
1

Metascheduling of HPC Jobs in Day-Ahead
Electricity Markets

Prakash Murali, Sathish Vadhiyar, Senior Member, IEEE

F

Abstract—High performance grid computing is a key enabler of large
scale collaborative computational science. With the promise of exas-
cale computing, high performance grid systems are expected to incur
electricity bills that grow super-linearly over time. In order to achieve
cost effectiveness in these systems, it is essential for the scheduling
algorithms to exploit electricity price variations, both in space and time,
that are prevalent in the dynamic electricity price markets. In this paper,
we present a metascheduling algorithm to optimize the placement of
jobs in a compute grid which consumes electricity from the day-ahead
wholesale market. We formulate the scheduling problem as a Minimum
Cost Maximum Flow problem and leverage queue waiting time and elec-
tricity price predictions to accurately estimate the cost of job execution at
a system. Using trace based simulation with real and synthetic workload
traces, and real electricity price data sets, we demonstrate our approach
on two currently operational grids, XSEDE and NorduGrid. Our experi-
mental setup collectively constitute more than 433K processors spread
across 58 compute systems in 17 geographically distributed locations.
Experiments show that our approach simultaneously optimizes the total
electricity cost and the average response time of the grid, without being
unfair to users of the local batch systems.

1 INTRODUCTION

High performance grid computing involving supercom-
puter systems at distributed sites plays an important role
in accelerating scientific advancement and facilitating multi-
institutional and multi-disciplinary collaborations. Extreme
Science and Engineering Discovery Environment (XSEDE),
Open Science Grid and European Grid Infrastructure are
some examples of computational grid infrastructure that
support science gateways to enable communities to use
HPC systems. The operational costs of these systems have
become comparable to the cost of hardware acquisition,
and service providers regularly budget millions of dollars
annually for electricity bills [1]. With the growing demand
for exascale computation, the power consumption and oper-
ational costs of these systems are expected to increase super-
linearly over the years. Hence it is imperative to include
power and electricity cost minimization in job scheduling
decisions in high performance computational grids.

This work was supported by Department of Science and Technology (DST),
India via the grant SR/S3/EECE/0095/2012.

• Prakash Murali is doing his PhD in the Computer Science Department,
Princeton University, USA.
E-mail: pmurali@princeton.edu

• Sathish Vadhiyar is with the Department of Computational and Data
Sciences, Indian Institute of Science, India.
Email: vss@iisc.ac.in

A large body of work has been developed to reduce the
power consumption of data center servers, by switching off
unused nodes [2], using voltage and frequency scaling to
run servers at low power [3], and using renewable energy
sources to reduce the carbon footprint of computation [4].
We consider our work of metascheduling our applications to
sites to reduce time and electricity cost as complementary to
these approaches. Deregulation of the electricity power mar-
kets, creation of power trading zones, and use of renewable
energy in many countries offer opportunities to purchase
wholesale power under various dynamic pricing schemes.
Dynamic electricity price markets are popular and cater to
large industries and manufacturing units. In such markets,
scheduling algorithms can exploit spatial and temporal elec-
tricity price differentials and schedule workloads at servers
which have cheap power.

Typically, the wholesale energy market consists of a day-
ahead market and a real time market. In the day-ahead mar-
ket, consumers of electricity submit bids with their expected
power requirements for the following day (demand), and
suppliers of electricity submit bids with their expected gen-
eration and supply volumes for the coming day (supply).
The trading agency which accepts these bids, sets a clearing
price for each hour of the coming day, based on the supply
and demand bids. In contrast, real-time markets operate
at a faster rate, and the prices can fluctuate, say every 5
minutes, based on the actual supply and demand scenario
in the market.

HPC sites and systems can also participate in such
demand-response electricity programs [5]. With the increas-
ing power requirements in HPC, we anticipate that in
the near future, HPC system operators will consider these
markets as a potential source of cheap power. HPC sites
like Argonne National Lab (ANL) are already considering
using electricity according to time-of-use pricing [1]. We
use the day-ahead hourly electricity prices because the day-
ahead markets are suitable for HPC workloads. The loads
on these systems are predictable at a coarse level and can be
used by administrators to submit accurate demand bids for
procuring power supply the following day. Moreover, the
prices in the day-ahead market fluctuate smoothly and can
be predicted using time series forecasting techniques. These
predictions can be used for intelligent scheduling decisions.

For a scheduler to estimate the total electricity price for
a job execution before allocating the job to a system with
hourly price variations, it is important to know the period

ar
X

iv
:1

71
2.

10
20

1v
1

 [
cs

.D
C

]
 2

9
D

ec
 2

01
7

2

of execution in the system. Production parallel systems in
many supercomputing sites are batch systems that provide
space sharing of available processors among multiple par-
allel applications or jobs. Well known parallel job manage-
ment frameworks including including IBM LoadLeveler [6],
PBS [7], Platform LSF [8] and Maui scheduler [9] are used
to provide job queuing and execution services for users on
these supercomputers. With multiple users contending for
the compute resources, a batch queue submission incurs
time due to waiting in the queue before the resources
necessary for its execution are allocated. The queue waiting
time ranges from a few seconds to even a few days on
production systems, and is dependent on the load of the
system, the batch scheduling policy and the number of
processors requested by the user. Thus, the queue waiting
time and hence the starting time of the job on the system
is not known in advance. For the execution time and the
ending time of the job, we use the estimated run time (ERT)
provided by the user in the job script. The ERT of the job is
required for system schedulers which employ backfilling to
increase system utilization, and is thus supported by many
of the job management frameworks including PBS. When
the user does not specify the ERT, the maximum runtime
limit is assumed.

In this work, an extension to our previous work [10], we
have developed a metascheduling strategy that considers
hourly electricity price variations in a day-ahead market
and predicted response times to schedule HPC parallel jobs
to geographically distributed HPC systems of a grid. Our
metascheduler simultaneously minimizes electricity cost
and response times by exploiting electricity price differences
across states and countries to schedule jobs at systems where
the cost of servicing the job is minimized while ensuring
that the users do not suffer degradation in system response
time. Our metascheduler uses a framework that we have
developed for prediction of queue waiting times. We for-
mulate the job scheduling problem in our metascheduler as
a minimum cost maximum flow computation in a suitable
flow network and use the network simplex algorithm for
optimization [11]. We evaluated our algorithm with trace
based simulations using synthetic and real workload traces
of two production grids: XSEDE [12] and NorduGrid [13],
and real electricity price data sets. Our approach can poten-
tially save $167K in annual electricity cost while obtaining
25% reduction in average response time compared to a
baseline strategy. We found that even users who do not use
our metascheduler, can sometimes obtain improvements in
response time when our algorithm migrates jobs away from
their local systems.

To our knowledge, ours is the first work on metaschedul-
ing HPC workloads across grid systems considering actual
or predicted hourly electricity prices at a predicted period
of job execution.

In Section 2, we motivate and describe the problem
definition. We discuss our methodology including the net-
work flow formulation in Section 3. The experimental setup
is detailed in Section 4. We present the results and some
practical considerations in Section 5. We describe the related
work in Section 6 and conclude in Section 7.

2 BACKGROUND

Popular metaschedulers like Condor-G [14] use the concept
of periodic scheduling cycles to efficiently manage job sub-
mission and dispatch decisions. When a job is submitted
by a user, the metascheduler marks the job as pending for
scheduling. During the subsequent scheduling cycle, the
scheduling algorithm assigns a subset of the pending jobs
for processing at a subset of the systems in the grid. In
many currently operational grids, administrators impose
restrictions on the maximum number of jobs that can be
submitted to a particular system in a single scheduling
cycle to prevent the middleware at these systems from being
flooded by job submissions [14]. We denote this maximum
number as MaxQ.

Given n geographically distributed grid systems with
day-ahead hourly electricity prices and a meta scheduling
portal for accepting job submissions, the metascheduling
problem is to assign jobs in a scheduling cycle to systems
while simultaneously minimizing the response time and
electricity cost of the job executions.

While our metascheduler may increase the local electric-
ity cost at a system due to job migrations from submitting
to execution systems, it attempts to reduce the overall oper-
ational cost of the grid. We also claim that the variations in
workload at a particular system due to our metascheduler
cannot significantly alter the day-ahead hourly electricity
prices at the system’s location. This is because the day-
ahead market trading volume is typically many orders of
magnitude higher than the power consumption of a single
computing system. For example, the Gordon system at San
Diego Supercomputer Center in California has a maximum
power consumption of 358.4KW [15], while the peak trad-
ing volume in California Independent System Operator
(CAISO) for all days in August’14 is more than 30,000MW
[16].

3 METHODOLOGY

We formulate the grid scheduling problem as a minimum
cost maximum flow computation and use the network sim-
plex algorithm to find the optimal flow. To compute the cost
of scheduling a job on a system, we require predictions
of the response time of the job at the system and the
electricity cost required to execute the job. We describe our
approach for prediction of response time in Section 3.1, and
prediction of electricity price in Section 3.2. In Section 3.3.1,
we define the cost function and the flow network used in
our approach.

