With this study, we consider the performance
impacts from hardware architecture on this problem, studying
distributed-memory systems with CPUs with varying amounts
of cores per node, and with nodes with one to three GPUs. Our
goal was to explore which architectures were best suited to
which workloads, and why. While the results of this study will
help inform visualization scientists which architectures they
should use when solving certain flow visualization problems, it
is also informative for the larger HPC community, since many
simulation codes will soon incorporate visualization via in situ
techniques.

Keywords-GPGPU, Hybrid Parallelism, Flow Visualization,
Performance Analysis

I. INTRODUCTION

The hardware architectures on nodes of supercomputers
are becoming increasingly varied. Some supercomputers
have nodes with relatively modest computational capa-
bilities, for example nodes that contain only four cores.
Other supercomputers have individual nodes that have very
high computational capabilities that could be considered
supercomputers themselves, for example nodes that contain
multiple accelerators (e.g., multiple GPUs). And many su-
percomputers have nodes that lie between these extremes,
with dozens of cores per node, or the presence of just a
single accelerator.

With this study, we consider diverse hardware architec-
tures in the context of “particle advection.” Particle advec-
tion – displacing particles so that they are tangent to the
velocity field – is a foundational element for many visual-
ization algorithms for flow analysis, including streamlines,
pathlines, stream surfaces, and calculating Finite-Time Lya-
punov Exponents (FTLE). Particle advection is a particularly
difficult form of a non-embarrassingly parallel algorithm,
as the work needed to complete the problem is data de-
pendent and thus not known a priori. Further, the workload
across particle advection problems can change dramatically.
Streamline calculation typically involves advecting few par-
ticles for long distances, while FTLE calculation typically
involves advecting many particles for short distances. In
turn, studies considering this problem should examine a
range of scenarios, varying over particle count, distance

traveled, and vector field. Finally, visualization and analysis
is increasingly being performed in an in situ setting [1],
where visualization and analysis is performed at the same
time as the simulation, and using some of its resources. This
usage modality increases the need for understanding particle
advection over many architectures.

This study is an extension of our previous work [2], which
compared the performance of particle advection problems
between CPU and GPU clusters. In this work, we aim to
better understand performance over a spectrum of computa-
tion capabilities, and we do this by expanding the hardware
configurations considered from two (one CPU configuration
and one GPU configuration) to eleven. The result allows us
to explore our fundamental research question: What are the
relationships between execution time and architecture for
particle advection problems? An important contribution of
this paper is exploring this relationship from the perspective
of high performance computing systems, specifically evalu-
ating the usefulness of the compute capabilities provided on
a supercomputer node for a complex data-intensive problem.

Another important contribution of this paper is the insights
it provides for visualization scientists who are studying
flow visualization problems. These scientists are actually
faced with two related problems. First, when running in
situ, what techniques can they employ that will fit within
the constraints of the overall simulation? In this case, the
hardware configuration is set, and the visualization scientist
must choose an appropriate particle advection workload.
Second, when running a stand-alone visualization program,
what hardware should a visualization scientist choose to
solve a given particle advection problem most quickly? In
this case, the particle advection workload is set, and the vi-
sualization scientist must choose an appropriate architecture.
We note that although this latter case may seem unusual, it
actually occurs quite often; many supercomputing centers
have multiple supercomputers connected to the same disk,
and the visualization scientist has the flexibility to choose
which supercomputer the visualization program runs on.

II. RELATED WORK

A. Flow Visualization and Particle Advection

McLouglin et al. recently surveyed the state of the art in
flow visualization [3], and the large majority of techniques
they described incorporate particle advection. As mentioned
in the introduction, the computational workload for these

particle advection-based techniques vary. On the low end
of computational demands, streamlines, which display the
trajectory of particles placed at seed locations, can involve
advecting just a few particles. In the middle, stream surfaces,
which advect a seeding curve (or, rather, particles along
that curve) to create a surface, require potentially tens of
thousands of particles to be advected. At the high end, FTLE
calculations which determine the rate of separation through
the volume, advect a particle for every node in a mesh and
compare the divergence of nearby particles, determining the
rate of separation throughout the volume.

B. Using GPU Clusters for Visualization
Many visualization algorithms have been ported to and

optimized for the GPU [4]. While less work is devoted to
parallel GPU clusters, there has been significant research
in achieving load balancing and scalability for rendering,
both for surfaces [5], [6], [7] and for volumes [8], [9],
[10], [11]. Very few studies with parallel GPU clusters are
devoted to the transformations that precede rendering, with
notable exceptions on isosurfacing [12] and on line integral
convolution (LIC) [13].

C. Parallelizing Particle Advection for Visualization
A summary of strategies for parallelizing particle advec-

tion problems on CPU clusters can be found in [14]. The ba-
sic approaches are to parallelize-over-data, parallelize-over-
particles, or a hybrid of the two [15]. Recent results using
parallelization-over-data demonstrated streamline computa-
tion on up to 32,768 processors and eight billion cells [16].
Alternate approaches include using preprocessing to study
the patterns of the flow and then to schedule processing
of blocks to optimize performance [17], and include using
work-requesting to dynamically balance load [18].

D. Effects of Hardware Architecture on Particle Advection
Performance

This topic is most directly aligned with this study. Mul-
tiple studies ([19], [20], [21], [22]) have focused on GPU
implementations of particle advection problems for desktop
machines with a single GPU. In all cases, the particle
advection workloads considered required significant com-
putational resources, and the GPU was found to be superior
when compared to a CPU.

To our knowledge, our two previous studies are the only
ones to have looked at hardware architecture effects on
particle advection in distributed-memory systems. In our first
study [23], we looked at streamlines on multi-core CPUs and
showed the benefits of hybrid parallel techniques. In this
study, we compared workloads that used only distributed-
memory parallelism with those that used both shared- and
distributed-memory. We observed that, when using the same
hardware in both configurations, the hybrid parallel ver-
sion regularly outperformed the distributed-memory version,
sometimes by factors of more than 10X.