3.1 Response time prediction

In batch queue systems, similar jobs which arrive during
similar system queue and processor states, experience sim-
ilar queue waiting times. We have developed an adaptive
algorithm for prediction of queue waiting times on a parallel
system based on spatial clustering of the history of job
submissions at the system [17]. To obtain the prediction for a
job J on a system S, J is represented as a point in a feature
space using the job characteristics (request size, estimated
run time) specified by the user, the queue state at the system
at the current time (sums of request sizes of queued jobs,

3

estimated run times of queued jobs, elapsed waiting time
of queued jobs) and the state of the compute nodes at
the current time (number of occupied nodes, total elapsed
running time of the jobs, total estimated run times of the
jobs). We compute the Manhattan distance of each history
job with the target job, and consider history jobs with small
distance values as being similar to the target job. Then, we
use Density Based Spatial Clustering of Applications with
Noise (DBSCAN) to find clusters of similar jobs. DBSCAN
also allows us to eliminate outliers among the history jobs.
If we find clusters which are very similar to the target
job, i.e., clusters with low average distance, we use the
weighted average of waiting times of jobs in the cluster as
the prediction for the job, J . If we do not find clusters which
are very similar to the job, the job features of the history jobs
and the queue waiting times experienced by these jobs are
used to train a ridge regression model. Using an iterative
least squares minimization, ridge regression obtains a linear
model which is robust to the ill-conditioning present in our
feature matrix. The features of the target job are supplied as
input to this model to obtain the predicted queue waiting
time.

To find the response time of a job on a target system,
we invoke our queue waiting time predictor to find the
predicted start time of the job, ts. Then, we use the estimated
run time (ERT) supplied by the user to predict the end
time of the job. While the user estimates are known to be
inaccurate [18], the estimates serve as strict upper bounds
on the runtimes since job schedulers used in HPC systems
terminate a job when its runtime exceeds the user estimated
runtime. In this work, we use these estimates to demonstrate
the benefits that can be obtained for the grid systems from
participation in dynamic electricity markets. We show in
our experiments that using these estimates results in im-
proved scheduling decisions over a strategy that does not
use predictions, but only considers the loads at the time
of the submission. We expect that using improved runtime
prediction strategies can lead to additional benefits.

Since the ERT supplied by the user is relevant only for
the submission system, we use a scaling factor to adjust the
ERT for the target system. This scaling factor is computed
by taking the ratio of the performance per core (in GFlops)
of the target system and the submission system. For a job
which is submitted at a system Si, for which we require
an estimate of the runtime at system Sj , we obtain the
performance per core of both systems, and scale the ERT
of the job as ERTSj

= ERTSi
× ppcSi

/ppcSj
where ERTSi

is the estimated run time of the job provided by the user
on system Si, ppcSi

is the performance per core of system
Si. The predicted end time of the job on the system Sj is
te = ts + ERTSj

. We describe our approach for estimating
the power per core of a system in Section 4.

Migration of jobs from submission to execution sites
involves transfer of data and executables. In practice, the
data size parameter can be given as input by the user,
and the cost of data movement can be computed using
the data size and the properties of the link (latency and
bandwidth) between the submission and the execution sites.
We can also predict the data transfer delays using regression
based techniques [19] and include them in our calculations
of response times. We can also employ just-in-time data

transfer techniques [20] to overlap the data transfer time and
queue waiting time, and mitigate the impact of file transfers
on job response time. However, in this study, we do not
consider data transfer times because our workloads do not
include the necessary information about job file transfers
and network state, and the current workload models [21]–
[23] for synthetic logs do not generate data sizes. We assume
that the executable binaries and data needed for a job are set
up at multiple systems prior to the job submission and hence
the cost of job migration between the systems is negligible.

3.2 Electricity price prediction

To obtain the electricity prices during the job’s execution
period at a target system, we find the predicted start and
end time of the job using our response time predictor. Given
the predicted start and end times of the job on the system,
we check whether the job’s predicted execution duration
is within the end of the day (midnight). In this case, the
corresponding electricity prices during the execution period
in the day-ahead electricity market are known. When the
execution period does not fully lie within the hours of the
current day, i.e., te is after midnight on the submission day,
we predict the prices for the duration that lies beyond mid-
night. We use a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model to model the electricity prices
fluctuations in the day-ahead market. SARIMA models are
commonly used to obtain forecasts for time series data
which exhibit seasonal trends across days and months. Since
we observed that the prices in the day-ahead market have
high lag-24 autocorrelation, we use the SARIMA model
with a seasonal period of 24 hours. The various parameters
required for the SARIMA model were tuned using a training
set of the electricity price data. We used unit order terms for
the autoregressive and moving average seasonal and non-
seasonal components of the model for our experiments.

3.3 MCMF: Minimum Cost Maximum Flow

Minimum cost maximum flow (MCMF) is a fundamental
network flow model which aims to maximize the amount of
shipment of a single commodity through a network while
minimizing the cost of the shipment. MCMF can be solved
using a number of approaches including cycle canceling, lin-
ear programming and network simplex algorithms. We first
define the minimum cost flow (MCF) problem and use it to
define the minimum cost maximum flow (MCMF) problem.
The MCF problem is defined as follows. Let G(V,E) be a
flow network with source vertex s ∈ V and sink vertex
t ∈ V . Each edge (u, v) ∈ E has capacity c(u, v) > 0, flow
f(u, v) and cost p(u, v). In other words, the capacity, flow
and cost are mappings from E → R+. The capacity of the
edge denotes the maximum flow possible along the edge
and the cost denotes the price of unit flow along an edge.
The flow network, cost and capacity mappings are input for
the problem and the flow mapping, f , is the output.

Given some required flow value d from s to t, the
problem MCF (G, c, p, d) is

min
∑

(u,v)∈E

p(u, v) · f(u, v) (1)

4

subject to the following flow constraints:

Capacity : f(u, v) ≤ c(u, v), (2a)
Skew symmetry : f(u, v) = −f(v, u), (2b)
Flow conservation :∑
u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u) ∀u ∈ V \ {s, t} (2c)

Required flow :
∑

(s,v)∈E

f(s, v) =
∑

(v,t)∈E

f(v, t) = d. (2d)

The capacity constraints ensure that no edge is the net-
work can transport more flow than its capacity. The skew
symmetry condition allows algorithms to reduce the flow
on an edge by introducing non-zero flow in the reverse di-
rection. The flow conservation condition states that all flow
which enters a vertex through its incoming edges, leaves it
through the outgoing edges. Essentially, it means that no
vertex is allowed to store or buffer the flow. In addition to
these three constraints, the required flow constraint is nec-
essary to obtain a non-trivial solution for the minimization
problem. A flow function f which satisfies these constraints
is termed feasible. A feasible solution to the MCF problem
is dependent on the value of d. Given a certain value of d
for which a feasible minimum flow exists, we can obtain a
solution for a smaller required flow value d′, by reducing
the flow on the edges in the network. But, it may not
be possible to find a minimum cost flow for a higher re-
quired flow value because of the capacity constraints on the
edges. Hence, the Minimum Cost Maximum Flow (MCMF)
problem is to find the maximum value of d which can
produce a feasible flow in the corresponding MCF problem.
Formally, MCMF (G, c, p) is The Minimum Cost Maximum
Flow (MCMF) problem is to find the maximum value of
d which can produce a feasible flow in the corresponding
MCF problem. Formally, MCMF (G, c, p) is

max
{
d ∈ R+ : MCF (G, c, p, d) has a feasible solution.

}
(3)

Minimum cost flow problem can be solved using lin-
ear programming because the objective function and the
constraints are linear. Given integer capacities and costs,
a solver for MCF can be used to compute the maximum
feasible value of d by using a binary search on the set of
integers up to the total outgoing capacity of the source
vertex. The network simplex algorithm [11] relies on the
observation that the minimum cost flow problem has at least
one optimal spanning tree solution i.e., the set of edges with
non zero flow form a spanning tree for the flow network. In
each iteration, the algorithm pivots from one spanning tree
solution to the next by replacing a tree-arc with a non tree-
arc, in a manner that resembles the simplex algorithm for
linear programming. The network simplex algorithm runs
inO(min(n2m log nC, n2m2 log n))), where n is the number
of nodes, m is the number arcs and C is the maximum
cost on any arc [11]. Since the optimized implementations of
network simplex algorithm are usually very fast in practice,
we adopt it for our research.

3.3.1 Metascheduling using MCMF
To schedule a set of jobs to a set of systems, we represent the
jobs and systems as nodes in a flow network. We consider a
system to be compatible for a job, if the total cores in the

system is more than the request size of the job and the
maximum wall time permitted in the system is more than
the user estimated run time of the job. For each job, we
add an arc of unit capacity from the job to each compatible
system. A flow of unit value along an arc from J to S
represents scheduling J on S. We assign the cost of each job-
system arc as a weighted linear combination of the predicted
response time of the job and the electricity price required to
execute the job on the system.

To compute the cost of assigning a job J to a system
S, we predict the start time and end time of J on S as ts
and te, respectively. Assuming that the job is submitted at
time t, the response time of the job is TJ = te − t. In each
scheduling cycle, the metascheduler polls each system in the
grid to obtain its current queue and processor state in order
to invoke the response time predictor for each job on each
compatible system. Using these predictions for each job on
each system, we find the maximum and minimum predicted
response times in this scheduling cycle as Tmax and Tmin.
The cost of scheduling the job J at the system S, in terms of
response time, is defined as

CT (J, S) = (TJ − Tmin)/(Tmax − Tmin). (4)

We model the electricity prices at the location of the system
S to obtain a function φ̂S(t) which gives the predicted
electricity price during the time t. The cost of scheduling
the job at this system, in terms of electricity price is defined
as

CE(J, S) =

∑te
t=ts

PJ,S ×∆× φ̂S(t)− Emin

Emax − Emin
(5)

where PJ,S denotes the power consumption of J on S,
∆ denotes the period of the day-ahead electricity market,
and Emax and Emin denote the maximum and minimum
predicted electricity cost observed in the current scheduling
cycle. Since we use prices from the day-ahead hourly mar-
ket, ∆ = 1 hour in all our experiments. We describe our
approach to calculate PJ,S in Section 4.

We define the cost of scheduling J on S as

C(J, S) = wt × CT (J, S) + (100− wt)× CE(J, S) (6)

where wt is the relevance of the response time in the cost
function. CT (J, S) and CE(J, S) are normalized by the
corresponding minimum and maximum values to unit-less
quantities so that wt can be used for weightage of the two
terms irrespective of their absolute value. Our formulation
shown in Equation 6 is based on the nadir-utopia normal-
ization method by Kim and Weck [24]. In every scheduling
cycle, the objective function is re-normalized to adapt it to
the current predictions of electricity price and queue waiting
time.

We connect an arc of unit capacity from the source node
s to each job and an arc of capacity MaxQ from each system
to the sink node t. The costs of these edges are set to 0. For
a set of m jobs and n systems, we illustrate this network
in Figure 1 where each arc is labeled with two parameters,
namely, the capacity of the edge and the cost of unit flow
through the edge. We scale the costs of the network edges
by multiplying with a large constant (100), and round off
the values to integers. In such a network, the Integrality
Theorem of maximum flow networks [25] guarantees that
the maximum flow is integral and each unit capacity edge

5

s

Jobs

J1

J2

J3

··
·

Jm

Systems

S1

S2

S3

Sn

··
·

t

(1,0)

(1,0)

(M
axQ, 0)

(M
ax
Q, 0)

(1, C(J1, S1))

··
·

(1, C(Jm, Sn))

Fig. 1: Flow network used for scheduling. The edges are
labelled as (edge capacity, cost of unit flow).

in our network has a flow value of either 0 or 1. We compute
a maximum flow of minimum cost in this network using the
network simplex algorithm available in the Python package,
NetworkX. After computing the minimum cost flow, we
inspect the job-system arcs and select the arcs which have
non-zero flow. For each arc from J to S which has non
zero flow, we schedule the job J on system S. By the flow
conservation principles, we are guaranteed that a) not more
than one system is selected for a job and b) no system
receives more than MaxQ jobs during one scheduling cycle.

3.3.2 Comparison with Stable Matching Algorithm
In this section, we describe an algorithm for metascheduling
based on stable matching and discuss why such an approach
is not suitable for our metascheduling problem.

We consider the scheduling algorithm used by HTCon-
dor [26] which negotiates job and machine requirements to
arrive at an optimal schedule. In this approach, users submit
their job requirements and daemons running at the grid
systems submit details about the available resources to the
metascheduler. Users and machines are allowed to provide
priority calculation methods to rank machines and jobs,
respectively. In each scheduling cycle, the metascheduler
uses this information to create a preference list for each job
and machine. For example, each job can rank the machines
in the decreasing order of their processing speed. Using
these preference lists, the metascheduler conducts a series of
proposals where jobs propose their allocation on a machine,
and the machine either accepts or denies the request. The
proposals follow two simple rules:

• no job proposes to a particular machine more than
once,

• a machine which is free accepts any incoming alloca-
tion proposal.

When a job proposes to a free machine, the machine accepts
the proposal and the job is marked as tentatively scheduled
on the machine, which is then marked as busy. If a job
proposes to a busy machine, the machine can reject or accept
the proposal depending on the relative priorities of the
incoming and the currently scheduled job. If the machine
accepts the incoming job in favor of the currently sched-
uled job, the incoming job is tentatively scheduled, and
the current job is tentatively marked as unscheduled. Since
each job proposes to a machine only once, the algorithm
terminates in O(n2) iterations for n jobs and n machines.
This algorithm produces a stable matching. A matching is
termed stable, if there is no pair of jobs J1 and J2 matched

to M1 and M2 respectively, such that job J2 prefers M1 over
M2 and system M1 prefers J2 over J1. In other words, there
is no job J2 and machine M1 which prefer each other, but
are matched to another choice.

HTCondor does not use any power or electricity price
optimization criteria while negotiating a schedule. How-
ever, it can be extended to include these criteria. Jobs can
rank machines in the increasing order of predicted response
time and machines can rank jobs in the increasing order
of estimated electricity cost for the job execution. Then,
the algorithm can negotiate a schedule where jobs prefer
systems where the response time is less and machines prefer
jobs which will incur less electricity bills. However, this
approach has multiple drawbacks. One drawback of this
approach is that the schedule that is generated can be
either job-optimal or machine-optimal, depending on if the
jobs propose to machines or vice-versa. In stable matching
literature, it is well known that if the jobs propose to ma-
chines, the schedule will match each job to its best possible
machine and each machine to its worst possible job [27].
This solution is job-optimal. When the machines propose
to the jobs, the matching obtained will by machine-optimal
where each machines are matched to the best possible job.
Another drawback is that if each job has a different machine
as its top preference, then the algorithm will not consider the
machine preferences at all. Each job will be assigned to its
top preference machine and the algorithm will be incapable
of optimizing electricity prices.

A third issue with this approach is that ranking of
jobs/machines loses information that can be vital for obtain-
ing good schedules. For example, consider a job J1 which
has response times (1s, 10s and 20s) on three machines
(M1,M2,M3) and a job J2 which has response times (50s, 1
day, 2 days) on the same three machines. In supercomputer
systems, it is known that response times less than 20 min-
utes encourage the user to continue his job submission ses-
sion [28]. Both jobs will rank the machines in the same order
and we will lose the information that from the perspective
of user productivity, assigning J2 to its second preference is
worse than assigning J1 to its second preference. Hence, it is
necessary to use the exact values of predicted response time
and electricity cost. In our proposed approach, the objective
function includes the exact values of both response time and
electricity price for minimization. Since our approach is a
global minimization in the flow network, our approach can
simultaneously optimize the metrics of interest for both jobs
and machines, and avoids the potential drawbacks of the
HTCondor approach.

4 EXPERIMENTAL SETUP

We performed trace based simulation of real and synthetic
grid workloads using real electricity price data sets and
power consumption profiles of compute systems to test the
effectiveness of our approach1. In this section we explain
each component of the experimental setup.

1. Our simulator, metascheduler, predictors and data
sets are available in https://github.com/MARS-CDS-IISc/
mcmf-metascheduler-predictors.

6

4.1 Workload and Scheduler Simulator
We conduct simulations using grid traces which are in Stan-
dard Workload Format (SWF) [21] or Grid Workload Format
(GWF) [29]. Each line in the SWF/GWF trace denotes a job
and records the arrival time, run time, number of cores,
user estimated runtime and other job parameters. GWF
traces also record the system where the job was originally
submitted. While using SWF traces during synthetic trace
generation, we appended each line in the trace with the
submission system. To conduct trace driven simulations, we
used an extended version of the Python Scheduler Simulator
(pyss) developed by the Parallel Systems Lab in Hebrew
University [30]. pyss accepts a workload trace, system size
and scheduling algorithm as inputs and replays the job
arrival events, start and end of job execution events to sim-
ulate the state of the system with the input workload. Since
pyss simulates only one system, we extended it to support
multiple systems. We implemented a metascheduler class
that acts as a common interface between the job submissions
and the various execution systems. We configured pyss to
use the EASY backfilling algorithm [31] to schedule jobs at
the individual systems.

4.2 Grid systems
We simulate two currently operational grids which collec-
tively span 58 individual compute systems, 17 countries and
states, 10 electricity transmission operators, 7 time zones
and more than 250k job submissions. For each system, we
obtained the number of cores and maximum wall time of a
job from publicly advertised system information.

4.2.1 XSEDE
The Extreme Science and Engineering Discovery Environ-
ment (XSEDE) project is a large scale compute grid which
connects many universities and research centers in the US.
For high performance computing, XSEDE connects eight
supercomputing systems situated across different states in
the US. For our simulation experiments, we used eight
CPU-only systems of XSEDE and its previous incarnation,
TeraGrid. The XSEDE system configuration, shown in Table
1 was obtained from [12] and [32]. Each individual XSEDE
system uses the Portable Batch System (PBS) or Sun Grid
Engine (SGE) for job management, and grid submissions are
processed through Condor-G metascheduler [14]. Hart [33]
reports that short jobs which run for less than 30 minutes
constitute less than 5% of the total core hours delivered by
XSEDE. These jobs include debugging and test runs and
are not representative of the production usage. We do not
consider these jobs for simulation and model only the jobs
in the production workload.

4.2.2 NorduGrid
NorduGrid is a very large grid with 80 systems spread
across 12 countries with a majority of the systems located
in the Nordic countries. We simulated 50 selected systems
of NorduGrid which constitute over 90% of the total CPU
cores available in the grid. In particular, we ignore systems
with very small number of cores and systems where we
could not obtain electricity price or CPU architecture in-
formation which is required for our simulations. The grid
configuration was obtained from [13].