Our second study [2] — extended by the present study
— looked at architectural effects on particle advection, and
compared CPU and GPU clusters. The study again compared
a variety of workloads, and found that GPU clusters often,
but not always, outperform their CPU cluster counterparts.
The study described in this paper represents a significant step
forward in our understanding of the problem. The previous
study, which considered just two data points — CPU clusters
with eight cores per node and GPU clusters with one GPU
per node — was too coarse, while this study, which considers
nodes over a spectrum of computational ability, is better able
to answer the question of which particle advection problems
are best fitted for which computational environments.

III. PROBLEM AND ALGORITHM
OVERVIEW

In this section, we present an overview of the particle
advection problem (§III-A), as well as an overview of the
parallel algorithm we used for our study (§III-B).

A. Particle Advection Overview

The fundamental unit of work for particle advection is
an advection step, which is the displacement of a particle
for a short distance from one location to a nearby one. An
integral curve is the total path a particle travels along, and
it is formed by the sequence of advection steps from the
seed location to the terminal location. The integral curve is
defined by an ordinary differential equation, as its derivative
at a given position is defined as the value of the simulation’s
velocity field at the same position. As a result, advecting
particles is a data dependent process, and the calculation of
advection steps must be carried out sequentially. Explicitly,
the N th advection step for a particle can only be calculated
after the location of (N−1)st advection step’s displacement
is known.

A traditional scheduling view, which considers a fixed
number of operations with known dependencies between
these operations, is too simplistic when it comes to particle
advection, since the total number of operations (i.e., the
total number of advection steps) is not known a priori. The
number of advection steps for any given particle varies,
based on whether it advects into a sink, exits the problem
domain, or meets some other termination criteria.

Further, when considering data sets so large that they
can not fit into memory, there are scheduling difficulties in
getting the particle and appropriate region of the vector field
on the same resource to carry out the advection step. In this
study, we employed a parallelization-over-data approach;
the problem domain is divided into pieces and each task
operates on one piece of the domain. Particles are advected
on a task as long as they remain within that task’s piece.
Particles that advect into other pieces are communicated
to the corresponding task. Our motivation for studying this
particular parallelization strategy was that it mirrored the

conditions encountered with in situ processing where the
simulation data is pre-divided into pieces. Further, for the
case of GPU-based supercomputers, the data is likely already
located on the GPU.

B. Algorithm Overview

Our study uses the algorithm introduced in [2], and here
we describe only the key elements of the algorithm that
relate to this study. The algorithm has two phases: initial-
ization and advection. The spirit of the implementations for
both phases are the same for CPU and GPU clusters, but the
details of the implementation differ, especially for advection.

1) Initialization Phase: The algorithm’s initialization
phase consists of three parts: (i) loading data, (ii) construct-
ing a piece map of where data resides, and (iii) particle
creation and initialization. For (i), each task reads its piece
directly from disk. For the GPU implementation, the data
is transferred to GPU memory as a texture map, along with
other meta-data. For (ii), each task creates a map between
the tasks and the spatial extents of their pieces. For (iii), each
task will create the starting number of particles, defined by
user input, and prepare them for processing by placing them
in a queue.

2) Advection Phase: The processing is driven by three
queues, which each contain particles. We designate three
different particle states, and each queue contains particles
of a specific state. The active queue contains particles that
need to be advected. The finished queue contains particles
that have completed advecting. The inactive queue contains
particles that cannot be further advected on the current task,
but also cannot be placed in its finished queue — these
particles must be sent to another node that has the piece of
the vector field the particle will enter.

The goal of the advection phase is to promote all the
particles from the active queue to the finished queue. Each
task continuously iterates over a loop until all tasks declare
themselves finished. An individual task declares itself fin-
ished when all particles it is responsible for have completed,
i.e., the size of its finished queue is equal to the size of
its initial active queue. That said, finished tasks continue
participating in the algorithm, since individual tasks that are
finished may contain portions of the vector field that are
necessary for other tasks to finish.

Each task’s loop iteration consists of three steps: (i)
advect, (ii) inspect, and (iii) communicate. For (i), the task
examines its active queue and instructs a group of particles
to advect. The size of the group and details of the advection
vary between GPU and CPU implementations. For (ii), the
particles resulting from step (i) are placed in one of two
queues. Particles that have advected outside the task’s piece
are placed in the inactive queue. Particles that are done
advecting and originated on the current task are placed in
the finished queue, while those that originated on a different
task are sent back to that task. For (iii), all particles in

the inactive queue are sent to the appropriate task using
the piece map. Further, messages from other tasks are read.
The particles in those messages correspond to particles that
are done advecting (and placed in the finished queue) or
need more advecting on this task (and placed in the active
queue). Finally, the task assesses if it is finished and the
tasks coordinate to determine if they are all finished.

For details beyond this level, especially in terms of CPU
and GPU implementation, we refer the reader to our previous
work [2].

IV. STUDY OVERVIEW

A. Test Configurations

Our study was designed to understand how particle advec-
tion workloads varied over diverse hardware architectures.
We varied four factors:

• Node architecture (11 options: 6 CPU, 5 GPU)
• Data set (3 options)
• Particle density (9 options)
• Duration of advection (5 options)

We ran the cross-product, meaning 11× 3× 9× 5 = 1, 485
tests overall. The variants for each factor are discussed in
the remainder of this subsection.

1) Node Architecture: We ran with the following config-
urations:

• GPU 8x1: Eight nodes, with each node utilizing one
NVIDIA M2090 GPU.

• K20 GPU 8x1: Eight nodes, with each node utilizing
one NVIDIA K20 GPU.

• GPU 4x2: Four nodes, with each node utilizing two
NVIDIA M2090 GPUs.