TABLE 1: The XSEDE Grid

System Location Cores Power
(watts/core)

Performance
(Gflops/core)

Blacklight Pittsburgh 4096 87.89 9.00
Darter Tennessee 11968 30.58 20.79
Gordon San Diego 16160 22.17 21.10
Trestles San Diego 10368 42.66 9.64
Mason Indiana 576 39.95 7.43
Lonestar Texas 22656 15.83 13.32
Queenbee Louisiana 5440 16.25 9.37
Steele Purdue 4992 83.75 13.33

4.3 Workload

For simulating the jobs at a system, we used a synthetic
workload for XSEDE and real workload traces for Nor-
duGrid.

4.3.1 XSEDE

For the six existing systems [systems 1-6 in Table 1] , we
obtained the system size and maximum walltime of a job
at each system from their respective webpages. For the
remaining two systems, we obtained the required infor-
mation from www.teragridforum.org/mediawiki/images/
5/5f/RPQueue Info.xls. The names of the systems and the
system configuration used at each system are shown in
Table 1.

We generated synthetic workload traces for each system
using the workload models available in Parallel Workloads
Archive [21]. For generating the job arrival time, request size
and run time, we use the model proposed by Lublin and
Feitelson [22]. This is a widely used model which employs a
hyper-Gamma distribution for generating job runtimes, ar-
rival times and requests sizes. To generate the user estimates
of runtime, we used the model proposed by Tsafrir et.al.
[23]. This work observes that the number of common user
runtime estimates at an HPC system is usually less than 20.
Their model generates practically usable estimates which
mimic the modality seen in real workloads. The model
requires two inputs: the maximum value of the user estimate
at a system and the number of jobs for which the estimates
are to be generated. For both XSEDE and NorduGrid, we
obtained the maximum values of user estimates for each
system from publicly advertised system information.

In [33], Hart provides various summary statistics about
the run times, job sizes and inter-arrival times of the
production jobs in XSEDE/TeraGrid. For generating the
workload, we generate traces for each system in the grid
and merge them into a single workload with annotations
for denoting the original submission system. We manually
adjusted the parameters of Lublin and Tsafrir models to
match the aggregate statistics of the synthetic workload
with the reported XSEDE/TeraGrid statistics. Statistics of
our synthetic workload match the characteristics reported
by Hart. The average job runtime in our workload is 8.8
hours while the actual average runtime in TeraGrid is 9
hours. The average number of job arrivals at a system per
hour is 3.22 in our workload, while the actual value is 3.27.

For Mason and Steele which allow long running jobs up
to many weeks, we limited the maximum runtime of a job

7

to three days because the electricity prices datasets are of
limited duration.

4.3.2 NorduGrid

In NorduGrid, we used a real workload available in Grid
Workloads Archive [29]. The archive records each job’s
submission system, submission time, requested processors
and runtime. We used Tsafrir model with the maximum ob-
served runtime as input parameter to assign user estimated
runtimes for each job.

For queue waiting time and electricity price predictions,
we used a subset of jobs and electricity price data as training
information. Queue waiting time is predicted for a job at a
system by considering the previous 2000 job submissions
at the system as the training input. For predicting the
electricity prices, we use the prices of the previous three
days as training input for the SARIMA model. In Table 2, we
show our simulation configuration including the number of
jobs and the duration that is simulated for each grid.

TABLE 2: Simulation Configuration

Test configuration

Grid Systems Cores Jobs Days

XSEDE 8 76256 10000 15
NorduGrid 50 356856 126344 90

4.4 Variable electricity prices

For different systems, we obtained the hourly electricity
prices in the day-ahead market from the electricity operator
in the respective power market. For regions without variable
electricity pricing, corresponding to one system in XSEDE
and 24 systems in NorduGrid, we used the applicable
fixed industrial electricity price. For systems in XSEDE,
we used historical market prices for June 2014 available
from the regional energy operators of the Federal Energy
Regulatory Commission [34]. In NorduGrid, we obtained
the market prices for Denmark, Sweden, Norway, Finland,
Latvia and Lithuania from Nord Pool Spot [35] and for
Slovenia from BSP SouthPool [36]. For systems in United
Kingdom, Ukraine, and Switzerland, we used the applicable
fixed industrial prices. Overall, in NorduGrid, our electricity
price data set spans three months from January-March 2014
and includes variable electricity prices for 26 systems.

4.5 Job power consumption and execution character-
istics

We require estimates of job power consumption and runtime
at each system to quantify the impacts of job migration
on metrics relevant for users and system administrators.
When a job is migrated away from the submission system,
the runtime and power consumption of the job can change
e.g if a job is migrated to a faster system, the run time
is expected to reduce. To account for these differences we
require estimates for power consumption and runtime of a
job at every compatible system.

4.5.1 Job power consumption

To estimate the power consumption of a job at a system,
we assume that the job has the same power consump-
tion characteristics as High Performance Linpack (HPL).
The work by Kamil et.al. [37] experimentally demonstrates
that the HPL power consumption can be used to closely
approximate the power consumption of production scien-
tific applications. For each system in XSEDE, we obtained
the peak power consumption from Top500 and Green500
datasets, computed the HPL power consumption per core,
and scaled it by the number of cores used by a job to find
the power consumption of a job. Thus, if a job requires
n cores on a machine which has a total of N cores and
advertised HPL power is PHPL, the job power consumption
is considered as PJ = n × (PHPL/N). Table 1 shows the
values of HPL power consumption per core for each system.
For NorduGrid, we were unable to obtain HPL benchmark
data on each system. Hence, we resorted to white papers
published by the chip manufacturers to obtain the power
consumption per core. Similar to XSEDE, we scaled these
numbers with the requested number of cores to find the
power consumption of each job.

4.5.2 Runtime scaling

We assume that the applications in our workload have
similar scalability characteristics as HPL. For XSEDE, we
obtained the HPL peak performance (Rmax in TFlops) of a
system using Top500 data and normalized it by the number
of cores in the system to find the performance per core.
For a pair of systems Si and Sj , we compute the scaling
factor scaleij as the ratio of the performance per core for
Si and Sj . When a job is migrated from Si to Sj , we adjust
the job’s estimated runtime as rj = ri × scaleij where ri
is the estimated runtime of the job in system Si. We com-
puted such scaling factors for every pair of systems using
Top500 data. For NorduGrid, we obtained the theoretical
peak performance of a core in the system (in GFlops) from
architecture white papers. For example, for the Intel E5-2600
series of processors, we obtained the peak performance data
from [38]. As in XSEDE, we used these peak performance
indices to compute the scaling factors across systems.

For HPL, it is reasonable to scale runtime across systems
only using the number of cores, and not use other factors
including memory bandwidth and communication perfor-
mance. This is because the runtime of HPL is primarily
dominated by the computation time (O(N3) and less by the
communication times (O(N2) [39]. The computation time
scales linearly with the number of processor cores. This is
also confirmed by a recent study, where the memory band-
width was found to have no impact on HPL performance,
and the impact due to communication bandwidth and la-
tency were found to be negligibly small [40]. This is further
confirmed by the Rmax HPL performance of large-scale
systems considered in our study, where Rmax of the Top500
systems are typically about 90% of Rpeak, which is found
solely using the number of cores. Modern day applications
for large-scale systems acheive or are developed to achieve
linear scalability, similar to HPL. Hence, we use only the
number of cores to scale the runtime to a different system.

8

4.6 Evaluation metrics

To evaluate the benefits of our approach, we employ a
number of metrics as described below.

• Average response time
• Total electricity cost: For a job Ji which executes on

system Sj , the electricity cost is computed as:

e(Ji, Sj) =

TWij
+TRij∑

t=TWij

Pij ×∆× φSj
(t) (7)

where Pij is the power consumption of Ji on Sj

in watts, ∆ denotes the period of the day-ahead
electricity market, TWij

and TRij
are the waiting time

and running incurred for Ji on Sj in hours, and
φSj

(t) is the hourly price variation function for Sj

expressed in currency per watts. For the day-ahead
hourly market, ∆ is set to one hour.

• Bounded slowdown: Slowdown is computed by nor-
malizing the response time of a job by the running
time. Since slowdown is sensitive to jobs with very
small runtime, bounded slowdown thresholds the
runtime using a lower bound [41]. For a job with
waiting time TW and running time TR in seconds,
bounded slowdown is defined as

BS = max

{
TW + TR

max(TR, 10)
, 1

}
(8)

• System utilization: Utilization at a particular system
is computed by dividing the sum of the CPU hours
of jobs scheduled at the system by the product of
the makespan and total processors available in the
system. Thus, utilization aims to measure the fraction
of the system core hours which delivered useful
work.

• System instantaneous load: Instantaneous load is
defined as the sum of the CPU hours of both the run-
ning and queued jobs divided by the total processors
available in the system at a particular instant.

• Fairness to System: The annual reports published
by various supercomputing service providers which
are part of XSEDE, show that, the response times of
jobs processed at the system, and the number of core
hours delivered to specific project allocations and
users, are considered important metrics for quantify-
ing the quality of service of each provider. Hence, it
is important for service providers to ensure that their
participation in the grid does not adversely affect the
users of the local batch system. A system or site’s
participation in grid should not affect the quality of
service provided to the jobs that are submitted to
the system. Specifically, a high speed system after
joining the grid may become highly loaded due to
migration of jobs submitted at low speed systems.
To evaluate the quality of service, we compute the
speedup obtained due to the use of our metaschedul-
ing algorithm, compared to the baseline. Specifically,
for a job J , which is submitted at system Si, which
has response time Rlocal

J when metascheduling is not
used and Rgrid

J in the presence of metascheduling,

we compute the quality of service offered to the job
as:

qosScore(Si, J) =
Rlocal

J

Rgrid
J

(9)

We then compute the fairness score for a system as
the geometric mean of the QoS scores of all the jobs
submitted at the system. If a system has high fairness
score, it indicates that the users of the system are
benefitted by the system’s participation in the grid.

5 RESULTS AND DISCUSSION

In this section, we present various results on our
metascheduling approach including reduction in response
time, savings in cost, and overall statistics. We refer to
our approach based on the Minimum Cost Maximum Flow
algorithm as MCMF. During our experiments, we observed
that our Python implementation running on an Intel Core
i7 3.4Ghz processor with 16GB RAM takes 8.4 seconds on
average for computing the scheduling cost and construct-
ing the flow network, and 16.3 seconds on average for
computing the minimum cost flow and the subsequent job
submissions to individual systems. We compare our strategy
with a baseline strategy BS, in which the jobs are executed
at the submission system.

Our strategy is primarily different from existing efforts
[1], [42] in terms of using waiting time predictions to esti-
mate the benefits in response time and electricity cost for
the execution period of a job, and in terms of using the
hourly electricity prices during the execution to estimate the
total cost. Hence we compare our approach with two strate-
gies, the first strategy called INST which does not consider
predictions but makes decisions based on instantaneous
loads of the systems at the time of the job submissions,
and the second strategy called TWOPRICE which does not
consider hourly prices but considers only two prices per
day, namely, on-peak and off-peak. The INST strategy which
assumes immediate execution start of a job is implemented
by feeding the waiting times as zeros to our MCMF strategy.
The TWOPRICE strategy is implemented by considering the
on-peak hours as 12pm to midnight and calculating the off-
peak and on-peak prices as the 10th and 90th percentile of
the day-ahead market prices for the simulation period. Note
that the INST and TWOPRICE strategies are grid scheduling
strategies since they allow sharing and migration of jobs
across the grid systems.

5.1 Prediction Accuracy
Our MCMF metascheduler uses predictions for three pa-
rameters, namely, queue waiting times using our wait-
time predictor [17], response times using user estimated
runtime (ERT), and electricity prices using SARIMA model.
In this section, we evaluate the prediction accuracies for
the queue waiting time and electricity price predictions,
and the usefulness of these predictions for metascheduling.
The user estimated runtimes (ERTs) are generally known
to have gross over-approximations and hence have large
prediction errors [18]. Section 5.3 shows the sensitivity of
our metascheduler to the errors in these predictions.

9

TABLE 3: Supercomputer Traces

Trace name Trace duration
(months)

Number of Completed Jobs

CEA Curie 20 266099
DAS2 12 39915
SDSC Paragon 12 32199

0−
1000

1000−
10000

10000−
100000

>
100000

0−
1000

1000−
10000

10000−
100000

>
100000

0−
1000

1000−
10000

10000−
100000

>
100000

Response time range (seconds)

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
of

jo
bs

(%
)

CEA Curie DAS2 SDSC Paragon

AAE >= 12 hours
6 hours <= AAE < 12 hours

1 hour <= AAE < 6 hours
AAE < 1 hour

Fig. 2: Distribution of Average Absolute Errors (AAEs) for
Different Ranges of Actual Response Times in CEA Curie, DAS2
and SDSC Paragon

5.1.1 Queue Waiting Time Prediction
We evaluated our queue waiting time prediction frame-
work using production supercomputer workload traces
with varying site and job characteristics, including two
Top500 systems, obtained from Parallel Workloads Archive
[21]. The detailed results and analyses are contained in our
previous work [17]. In summary, our predictions results
in up to 22% reduction in the average absolute error and
up to 56% reduction in the percentage prediction errors
over existing strategies including QBETS [43] and IBL [44]
across workloads. Our prediction system also gave accurate
predictions for most of the jobs. For example, for the work-
load of ANL’s Intrepid system our predictor gave highly
accurate predictions with less than 15 minutes absolute error
for more than 70% of the jobs. Our predictor is currently
deployed on an 800 core system in our home department,
delivering queue waiting time predictions to users with less
than 30% error.

For our current work related to metascheduling, we
demonstrate the relevance of our predictor with the given
prediction errors for our metascheduling system that uses
one-hour day-ahead electricity markets. Figure 2 shows
the distribution of the average absolute errors (AAEs) for
different ranges of actual response times of the jobs for three
sample supercomputer traces, namely, CEA Curie of France
which is a Top500 system, DAS2 of Netherlands, and SDSC
Paragon of USA. The parameters of these supercomputer
traces are given in Table 3. We find that the AAEs were less
than one hour for 88-98% of the jobs, thus demonstrating
that our queue waiting time predictor is sufficiently accu-
rate for metascheduling in day-ahead electricity markets in
which prices fluctuate at a frequency of one hour.

5.1.2 Electricity Price Prediction
In Figure 3, we show the sample prediction results for
forecasting of electricity prices in Texas. For this experiment,

0 100 200 300 400 500

Time (hours)

20

30

40

50

60

70

80

90

P
ri

ce
($

)

Predicted
True

Fig. 3: Electricity price predictions for Texas

we predicted the electricity prices for a single day using
the historical prices of the previous three days. The market
prices for the day-ahead hourly electricity market were
obtained for June 1-20, 2014 from the datasets of Electric
Reliability Council of Texas [45]. We can see that curves for
the predicted and actual prices are very close. The average
percentage prediction error was found to be only 8%.

5.2 Overall Results

In this section, we analyze the overall reductions in response
times and electricity cost by our algorithm and compare
with the other approaches. Table 4 shows the comparison
results. The table shows the results of our MCMF algorithm
with different values ofwt. Recall thatwt denotes the weight
of the response time term in the cost function minimized by
MCMF.

TABLE 4: Overall Simulation Results

Grid Strategy Average
response time
(minutes)

Total electric-
ity cost ($ or
e)

XSEDE

MCMF (wt = 25%) 477.5 $224021.6
TWOPRICE (wt = 25%) 473.3 $232557.3
MCMF (wt = 0%) 1095.4 $187298.9
INST 3460.8 $205876.5
Baseline 633.7 $230985.6

NorduGrid

MCMF (wt = 92.5%) 1678.6 e12819.6
TWOPRICE (wt = 92.5%) 1724.4 e12991.7
INST 5210.2 e14613.6
Baseline 1900.3 e16608.3

For XSEDE, we observe that with wt = 25%, our
MCMF strategy simultaneously achieves 24.6% reduction in
average response time and $6964 savings in total electricity
cost, compared to the baseline, for the 15-day period. This
reduction in electricity cost can potentially translate to a
projected savings of $167K dollars per year for the whole
grid. Figure 4 shows the trade off between response time
and cost for our MCMF algorithm for different values of wt

compared to the other strategies. We see that when response
time is not considered for optimization (wt = 0), we obtain
up to $43686 reduction in electricity cost with a 1.7x increase
in average response time over the baseline. Thus, for one
year of operation, we can potentially save $1.04M for the
whole grid. Considering that the annual electricity budget
of Argonne National Laboratory’s primary supercomputer
is $1M [1], the savings obtained by our approach are signif-
icant.

10

102 103

Avg. response time (minutes)

190

200

210

220

230

240

El
ec

tr
ic

it
y

co
st

(1
00

0x
do

lla
rs

)

INST

BS

TWOPRICE

MCMF(wt = 25%)

MCMF(wt = 10%)

MCMF(wt = 0%)

Fig. 4: Overall simulation results in XSEDE

From Table 4 and Figure 4, we can also see that our
MCMF algorithm (wt = 25%) outperforms TWOPRICE
by $8535.7 in terms of cost. This is because TWOPRICE
is unaware of fine grained price fluctuations every hour.
INST degrades the baseline response time by 5.5x although
it achieves better cost. The reason for INST achieving lower
cost and high response times in most of the cases is because
at the beginning of the simulation, INST migrates jobs to
good systems with low electricity cost and low response
times. But soon enough, when the systems become loaded,
INST continues to keep pushing jobs to the same systems
without being aware of the queue waiting times caused by
the high loads on the systems. So being aware of electricity
cost helps INST to achieve low cost, while not being aware
of waiting time results in high load imbalance across sys-
tems, and hence high response times. Compared to INST,
MCMF (wt = 10%) obtains 3.1x reduction in response time
for the same cost. We also see that our MCMF algorithm
(wt = 0%) outperforms INST in both response time and
electricity cost.

Even though INST considers the hourly electricity cost,
for jobs with non-zero waiting times it is unable to estimate
the electricity prices during the time of job execution with-
out the assistance of a wait time predictor.

For NorduGrid, we observed improvements in both
response time and electricity cost whenwt = 92.5%. For this
workload, the response time improves by 11.7% and elec-
tricity cost reduced by e3788.7 over the baseline. Thus, in
NorduGrid, our projected electricity cost savings are e15.1K
per year. Similar to XSEDE, our MCMF algorithm has lesser
response time and electricity cost than TWOPRICE and
INST.