• GPU 3/3/2: Three nodes, with the nodes utilizing
three, three, and two NVIDIA M2090 GPUs, for a total
of eight GPUs utilized.

• GPU 8x3: Eight nodes, with each node utilizing three
NVIDIA M2090 GPUs, for a total of twenty-four
GPUs.

• CPU 8x2: Eight nodes, with each node utilizing two
threads from a multi-core CPU.

• CPU 8x4: Eight nodes, with each node utilizing four
threads from a multi-core CPU.

• CPU 8x8: Eight nodes, with each node utilizing eight
threads from a multi-core CPU.

• CPU 8x12: Eight nodes, with each node utilizing
twelve threads from a multi-core CPU.

• CPU 8x16: Eight nodes, with each node utilizing six-
teen threads from a multi-core CPU.

• CPU 8x24: Eight nodes, with each node utilizing
twenty-four threads from a multi-core CPU.

Again, there were five GPU tests and six CPU tests. Four
of the GPU tests used the NVIDIA M2090 GPU, and one
used the NVIDIA K20 GPU. Finally, the majority of our

tests use eight nodes and have one MPI task per node, with
the only exceptions being GPU 3/3/2 and GPU 4x2 (which
had less than eight nodes), and GPU 8x3 (which had twenty-
four MPI tasks).

Figure 1. On the left, streamlines showing the mixing of air between twin
inlets in a thermal hydraulics simulation. In the middle, the FTLE of a solar
core collapse resulting in a supernova. On the right, a stream surface from
the fusion data set, visualizing the magnetic field in a tokamak.

2) Data Sets: The underlying vector field can greatly
influence performance characteristics, as sinks in the vector
field can attract particles from far away and create load
imbalance. For this reason, we considered three data sets
to ensure the diversity of our tests. Each data set was a
single time slice, meaning we studied steady state flow. Each
data set had a resolution of 1, 0003. Ten of our eleven node
architectures had eight MPI tasks; for this case, each task
operated on a data block of 500 x 500 x 500 cells. The
GPU 8x3 test had twenty-four MPI tasks (three per node),
and the data was divided into smaller pieces for this test.

Figure 1 shows different particle advection-based visual-
izations on the three data sets.

Thermal Hydraulics: In this simulation, two inlets pump
air into a box, which circulates and exits through an out-
let. The simulation was performed using the NEK5000
code [24].

Astrophysics: This data set is from a simulation of the
magnetic field surrounding a solar core collapse, resulting in
a supernova. The simulation was computed by the GENASIS
simulation code [25].

Fusion: This data set comes from a simulation of magnet-
ically confined fusion in a tokamak device by the NIMROD
simulation code [26]. To achieve stable plasma equilibrium,
the field lines of the magnetic field need to travel around
the torus in a helical fashion. This data set is representative
of data sets that have high circulation — particles traverse
the torus-shaped vector field domain repeatedly.

3) Particle Density: We had nine particle density config-
urations, which determine the number of seeds placed into
each data block. The options for the numbers of particles per
data block were 13, 53, 153, 253, 403, 503, 653, 803, and
1003. These workloads are representative of use cases such
as streamlines, stream surfaces, and coarser FTLE analysis,
among others. Over all tasks, the lowest number of particles
was just eight, while the highest number was eight million.

Finally, note that the GPU 8x3 configuration had a differ-
ent number of blocks. For that case, the number of particles

per block were adjusted so that the total number of particles
matched the other tests, enabling comparisons.

4) Duration of Advection: The duration of the advection
(i.e., the number of advection steps) corresponds to the
number of advection steps taken. To reflect this variation
in particle advection workload, we made five categories
for duration: tiny (50 steps), little (250), short (1,000),
medium (5,000), and long (20,000).

B. Runtime Environment

We present test results from Georgia Tech’s Keeneland
supercomputer, Oak Ridge National Laboratory’s Titan su-
percomputer, and Lawrence Berkeley’s NERSC machine
Edison.

1) Keeneland: Keeneland was used for four of the
five GPU tests: GPU 8x1, GPU 4x2, GPU 3/3/2, and
GPU 8x3. A single compute node of Keeneland contains
two 8-core 2.8GHz Intel Sandy Bridge (Xeon E5) processors
and 32GB of RAM. It is accelerated by three NVIDIA
M2090 GPUs with 5.6GB of RAM. Nodes are connected
via a Mellanox FDR InfiniBand interconnect.

2) Titan: Titan was used for the K20 GPU 8x1 test. A
single compute node of Titan contains a 16-core 2.2GHz
AMD Opteron 6274 (Interlagos) processor and 32GB of
RAM. It is accelerated by an NVIDIA Kepler GPU with
6GB of DDR5 memory. Nodes within the compute partition
are connected by a three-dimensional torus.

3) Edison: Edison was used for all CPU tests. A single
compute node of Edison contains two sockets and each
socket has a 12-core 2.4 GHz Intel “Ivy Bridge” processor
and 64GB of RAM. Nodes are connected via a Cray Aries
with the Dragonfly topology.

C. Measurements

An important component of our research objective to
expand investigation across more diverse hardware config-
urations was to apply a parallel performance measurement
and analysis system that is portable on leading platforms.
TAU Performance System R© [27] provided this support with
its broad set of portable instrumentation and measurement
techniques (including for heterogeneous machines), its paral-
lel performance data management infrastructure, its parallel
performance data mining framework, and its integration with
other performance technology (e.g., PAPI). All of these
capabilities proved to be valuable in the multi-experiment,
cross-architecture analysis we performed. Further, we made
heavy use of the scripting features of TAU’s PerfExplorer
(powered by its relational database: TAUdb) to construct
analysis pipelines that generated results specific to under-
standing particle advection performance.

The measurement approach also captured the key events
(i.e., “idle”, “advecting”) identified from our previous study,
and we augmented them with additional observations of
MPI communication, multi-threading, and GPU operations.