These results show that our MCMF algorithm can
achieve the twin goals of reducing both response time and
total electricity cost of large scale grids. The results also
underscore the importance of both queue waiting time pre-
dictions and hourly electricity prices in our MCMF strategy.

5.3 Sensitivity to Prediction Errors
In this section, we study the effect of prediction errors on the
metascheduler. We show results with XSEDE for the 10,000
jobs.

Our electricity price predictions are fairly accurate. This
is validated in our experiments by comparing with the
actual hourly electricity price data in the day-ahead market
for the eight states that constituted the XSEDE grid. In

Perturbation
Threshold
(hours)

Average
PPE (%)

Average Response
Time (minutes)

Average Electric-
ity Price ($)

0 3 458.5 22.85
1 25 457.9 22.90
3 62 457.4 23.05
6 116 462.3 23.04
12 221 493.6 23.02
24 386 518.5 22.98

TABLE 5: Metascheduling Results for Different Perturba-
tions to Qwait Time Predictions

75% of the 10,000 jobs, our predictions gave less than 15%
prediction errors. In about all the cases, the predictions gave
less than 20% errors. Since the hourly electricity prices did
not vary drastically from one day to the next, our SARIMA
model was able to model the prices with reasonable accu-
racy.

However, the predictions in queue waiting times and
runtimes can have large prediction errors for some jobs. As
mentioned earlier, the user-estimated runtimes (ERT) we use
are generally known to have large prediction errors. Hence
in this section, we study the sensitivity of our metascheduler
due to the prediction errors in queue waiting and runtime
predictions. For studying sensitivity to prediction errors in
queue waiting times, we perform perturbation experiments.
For each set of perturbation experiments, we perturb our
predicted waiting time for each job by adding a random
value in the range [1, P] time units to the initial predicted
waiting time, where P is the perturbation threshold. We per-
form five sets of perturbation experiments corresponding to
thresholds of 1, 3, 6, 12 and 24 hours. We consider the the
same set of 10, 000 jobs for each perturbation experiment.
Table 5 shows the metascheduling results for jobs for the
different perturbation experiments. The first row of the table
for the perturbation threshold of 0 hours corresponds to
unperturbed results. The table also shows the average PPE
in queue waiting time predictions for each perturbation
experiment. As expected, the average PPEs increase with
increasing perturbation threshold, implying larger errors in
queue waiting time predictions for larger thresholds.

We find that the average response times due to our
MCMF strategy are relatively stable across different pre-
diction errors, especially when the prediction errors are
reasonable. Only for very large percentage prediction errors
with average PPEs of greater than 200% corresponding to
thresholds of 12 and 24 hours, we see a noticeable increase in
the average response times. As shown in our previous work
[17], the average PPE in our queue waiting time predictions
is less than 100% for most of the real supercomputing traces.
We find that the increase in prediction errors did not have
an impact at all in the average electricity price yielded by
our metascheduler. Thus, our MCMF metascheduler is fairly
robust to the prediction errors in queue waiting times.

The user-estimated runtimes already had large predic-
tion errors. Hence, in our original unperturbed experiments,
we categorized the 10,000 jobs into different sets corre-
sponding to different ranges of percentage prediction errors
in runtimes. For each set of jobs, we then compared the
average response times due to our MCMF metascheduler
with the other methods. Table 6 shows the percent improve-

11

PPE in ERT
(%)

Number of
Jobs

% Imp.
over
Baseline
(%)

% Imp.
over INST
(%)

% Imp.
over
TWOPRICE
(%)

0-10 1637 21.83 83.67 -0.10
10-20 1456 25.57 88.23 -0.07
20-30 799 25.62 88.47 -0.28
30-50 1070 28.81 87.36 -0.18
50-100 1342 27.63 85.48 -0.24
100-200 1247 29.82 87.69 -0.46
> 200 2448 34.56 90.18 -0.35

TABLE 6: Metascheduling Results for Different Ranges of
Runtime Prediction Errors

ment or degradation in average response times due to our
MCMF metascheduler over the other methods. We find that
the improvements or degradations over a particular method
does not vary by large amounts with the prediction errors in
runtimes. Our MCMF strategy resulted in about 22-35 % im-
provement over the baseline for all the sets of jobs. Similarly,
the MCMF improvement over INST is in the range 84-90%,
and both the MCMF and the TWOPRICE strategies perform
equivalent for all the sets of jobs corresponding to different
prediction errors in runtimes. Thus, our metascheduler is
also robust to the prediction errors in runtimes.

5.4 Effect of Job Size
We also measured how differences in job size impact the
savings obtained by our MCMF algorithm over the baseline.
For measuring the impact of job size, we divided the jobs
into three classes. We denote jobs having less than 512 CPU
hours work as small, between 512 and 4096 CPU hours as
medium and jobs larger than 4096 CPU hours as large. In Fig-
ure 5, we see that the savings in response time and electricity
cost per job increase with job size. Since larger jobs consume
more electricity and system core hours, placing these jobs in
optimal locations results in larger improvements compared
to jobs of smaller size. As observed in earlier sections, in
XSEDE, our algorithm obtains savings in response time
by migrating jobs away from slower systems. Similarly, in
NorduGrid, we observed that our algorithm obtains high
savings in response time as a result of migrating many
long running parallel jobs from the Triolith-ATLAS cluster
at the National Supercomputer Centre in Sweden which has
2.2GHz Intel Sandy Bridge processors to the Glenn cluster
in Chalmers Institute of Technology in Sweden which has
3.0GHz AMD Opteron Interlagos processors. The difference
in the absolute savings in response time for large jobs in
XSEDE and NorduGrid arises from the difference in average
job runtime in the two grids. On average, jobs in NorduGrid
are 3.4x longer than jobs in XSEDE. Hence, migrating the
long running jobs in NorduGrid to faster systems gives
larger absolute improvements in response time compared
to XSEDE. In XSEDE, we obtain reduction in electricity cost
from improved placement of large and medium sized jobs.
It is interesting to note that although NorduGrid exhibits
the same trend as XSEDE, 92% of the total electricity bill
saved in NorduGrid is from the optimal placement of small
jobs which contribute to the savings of 2.8 cents per job, as
shown in the inset in the cost savings graph of Figure 5.
Clearly, even a few cents saved per job can aggregate over

Small

Medium
Large

-1

0

1

2

3

4

5

6

7

C
os

ts
av

in
gs

(c
ur

re
nc

y
pe

r
jo

b)

0.00

0.02

0.04

Small

Medium
Large

0

10

20

30

40

50

60

R
es

po
ns

e
ti

m
e

sa
vi

ng
s

(h
ou

rs
pe

r
jo

b)XSEDE NorduGrid

Job size

Fig. 5: Effect on job size on savings

Lonesta
r

Queenbee
Gordon

Mason
Trestle

s
Darter

Steele

Blacklight
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
or

e
ho

ur
s

pr
oc

es
se

d

1e10

MCMF
INST
TWOPRICE
BS

Fig. 6: Distribution of delivered core hours among systems
in XSEDE

the course of months to provide significant reduction in the
grid operational cost.

5.5 Load, Utilization and Power Variations
In this section, we show a snapshot of the simulations
which contrasts the behavior of our algorithm and other
approaches.

In Figure 6, we arranged the systems in XSEDE in
increasing order of service unit cost and show the the core
hours processed at each system. We see that all the electricity
price-aware strategies reduce the load on the costly systems
compared to the baseline. However, our algorithm is able to
achieve the optimal proportion of core hours at each system
to obtain improved response time.

We looked at hourly instantaneous load at each system
to understand the hourly behavior of our scheduling policy
and compared with the other policies. We used wt = 25%
for these experiments. In Figure 7, we contrast the instanta-
neous load of Mason, the slowest and smallest system in the
grid with Gordon, one of the largest and fastest systems. We
see that INST achieves very poor load balancing because it is
oblivious to response time. We also see that during the peak
hours of electricity pricing at Mason, our MCMF algorithm
minimizes the instantaneous load among the considered

12

103

104

105

106

In
st

an
ta

ne
ou

s
Lo

ad
MCMF INST TWOPRICE BS

0 10 20 30 40 50 60 70

Hours

10

20

30

40

50

60

70

80

El
ec

tr
ic

it
y

pr
ic

e
($

)

0 10 20 30 40 50 60 70

Hours

Mason (slowest system) Gordon (fastest system)

Fig. 7: Instantaneous Load Variation in XSEDE

0% 5% 10% 15% 25% 50% 75% 90% 95% 100%
Relevance of response time

0

10

20

30

40

50

60

70

80

U
ti

liz
at

io
n

Lonestar (cheap, slow)
Gordon (cheap, fast)

Blacklight (costly, slow)
Darter (costly, fast)

Fig. 8: Variation of system utilization in XSEDE

strategies. In Gordon, we see that our approach utilizes
the system heavily even during a price peak at hour 30.
This is because Gordon has the highest performance and
the 3rd lowest service cost among the systems in XSEDE.
We can see that by moving jobs to fast systems which have
less service cost, our algorithm is able to simultaneously
optimize electricity cost and response time better than the
other strategies.