Figure 2. Parallel coordinates plot of execution time, by hardware configuration. Each hardware configuration (see §IV-A1) is an axis for the plot, starting
with K20 GPU 8x1 on the left, and going to CPU 8x2 test on the right. The Y-axis is speedup relative to the time for the GPU 8x1 test (which is not
displayed, since it is a constant 1). If a CPU 8x2 test time is twice as fast than the GPU 8x1 test, then it will be plotted with a Y-value of 0.5. If it is
twice as slow, then it will be plotted with a Y-value of 2.0. The parallel coordinates are plotted based on density; regions where there are many lines are
plotted dark red, while regions with few lines are plotted light red. The top figure shows all of the data, while the middle figure zooms in on the region
where the performance is no more than 2X worse than GPU 8x1. Where the top two figures show results for all 135 workloads, the bottom figure shows
the results for a single workload — the Fusion data set, with 253 particles per data block, and advecting for the tiny duration (50 steps) — and thus results
in a single line. This line shows that the K20 GPU 8x1 test is about 2.5X faster (1/0.4) than GPU 8x1, while the CPU 8x2 test is about 1.6X slower
than GPU 8x1. This bottom figure is included to better illustrate how to interpret parallel coordinate plots. Analysis of these results are discussed in §V.

All measurements were restricted to solving the algorithm
presented in this paper; generation of data and transferring
vector field data were not measured, since the study is aimed
at in situ use cases and this data would already be in place
in such a setting.

V. RESULTS

We analyzed the results of the 1, 485 tests in multiple
ways. Our analysis directions were driven by a global view,
realized as a parallel coordinates plot that showed all test
data. This graphic, shown in Figure 2, plots the speedups
of each test with respect to the GPU 8x1 architecture.
For the most part, we used this global view to focus on

subsets of the hardware architectures where comparisons
were informative with respect to understanding the impacts
of hardware architecture on performance. Specifically, we
explored comparisons with:

• CPU tests with varying numbers of cores, in §V-A;
• The two NVIDIA cards, M2090 and K20 (i.e.,

GPU 8x1 and K20 GPU 8x1), in §V-B1;
• A GPU configuration (K20 GPU 8x1) and the CPU

tests, in §V-B2;
• Our base GPU configuration and the configurations

where eight GPUs are packed onto fewer than eight
nodes (GPU 4x2 and GPU 3/3/2), in §V-C1; and

• Our base GPU configuration and the configuration that
used three GPUs per node (GPU 8x3), in §V-C2.

A. CPU Performance as a Function of Cores Per Node
With these comparisons, we wanted to better understand

when additional cores will help with overall execution time.
Figure 3 shows a parallel coordinates plot of efficiency as
we add more cores. We identified that there are three distinct
categories of workloads:

• Group 1: this group has 153 or more particles per data
block and advects for 1000 steps or more. The number
of members in Group 1 is 63. Members of this group
exhibit outstanding performance increases when more
cores are added.

• Group 2: this group has one particle per data block.
The number of members in Group 2 is 15. Members of
this group exhibit no performance increase when more
cores are added.

• Group 3: this group contains the remaining workloads,
which number 57. Members of this group exhibit
performance increases when more cores are added, but
they are not proportional with the number of cores
added. This suggests that the efficiency is decreasing
as the number of cores increases, due to less work per
core.

Table I shows specifics for how many tests benefits from the
addition of new cores, and how much benefit they derive.
As expected, workloads with significant computational work
benefits from more cores, while those with minimal work do
not.

Figure 3. This parallel coordinates plot shows the efficiency from adding
new cores over all the CPU tests. Each particle advection workload (i.e.,
a selected density, duration, and vector field) is a line on the parallel
coordinates plot, illustrating workload performance as a function of the
number of cores. The coloring comes from the groups defined in §V-A:
Group 1 is green, Group 2 is red, and Group 3 is blue. Regions where
multiple lines overlap are drawn darker. The plot normalizes execution time
by the number of cores. Ideally, if the CPU 8x2 test takes time T , then
CPU 8x4 will take T/2, CPU 8x8 will take T/4, and so on. In the worst
case, the extra cores will be unused. In that case, the execution time will
continue to take time T . In this plot, a CPU 8x24 test that takes T (i.e., no
speedup over CPU 8x2) will be plotted as 1/12, since it has twelve times
the resources, and ideally should finish in one twelfth of the time.

Cores Group 1 Group 2 Group 3

Sc
al

ab
ili

ty 4 94% 47% 89%

C
PU 8 90% 22% 80%

12 90% 14% 76%
16 90% 10% 62%
24 88% 5% 51%

Table I
THIS TABLE SHOWS THE AVERAGE NORMALIZED EFFICIENCY WITH

RESPECT TO THE NUMBER OF CORES ON THE CPU AND TO THE GROUPS
DEFINED IN §V-A. FOR EXAMPLE, FOR 12 CORES AND GROUP 3, THE
VALUE IS 76%. IDEALLY, TWELVE CORES SHOULD BE ABLE TO FINISH

SIX TIMES FASTER THAN THE BASELINE OF TWO CORES. THE 76%
VALUE MEANS THAT THE TESTS IN GROUP 3 ACHIEVED 76% OF THE

HOPED FOR SPEEDUP FROM THE ADDITIONAL CORES, OR THAT IT WAS
ABOUT 4.5X FASTER (AND NOT THE FULL 6X FASTER). A VALUE OF

100% WOULD INDICATE THAT THE POTENTIAL SPEEDUP WAS
REALIZED. GROUP 2 DEMONSTRATED SPEEDUP CONSISTENT WITH NOT
MAKING USE OF THE ADDITIONAL CORES, WHICH IS TO BE EXPECTED

GIVEN ITS MODEST COMPUTATIONAL WORKLOAD.

B. Comparisons Across Machines

Several of our desired comparisons involved associated
tests run on different machines. Unfortunately, it is difficult
to make meaningful comparisons across machines, since
many factors may be different, most notably the networking
infrastructure. To facilitate these comparisons, we ran a
series of MPI benchmarks on the three machines considered
in this study. As seen in Table II, asynchronous message
communication is fastest on Edison, second fastest on Titan,
and slowest on Keeneland. We reference this relationship in
the analysis we perform in §V-B1 and §V-B2.

Size Keeneland Titan Speedup Edison Speedup
10K 7.39 1.93 3.8 0.61 12.0
50K 24.72 5.66 4.4 1.97 12.6

200K 42.15 20.75 2.0 7.95 5.3

Table II
RESULTS OF THE MPI BENCHMARK TESTS RUN ON THE THREE

MACHINES CONSIDERED IN THIS STUDY. THE VALUES REPORTED FOR
EACH MACHINE IS THE TIME (IN MICROSECONDS) TO SEND AN

ASYNCHRONOUS MESSAGE OF A GIVEN SIZE. THE SPEEDUPS LISTED
ARE NORMALIZED TO KEENELAND.

1) Comparing Different GPUs: With these comparisons,
we wanted to better understand the extent that faster GPUs
can improve overall execution time. Titan’s K20x GPUs have
about twice the raw computational power of the M2090s
in Keeneland (1.31 GFLOPs vs 0.67 GFLOPs, double
precision). Further, as noted in §V-B, Titan’s network is
significantly faster than Keeneland’s. As we compared par-
ticle advection workloads, we wanted to understand where
the speedups come from: GPU or network. Most tests are
dominated either by network time or by advection time. The
former demonstrates benefits tracking the network improve-
ments, while the latter demonstrate benefits tracking the
GPU improvements. Specifically, workloads with densities
of 503 particles or more spend at least half of their time
doing advection, and thus should have speedups on the
order of 2X , matching the ratio of the GPUs. Further, those
workloads with fewer particles see even better speedups, due
to Titan’s superior network. We note that the speedups in

Particle Density

Ti
ta

n
Sp

ee
du

p
vs

 K
ee

ne
la

d

1

2

5

10

20 40 60 80 100

●

●

●

●

●
●

●

●

●

Tiny
AstroPhysics

●

●

●

●

● ●

●

●

●

Little
AstroPhysics

20 40 60 80 100

●

●

●
●●

●

●

●

●

Short
AstroPhysics

●

● ●

●

● ●●●
●

Medium
AstroPhysics

20 40 60 80 100

●

●

● ●

●

●
●●

●

Long
AstroPhysics

●

●

●

●

● ●

●

●

●

Tiny
Fusion

●

●
●

●

●

●●

●

●

Little
Fusion

●

●

●

● ●

●

●
●●

Short
Fusion

●
●

●
● ●

●
●

●●

Medium
Fusion

1

2

5

10

●

●

●

●

● ●

●

●
●

Long
Fusion

1

2

5

10
●

●

●

●

●

●

●

●
●

Tiny
Thermal Hydraulics

20 40 60 80 100

●

●

●
●

●

●

●

● ●

Little
Thermal Hydraulics

●

●

●

●

● ●
●

●

●

Short
Thermal Hydraulics

20 40 60 80 100

●● ●

●

● ●

●

●
●

Medium
Thermal Hydraulics

●

●

●

●

● ●

●

●
●

Long
Thermal Hydraulics

Figure 4. A 5x3 matrix of plots. The three rows correspond to the three vector fields (see §IV-A2). The five columns correspond to the five advection
durations (see §IV-A4). Each plot shows the speedup of Titan over Keeneland as a function of particle density (§IV-A3).

some tests exceeded those of our MPI benchmarks, likely
because they do not need to exchange many messages.

Figure 4 illustrates the above analysis. It shows that vector
field is not playing a large role in determining the character-
istics of the workload, and so the plots are similar from top
to bottom. However, duration is very important to workload
characteristics, and a consistent trend can be seen from left to
right in the Figure. On the left, the durations are so small that
the network speedups are dominant for low particle densities.
On the right, the durations are so large that idle time makes
the two machines nearly equivalent for low particle densities.
But, as the particle density increases, the speedup approaches
a fairly consistent value of approximately 2X , since these
tests make such heavy use of the GPU, and Titan’s GPUs
are twice as fast as Keeneland’s. This trend is true over all
durations and vector fields.

2) GPU Versus CPU: With these comparisons, we
wanted to better understand how GPUs compared with
CPUs. This comparison was particularly inspired by the
observation from Figure 2 that the CPU 8x24 tests were
never more than 1.7X slower than the GPU 8x1 tests. Since
the network analysis in §V-B showed that Edison has the best
network and Keeneland has the worst (and these were the
machines compared in Figure 2), we switch our analysis here
to be between the Edison CPU configurations and the Titan
K20 GPU 8x1 configuration, since their network speeds are
more comparable.

The results of our Titan-Edison comparisons can be seen
in Figure 5. It shows that CPUs with many cores are
competitive with GPUs over all tests. Further, it shows that
CPUs are faster than GPUs with many tests with short
execution times (i.e., < 0.2 seconds).

Figure 5. Comparing K20 GPU 8x1 and CPU configurations. The
top image shows parallel coordinates of CPU test times normalized by
K20 GPU 8x1 test times. The CPU 8x24 configuration was competitive,
as it was only 2.5X slower than the GPU in the worst case. The GPU
was much more dominant against fewer cores, though, with speedups of
up to 25X versus CPU 8x2. The bottom image plots the K20 GPU 8x1
test time normalized by the CPU test times, showing where the CPU is
faster than the GPU. Lines that are green correspond to the K20 GPU 8x1
tests that take less than 0.2 seconds. Lines that are red correspond to the
K20 GPU 8x1 tests that take more than 0.2 seconds. Almost all tests which
that take more than 0.2 seconds are ones where the GPU excels. However,
one set of tests — a set of red lines going from upper left to lower right
— takes more than 0.2 seconds and sees speedups of more than 15X for
CPU 8x24. These tests correspond to 53 particles per data block and long
durations, i.e., tests that will not overwhelm a CPU, but do not have enough
work for a GPU.