We also studied the variation of overall utilization in
different systems due to our metascheduler, and show the
results for XSEDE. We define service unit cost (SUC) as
the product of the average electricity price at the system’s
location and the power per core. SUC represents the average
cost in dollars (or euros) required to deliver one CPU hour
of computation at the system. In XSEDE, we arranged the
systems in increasing order of SUC and labelled the first
four systems as cheap and the remaining as costly. Similarly
we used the HPL peak performance of the systems to label
them as slow and fast. In our experiments, we investigated
the effect of service unit cost and machine performance on
system utilization. Figure 8 shows that as the importance of
response time is increased, jobs are migrated from slow sys-
tems (Lonestar, Blacklight) to fast systems (Gordon, Darter).
We also see that Gordon has higher utilization than Darter
because it has lower SUC. We also note that since Blacklight
is relatively costly and slower than the other three systems,
it’s utilization is low in all the configurations.

We also observed the hourly power consumption due

104

105

Po
w

er
(W

at
ts

)

MCMF INST TWOPRICE BS

0 10 20 30 40 50 60 70

Hours

20
30
40
50
60
70
80
90

100
110

El
ec

tr
ic

it
y

pr
ic

e
($

)

0 10 20 30 40 50 60 70

Hours

Blacklight (highest SUC) Lonestar (lowest SUC)

Fig. 9: Power Consumption Variation in XSEDE

to the scheduling policies. We used wt = 25% for these
experiments. In Figure 9, we compare the hourly power
consumption of Blacklight and Lonestar, which are respec-
tively, the costliest and cheapest systems in the grid. We
see that all the electricity price-aware strategies, namely
MCMF, INST, and TWOPRICE consume much less power
than the baseline in the Blacklight system. During hours
50-60 when Blacklight experiences peak electricity price,
the power consumption of our MCMF algorithm is better
than both INST and TWOPRICE. However, in Lonestar, the
fluctuations in electricity price do not influence the load or
power consumption significantly even during peak hours
of electricity pricing because it is both the largest and the
cheapest system in the grid.

5.6 Fairness towards individual grid systems
In this section, we compute the job service fairness score of
each system when user submissions can be either through
the metascheduling portal or the local batch system. In
one of our experiments for XSEDE, Expt1, we studied the
job service scores when all users submit their jobs through
the metascheduler, i.e., every job is a grid submission. The
fairness scores for this experiment are indicated in Figure 10
by the blue bars. In another experiment, Expt2, we studied
the case where only a subset of the jobs are grid submissions.

To perform these experiments, we choose a fixed fraction
of grid submissions, fg (e.g., fg = 0.5 denotes that 50% of
the jobs are submitted to the metascheduler), and for each
job submission, we conduct a single Bernoulli trial with
probability of success equal to fg . Jobs with successful trials
are routed through the metascheduler and the remaining
jobs are considered as submissions to local batch system.
We performed the experiments for fg = 0.5, repeated each
run 5 times and averaged the scores using geometric mean.
In Figure 10, the green bars indicate the fairness scores for
the 50% grid submissions and the red bars indicate the
fairness scores for the 50% local batch queue submissions.
We indicate the service fairness of the baseline strategy with
a line which is labelled as BS. Service fairness scores more
than 1 indicate improved response times compared to the
baseline.

When all jobs are grid submissions, we can see that all
systems have values more than 1 except Gordon. This indi-

13

0
1

2
3

4

Lonestar Queenbee Gordon Mason Trestles Darter Steele Backlight

Expt1: All grid jobs for f_g=1
Exp2: Grid jobs for f_g=0.5
Local jobs for f_g=0.5

Job Service Fairness for Systems in XSEDE

Systems arranged in increasing order of SUC

Fa
ir

ne
ss

 to
w

ar
ds

 th
e

sy
st

em

0
1

2
3

4

BS

Fig. 10: Job service fairness for systems in XSEDE

cates that jobs which originated at these systems obtained
benefits in response time due to metascheduling. Gordon,
which has service fairness slightly less than 1, is the fastest
and 3rd cheapest system in the grid. In the baseline strategy,
the average response time of jobs is close to zero, i.e., no
waiting in the queue. Hence, our MCMF algorithm migrates
many jobs to this system. But, the jobs processed at Gordon
incur an average waiting time of only half an hour, which
indicates that the users of this system did not suffer much
due to grid participation. Jobs which originated at slow
smaller sized systems like Queenbee, Mason and Blacklight,
obtained large benefits from metascheduling.

When only a subset of the jobs are grid submissions, we
see that both users of the grid and the local batch system
obtained benefits in response time. Grid users obtained
improved performance because of job migration. Local users
obtained improved performance at systems like Queenbee,
Mason and Blacklight because grid submissions were mi-
grated away from these systems, leaving more resources free
to process local submissions. Thus, we see that a system’s
participation in a grid which uses our metascheduling algo-
rithm, provides benefits even for users who do not submit
through the grid portal.

5.7 Sensitivity to Metascheduling Parameters

We studied the effect of three important parameters of our
algorithm: wt, MaxQ and the percentage of grid submis-
sions. Recall that wt denotes the weight of the response time
term in the cost function minimized by MCMF and MaxQ
represents the number of jobs that MCMF can schedule at a
system in one scheduling cycle. Varying wt and MaxQ al-
lows us to study the structure of the optimization space and
provides insights which can be used for making scheduling
policy decisions.

5.7.1 Varying wt

Varyingwt allows the grid administrators to control the rela-
tive importance of minimizing response time vs minimizing
total electricity cost. These objectives can be conflicting in
the presence of daily fluctuations of electricity price. If
response time is not important, it can be traded off to run
more jobs during hours with lesser electricity price. Figure
11 shows the effect of varying wt in XSEDE and NorduGrid
using 10000 jobs. For response time and electricity cost,
BSX and BSNG represent the baseline value in XSEDE

0 20 40 60 80 100
200

400

600

800

1000

1200

1400

A
ve

ra
ge

re
sp

on
se

ti
m

e

BSX BSNG

0 20 40 60 80 100

200

250

300

350

El
ec

tr
ic

it
y

co
st

(X
SE

D
E

-1
00

0x
$

,N
or

du
G

ri
d

-E
ur

o)

BSX

BSNG

XSEDE NorduGrid

wt: relevance of response time

Fig. 11: Effect of varying wt on response time and cost

and NorduGrid, respectively. We see that increasing the rel-
evance of response time (electricity cost) leads to a decrease
in response time (electricity cost). We observed that when
only response time is minimized (wt = 100%) we are able to
obtain 48−49% reduction in response time over the baseline
in both XSEDE and NorduGrid.

Similarly, when only electricity cost is considered (wt =
0%), our scheduling strategy obtains 18% and 46% reduc-
tion in total electricity cost in XSEDE and NorduGrid, re-
spectively. It is interesting to note that, in NorduGrid, for all
values of wt, our MCMF algorithm outperforms the baseline
in terms of electricity cost. In XSEDE, we can see that for wt

values between 20-40%, both response time and electricity
cost are better than the baseline. So, we selected wt = 25%
as the optimal value for XSEDE. In NorduGrid we selected
wt = 92.5%. Compared to XSEDE, in NorduGrid, we
require a high value of wt to get improvements in response
time. This is because the cost function minimized by MCMF
is skewed depending on the magnitude of the response
time and electricity cost. In NorduGrid, we observed that
average runtime is 3.4x greater than XSEDE and the average
electricity cost of a job is 177x lesser than XSEDE. The
optimal values of wt are different in XSEDE and NorduGrid
because of the differences in the range of reponse times and
electricity costs in each grid. Grid administrators can use a
test workload to obtain these trends using our framework
and decide an appropriate value of wt depending on the
budget and user service agreements.

5.7.2 Varying the percentage of grid submissions
Typically, large scale grids expose their resources to users
with a local batch scheduler at each system and a global
metascheduling system which facilitates remote job sub-
mission. Grid administrators also partition their resources
for local and remote submissions to offer differentiated job
service classes. In this section, we investigate the effect of
limiting the percentage of grid job submissions.

We performed experiments for different fractions of grid
submissions, fg . Each result with a given fg corresponds
to an average of five runs. To perform these experiments,
we choose a fixed fraction of grid submissions, fg (e.g.,
fg = 0.5 denotes that 50% of the jobs are submitted to the

14

0% 25% 50% 75% 100%
300

400

500

600

700

800

900

1000

1100

1200

A
vg

.r
es

po
ns

e
ti

m
e

(m
in

ut
es

)

0% 25% 50% 75% 100%
180

200

220

240

260

280

300

320

El
ec

tr
ic

it
y

co
st

(1
00

0x
do

lla
rs

)

wt = 0% wt = 50% wt = 100% BS

Percentage of grid submissions

Fig. 12: Tradeoffs observed for different % of grid submis-
sions in XSEDE

metascheduler), and for each job submission we conduct
a single Bernoulli trial with probability of success equal
to fg . Jobs with successful trials are routed through the
metascheduler and the remaining jobs are considered as
submissions to local batch systems. We repeated each run
5 times and performed the experiment for different values
of fg . The results for XSEDE are shown in Figure 12. In each
graph, we indicate the response time/cost of the baseline
strategy with a line which is labelled as BS. Across different
tests, we can see that the reduction in response time or
electricity cost is proportional to its relevance in the cost
function and the percentage of grid submissions. We see
that when the relevance of response time is high, more grid
submissions is beneficial because our algorithm has more
jobs which can be migrated to better systems. Similarly,
when electricity price is important, grid submissions results
in lesser total electricity price across the grid. We see that
even with a small percentage of grid submissions we gain
benefits in response time and electricity cost compared
to the baseline strategy, when the cost function considers
response time (wt 6= 0%) and electricity cost (wt 6= 100%),
respectively. Since the error bars at each point in the graph
are small, it implies that the improvements are not sensitive
to the exact subset of jobs chosen for the experiments. With
100% job submissions through a metascheduler and for
wt=50%, we gain 40.8% reduction in average response time
with almost the same electricity cost as the BS. Hence, for
further experiments, we use fg = 1.0 for both XSEDE and
NorduGrid.