C. Multiple GPUs Per Node

With these comparisons, we wanted to better understand
the effects — positive or negative — of having multiple
GPUs per node. The potential pitfall from having additional
GPUs per node is that contention can arise on the PCI bus

connecting the CPU and the GPU. Interestingly, Keeneland
nodes have two PCI buses. This allows us to investigate the
cases where there is no bus contention (a different PCI bus
is used for each GPU in the GPU 4x2 case), as well as
where there is bus contention (the PCI buses are shared in
the GPU 3/3/2 and GPU 8x3 cases). Our experiments were
constructed to see these hardware tradeoffs.

1) Eight GPU, Fewer Nodes Tests: With these com-
parisons, we fix the total number of GPUs at eight,
and compare our base GPU configuration (GPU 8x1)
with configurations that have fewer nodes (GPU 4x2
and GPU 3/3/2). While the contention pitfall remains for
GPU 3/3/2, the potential benefit of these reduced node
configurations is that there are fewer nodes participating
in communication, which may lead to increased network
performance.

For the most part, the tests had similar performance. Tests
that ran for more than 0.2 seconds were in particularly good
agreement, with the execution time for each workload being
within 20% of the GPU 8x1 time in all cases. Tests that ran
for less than 0.2 seconds were more likely to benefit from
the fewer number of nodes, with approximately half of such
tests being more than 20% faster than the GPU 8x1 time.
See Table III for more details.

Tests ≥ 80%
Node Type Criteria Total Tests of GPU 8x1
GPU 3/3/2 > 0.2s 93 93
GPU 3/3/2 < 0.2s 42 22
GPU 4x2 > 0.2s 93 93
GPU 4x2 < 0.2s 42 17

Table III
ALL TESTS THAT TOOK LONGER THAN 0.2 SECONDS WERE WITHIN 80%

OF THE TIME FOR THE GPU 8X1 TIME FOR THE SAME WORKLOAD.
HOWEVER, WHEN THE TIME DROPPED BELOW 0.2 SECONDS, THE

CONFIGURATIONS WITH REDUCED NUMBERS OF NODES WERE MORE
THAN 20% FASTER ABOUT HALF THE TIME.

We also looked at the possible effects of contention. What
we observed was small; no GPU 4x2 or GPU 3/3/2 was
ever more than 6% slower than its counterpart GPU 8x1 test.
However, we could observe that the number of slower tests
for GPU 3/3/2 was more than for GPU 4x2. See Table IV
for more details.

2) Eight Node, Multiple GPU Tests: With these compar-
isons, we fix the total number of nodes at eight, and compare
our base configuration (GPU 8x1) with the configuration
that has eight nodes and three GPUs per node (GPU 8x3).
This configuration has a different benefit from that discussed
in §V-C1: increased computational power. Further, while the
contention pitfall still exists for this configuration, the ob-
servations from §V-C1 point to this factor being small. The
challenge for this configuration is to actualize the computa-
tional power by providing the extra GPUs with enough work
to do. This challenge already exists with a single GPU, and
is only exacerbated by having three GPUs. Finally, we note
that the GPU 8x3 configuration is different than the other

Configuration # of Slower Tests Avg. # of Particles
GPU 3/3/2 37 468K
GPU 4x2 17 261K

Expected For Identical 67.5 222K

Table IV
THE GPU 3/3/2 TESTS WERE SLOWER THAN GPU 8X1 37 TIMES,
WHILE GPU 4X2 TESTS WERE SLOWER THAN GPU 8X1 ONLY 17

TIMES. OF COURSE, IF THE CHANGES IN CONFIGURATION LED TO NO
TANGIBLE PERFORMANCE DIFFERENCES, THEN A GIVEN

CONFIGURATION WOULD BE SLOWER HALF THE TIME, I.E., FOR 67.5 OF
THE 135 TESTS. THE “EXPECTED FOR IDENTICAL” ROW IN THE TABLE
CAPTURES THIS. OF THE 37 TESTS WHERE GPU 3/3/2 WAS SLOWER,

WE LOOKED AT THE AVERAGE NUMBER OF PARTICLES ADVECTED (I.E.,
THE PARTICLE DENSITIES FROM §IV-A3). THIS AVERAGE WAS 468, 000

PARTICLES, COMPARED TO 261, 000 PARTICLES FOR THE GPU 4X2
AND A 222, 000 PARTICLE AVERAGE OVER ALL WORKLOADS. FROM

THESE DATA POINTS, WE CONCLUDE THAT CONTENTION DOES AFFECT
THE GPU 3/3/2 TESTS, AND THAT IT AFFECTS IT MOST WHEN THE

PARTICLE DENSITY IS HIGH. WE ALSO COMMENT THAT THE REDUCED
NUMBER OF NODES PROVIDES A COMMUNICATION BENEFIT TO

OVERALL EXECUTION TIME, SO THE FULL EXTENT OF THE CONTENTION
MAY BE SOMEWHAT GREATER THAN WHAT WE MEASURED.

configurations, since it has twenty-four processes executing,
while all other configurations have eight processes. This also
means that the workload is partitioned twenty-four ways (not
eight ways), and so each of the twenty-four processes has
less work to do, relatively speaking.

Our tests found that the extra GPUs were helpful in cases
where the particle density was high. Twenty-four of our
workloads were able to achieve a speedup of 2.5X over
their GPU 8x1 counterparts. All twenty-four of these tests
come from the four highest densities (503, 653, 803, 1003).
Surprisingly, the best speedups came from high density
workloads with small or medium durations, as seen in
Table V. These workloads are in a sweet spot where there
is enough work to saturate the extra GPUs, but they also
finish quickly enough for load imbalance to not be an issue.
This contrasts with tiny and little durations, which do not
provide enough work, and with long durations, which end
up having significant idle time while waiting for a handful
of particles to finish executing.

Particle Duration
Density Tiny Little Short Medium Long

503 0.76X 1.35X 2.02X 2.48X 2.41X
653 0.76X 1.54X 2.31X 2.69X 2.42X
803 0.94X 1.84X 2.52X 2.77X 2.48X

1003 1.20X 2.22X 2.72X 2.85X 2.50X

Table V
THE AVERAGE SPEEDUP OF THE GPU 8X3 CONFIGURATION OVER
GPU 8X1. EACH ENTRY IN THE TABLE IS THE AVERAGE OF THE

EXPERIMENTS FOR THE GIVEN DURATION AND DENSITY. THE
SPEEDUPS GET BETTER AS DENSITIES INCREASE, AND ARE AT THEIR

HIGHEST FOR SHORT AND MEDIUM DURATIONS, WHICH ARE LESS
PRONE TO LOAD IMBALANCE COMPARED TO THE LONG DURATION.

VI. SUMMARY OF PARTICLE ADVECTION-HARDWARE
FINDINGS

An important goal of this effort was to illuminate the best
hardware for particle advection problems for visualization

scientists. We summarize the findings from the previous
sections:

On the value of additional cores on a node (§V-A):
• High density workloads with medium or longer dura-

tion will benefit from using more and more cores on a
CPU node.

• Low density workloads will not benefit from adding
more cores.

• The remaining workloads fall between these extremes.
On comparisons between GPUs (§V-B1):
• When particle advection densities become large (i.e.,

503 or more), the GPUs became saturated, and so using
faster GPUs led to speedups proportional to their FLOP
rates.

• When particle advection densities are low, the network
is the most important factor in performance.

On comparisons between CPU and GPU nodes (§V-B2):
• CPUs with lots of cores are competitive with GPUs.
• CPUs with few cores can be significantly slower than

GPUs.
• CPUs often beat GPUs when a test’s execution time is

short.
On comparisons with a fixed number of GPUs, but a

variable number of nodes (§V-C1):
• Runtimes do not vary considerably, and any configura-

tion is likely acceptable.
• Very fast tests benefit from packing GPUs onto fewer

nodes, since fewer nodes lead to increased network
performance.

• Tests with many particles appear to stress contention
on the PCI bus, although the effect is modest.

On increasing the number of GPUs (§V-C2):
• Additional GPUs are only valuable if there is sufficient

work to occupy them.
• Problems with idle time from load imbalance do not

significantly benefit from extra GPUs; these problems
may benefit early in their execution, but the later
phases, characterized by excessive waiting, makes over-
all times comparable to those with fewer GPUs. We
observed the effects of such imbalances from workloads
with long durations.

VII. CONCLUSION

This study explored the impact of hardware architecture of
a data-intensive workload (particle advection). It considered
eleven architectures and 135 workloads, for a total of 1, 485
different tests. We feel the results illuminate the benefit
of increased computational power that will inform future
in situ workloads, as well as informing the choice of
which hardware architecture is best for different particle
advection problems in a distributed-memory parallel setting.
(See §VI for specific findings.) We think this latter result

is important because it will help visualization scientists
answer two important questions: One, when collaborating
with simulation scientists to do in situ analysis, which
particle advection techniques will be appropriate given the
resources? And, two, when presented with multiple hardware
architecture options for running particle advection-based
post hoc analysis, which hardware architecture is the best
choice?

This study suggests several interesting future directions.
Our study’s tests used at most eight nodes. As more nodes
are added, the opportunities for load imbalance increase,
with the resulting idle time eroding potential hardware
speedups. While we believe our present study is an excellent
start on the problem and a substantial contribution for un-
derstanding matches between particle advection workloads
and hardware architectures in a distributed-memory setting,
we believe that looking at higher scales is an important next
step.

ACKNOWLEDGMENT

This work was supported by the Director, Office of
Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

The study used many machines. The research used re-
sources of the Keeneland Computing Facility at the Georgia
Institute of Technology, which is supported by the Na-
tional Science Foundation under Contract OCI-0910735. It
used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. It used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725. The research was supported by
a Major Research Instrumentation grant from the National
Science Foundation, Office of Cyber Infrastructure, “MRI-
R2: Acquisition of an Applied Computational Instrument for
Scientific Synthesis (ACISS),” Grant OCI-0960354. (Note
that many predecessor runs occurred on these machines,
although none appear in our results section.)

REFERENCES

[1] H. Childs, K.-L. Ma, H. Yu, B. Whitlock, J. Meredith,
J. Favre, S. Klasky, N. Podhorszki, K. Schwan, M. Wolf,
M. Parashar, and F. Zhang, “In Situ Processing,” in High
Performance Visualization—Enabling Extreme-Scale Scien-
tific Insight, Oct. 2012, pp. 171–198.

[2] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson,
E. W. Bethel, K. I. Joy, and H. Childs, “GPU Acceleration of
Particle Advection Workloads in a Parallel, Distributed Mem-
ory Setting,” in Proceedings of EuroGraphics Symposium on
Parallel Graphics and Visualization (EGPGV), Girona, Spain,
May 2013, pp. 1–8.

[3] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and
M. Chen, “Over Two Decades of Integration-Based, Geomet-
ric Flow Visualization,” in EuroGraphics 2009 - State of the
Art Reports, April 2009, pp. 73–92.

[4] M. Ament, S. Frey, C. Müller, S. Grottel, T. Ertl, and
D. Weiskopf, “GPU-Accelerated Visualization,” in High Per-
formance Visualization—Enabling Extreme-Scale Scientific
Insight, Oct. 2012, pp. 223–260.

[5] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski, “Chromium: a Stream-
Processing Framework for Interactive Rendering on Clusters,”
in Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’02.
New York, NY, USA: ACM, 2002, pp. 693–702.

[6] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and
T. Ertl, “Hierarchical Visualization and Compression of Large
Volume Datasets Using GPU Clusters,” in Proceedings of
EuroGraphics Symposium on Parallel Graphics and Visual-
ization (EGPGV), May 2004, pp. 41–48.

[7] P. Bhaniramka, P. C. D. Robert, and S. Eilemann, “OpenGL
Multipipe SDK: A Toolkit for Scalable Parallel Rendering,”
in Proceedings of the IEEE Visualization Conference. IEEE
Computer Society, 2005, p. 16.

[8] C. Müller, M. Strengert, and T. Ertl, “Optimized Volume
Raycasting for Graphics-Hardware-based Cluster Systems,” in
Proceedings of EuroGraphics Symposium on Parallel Graph-
ics and Visualization (EGPGV). Eurographics Association,
2006, pp. 59–66.

[9] S. Marchesin, C. Mongenet, and J.-M. Dischler, “Multi-GPU
Sort Last Volume Visualization,” in Proceedings of Euro-
Graphics Symposium on Parallel Graphics and Visualization
(EGPGV), April 2008.

[10] T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron,
and P. Hatcher, “Large Data Visualization on Distributed
Memory Multi-GPU Clusters,” in Proceedings of High Per-
formance Graphics (HPG), Jun. 2010, pp. 57–66.

[11] A. Ancel, J.-M. Dischler, and C. Mongenet, “Load-Balanced
Multi-GPU Ambient Occlusion for Direct Volume Render-
ing.” in Proceedings of EuroGraphics Symposium on Parallel
Graphics and Visualization (EGPGV). Eurographics Asso-
ciation, 2012, pp. 99–108.

[12] S. Martin, H.-W. Shen, and P. McCormick, “Load-Balanced
Isosurfacing on Multi-GPU Clusters,” in Proceedings of Euro-
Graphics Symposium on Parallel Graphics and Visualization
(EGPGV), May 2010, pp. 91–100.

[13] S. Bachthaler, M. Strengert, D. Weiskopf, and T. Ertl, “Par-
allel Texture-Based Vector Field Visualization on Curved
Surfaces Using GPU Cluster Computers ,” in Proceedings
of EuroGraphics Symposium on Parallel Graphics and Visu-
alization (EGPGV), 2006, pp. 75–82.

[14] D. Pugmire, T. Peterka, and C. Garth, “Parallel Inte-
gral Curves,” in High Performance Visualization—Enabling
Extreme-Scale Scientific Insight, Oct. 2012, pp. 91–113.

[15] D. Pugmire, H. Childs, C. Garth, S. Ahern, and
G. H. Weber, “Scalable Computation of Streamlines on
Very Large Datasets,” in Proceedings of the ACM/IEEE
Conference on High Performance Computing (SC09), Nov.
2009.

[16] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W.
Shen, W. Kendall, and J. Huang, “A Study of Parallel Particle
Tracing for Steady-State and Time-Varying Flow Fields,” in
Proceedings of IPDPS 11, Anchorage AK, 2011.

[17] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-
Balanced Parallel Streamline Generation on Large Scale Vec-
tor Fields,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 1785–1794, 2011.

[18] C. Müller, D. Camp, B. Hentschel, and C. Garth, “Distributed
Parallel Particle Advection using Work Requesting,” in IEEE
Symposium on Large-Scale Data Analysis and Visualization
(LDAV), Atlanta, GA, Oct 2013, pp. 1–6.

[19] D. Weiskopf and T. Ertl, “GPU-Based 3D Texture Advection
for the Visualization of Unsteady Flow Fields,” in In WSCG
2004 Conference Proceedings, Short Papers, 2004, pp. 259–
266.

[20] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann, “Interac-
tive streak surface visualization on the gpu,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 15, no. 6, pp.
1259–1266, 2009.

[21] C. Garth and K. Joy, “Fast, memory-efficient cell location
in unstructured grids for visualization,” IEEE Transactions
on Computer Graphics and Visualization, vol. 16, no. 6, pp.
1541–1550, Nov. 2010.

[22] M. Bussler, T. Rick, A. Kelle-Emden, B. Hentschel, and
T. Kuhlen, “Interactive particle tracing in time-varying tetra-
hedral grids,” in Eurographics Symposium on Parallel Graph-
ics and Visualization (EGPGV). Eurographics Association,
2011, pp. 71–80.

[23] D. Camp, C. Garth, H. Childs, D. Pugmire, and
K. I. Joy, “Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multicore Architecture,” IEEE
Transactions on Visualization and Computer Graphics
(TVCG), vol. 17, pp. 1702–1713, Nov. 2011.

[24] P. Fischer, J. Lottes, D. Pointer, and A. Siegel, “Petascale
Algorithms for Reactor Hydrodynamics,” Journal of Physics:
Conference Series, vol. 125, pp. 1–5, 2008.

[25] E. Endeve, C. Y. Cardall, R. D. Budiardja, and A. Mez-
zacappa, “Generation of Magnetic Fields By the Stationary
Accretion Shock Instability,” The Astrophysical Journal, vol.
713, no. 2, pp. 1219–1243, 2010.

[26] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel,
S. Kruger, S. Plimpton, A. Tarditi, M. Chu, and the NIM-
ROD Team, “Nonlinear Magnetohydrodynamics with High-
order Finite Elements,” J. Comp. Phys., vol. 195, p. 355, 2004.

[27] S. Shende and A. D. Malony, “TAU: The TAU Parallel Perfor-
mance System,” International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 287–311, 2006.