5.7.3 Varying MaxQ
MaxQ which denotes the number of jobs that can be submit-
ted to a system during a scheduling cycle determines the
total number of jobs that the metascheduler can dispatch
in a cycle. It is important to choose MaxQ carefully because
when queue waiting time is predicted for a job, the predictor
is not aware of the other jobs that may be submitted to
the same system during the same scheduling cycle. Hence,
allowing a large value for MaxQ can lead to worsening of
response times because of errors in the queue waiting time
predictions.

For XSEDE, we observed that average response time
reduces when MaxQ is increased from 1 to 2 because jobs

are not held in the metascheduler queue. When MaxQ is
further increased the average response time increases. We
also observed that the trend is more pronounced in the
bounded slowdown metric which is shown in Figure 13. We
use MaxQ =∞ to denote the case where we do not impose
any limit on the number of job submissions to a system in
a scheduling cycle. For the NorduGrid workload, we ob-
served that increasing MaxQ improves the average response
time and bounded slowdown even with MaxQ = ∞. This
behavior arises from the difference in average inter-arrival
time of the two workloads. In XSEDE, the average inter-
arrival rate is less than 4 jobs per hour compared to 67
jobs per hour in NorduGrid. So each scheduling cycle in
NorduGrid receives significantly more jobs than XSEDE and
large MaxQ allows the scheduler to submit more jobs to in-
dividual systems in each cycle. Based on these observations,
we choose MaxQ as 2 and ∞ in XSEDE and NorduGrid
respectively.

1 2 4 8 ∞
Maximum jobs scheduled at a site in one scheduling cycle

100

101

102

Bo
un

de
d

sl
ow

do
w

n
(l

og
sc

al
e)

XSEDE NorduGrid

Fig. 13: Effect of varying MaxQ

5.8 Power Consumption and Data Communication
Models

Our previous experiments did not consider data transfers
between the submission and the execution site. In this
section, we consider a data transfer and communication
model in which data movement from the submission site
is initiated simultaneously with the job migration and sub-
mission to the execution site. We extended our execution
model to include the data transfer time as:

responseT ime = (max(commT, qwT) + execT) (10)

where qwT is the queue waiting time on the site to which
the job is migrated and executed (execution site), commT is
the time for communication of data between the submission
to the execution site, and execT is the execution time in the
submission site. Our metascheduler used this response time
to make its decision.

Our previous results were also obtained with the as-
sumption that the power consumption by the applications
is the same as the consumption by HPL. This is based
on studies using comprehensive simulation by Kamil et
al. [37]. Subsequently, real experiments with diverse set of
applications on large scale systems in the work by Laros
et al. [46] and Song et al. [47] suggest that the power
consumption can vary between -40 to +40% of HPL’s power
consumption, with no specific skew towards higher or lower
values. In this section, we experimented with three different

15

Strategy Average response time
(minutes)

Total electricity
cost ($)

MCMF (wt = 25%) 518.2 229784.7
Baseline 678.4 225085.7
MCMF (wt = 20%) 640.7 220479.4
TWOPRICE (wt = 25%) 499.0 234341.7
INST 1172.5 201411.5

TABLE 7: Simulation Results involving Communication
Model

power consumption models: an average-HPL-power model in
which we randomly chose the power consumption of a job
in the range of -40% to +40% of HPL’s power consumption,
a lower-than-HPL-power model corresponding to the range
-40% to 0% in which 0% corresponds to using the HPL’s
power consumption, and a higher-than-HPL-power model
corresponding to the range 0 to +40%.

We conducted experiments using 10K jobs, and involv-
ing both the above mentioned communication and power
consumption models. In the first set of experiments, we
show the effect of the communication models in our re-
sults. For this, we chose the power consumption model as
average-HPL-power model. For each job in our experiment,
we randomly chose the data size of the job as one of 0,
1 KB, 1 MB, 10 MB, 100 MB, 500 MB, 1 GB, 10 GB, 100
GB, 500 GB, 1 TB, and 10 TBytes. We used the latency and
grid-ftp bandwidth data available in [48] and [49] for the
communication links in XSEDE. Table 7 shows comparison
results with the communication model.

Similar to the overall results shown in Table 4, we find
similar comparisons when including network transfer times.
With wt set to 25%, we find that when compared to the
baseline MCMF gives reduction of 150 minutes in average
response time. However, the electricity cost due to MCMF
is about $4K more than the cost due to the baseline. But
the advantage of MCMF is that it can be tuned to suit the
needs of a supercomputer site. By setting its wt parameter
to 20%, we find that it outperforms the baseline in both the
average response time and the electricity cost. MCMF also
outperforms the TWOPRICE method in terms of electricity
cost with savings of more than $5K with only a 20-minute
increase in average response time. The TWOPRICE algo-
rithm obtains worse electricity cost than MCMF because it
does not consider fine grained variations in electricity price.
Similar to the earlier results of Table 4, MCMF gives large-
scale reductions in response times when compared to INST
while giving higher electricity cost. The INST algorithm
which does not consider queue waiting time suffers from
large response times. However its performance is better
than the earlier case of Table 4 since considering network
bandwidth allowed it to move jobs away from systems with
low network bandwidth.

We now show the effect of different power consumption
models on the results. For these experiments, we restricted
the data size to 1 TBytes. Table 8 shows the comparisons.
We find that with the variations in the power consumptions
across the rows, the response times show only small-scale
or even negligible variations in all the methods. The total
electricity costs, as expected, increase across the rows al-
most uniformly for all the methods. Thus, MCMF continues

to maintain its relative position wrt the other methods
irrespective of the power consumption model: its average
response time is about 2 hours less than that of the baseline
and less than half of the response time of the INST method,
and its electricity cost is about $5K less than the cost of the
TWOPRICE method for comparable response times.

5.9 Practical Considerations

In each scheduling cycle, the meta scheduler collects in-
formation about the queue and processor status of each
system in the grid and the current list of pending jobs. This
information is processed by our MCMF algorithm and the
jobs are submitted to the appropriate systems. From the
web statistics published by NorduGrid [50], we observed
the information From the web statistics published by Nor-
duGrid, we observed the information collection phase takes
less than 30 seconds for all the 80 systems in the grid. During
our experiments, we observed that our Python implemen-
tation running on an Intel Core i7 3.4Ghz processor with
16GB RAM takes 8.4 seconds on average for computing
the scheduling cost and constructing the flow network,
and 16.3 seconds on average for computing the minimum
cost flow and the subsequent job submissions to individual
systems. Assuming that a scheduling cycle happens every
few minutes [14], we conclude that our implementation is
fast enough to be deployed in currently operational grids.

6 RELATED WORK

In this section, we present different classes of related
work and describe why previous efforts cannot address
the present problem. Approaches which reduce power con-
sumption by lowering CPU frequency or voltage [3] may not
be widely and uniformly applicable across the entire grid
due to the autonomous systems that are involved. Hence
we do not describe related works which primarily employ
such techniques to achieve power savings.

Single HPC system scheduling:
The works of Yang et. al. [1] and Zhou et. al. [51]

formulate the electricity price aware job scheduling problem
for a single computing system as a 0-1 knapsack model.
These works do not use hourly electricity prices. Instead,
they consider two electricity price values corresponding to
on and off-peak hours. Their algorithm is applied during
peak hours to maximize utilization while maintaining the
power consumption within a power budget that is specified
a-priori. Our work is different from these approaches be-
cause we consider a connected grid of computing systems
and route job submissions through a metascheduler. We
also consider hourly electricity pricing and have shown
improvements over a strategy which uses only on-peak and
off-peak prices.

Datacenter scheduling:
The concept of geographic load balancing [52] has been

used for distributing Internet traffic across distributed data
centers. Qureshi et.al. [53] proposed electricity price aware
request routing for Akamai’s web traffic workload. Liu et.
al. [52] proposed geographic load balancing of Hotmail
traffic requests to achieve energy savings. Rao et al. [42]
use minimum cost flow for scheduling service requests in

16

Power Model Baseline INST TWOPRICE MCMF
Avg.
resp. time
(mins.)

Elec. Cost
($)

Avg.
resp. time
(mins.)

Elec. Cost
($)

Avg.
resp. time
(mins.)

Elec. Cost
($)

Avg.
resp. time
(mins.)

Elec. Cost
($)

lower-than-HPL-power 638.99 220766.14 1171.25 197803.79 462.65 230634.33 467.82 225568.33
average-HPL-power 638.99 225085.79 1110.72 199142.72 458.82 233869.51 465.51 228040.67
higher-than-HPL-power 638.99 229355.91 1153.75 201035.58 456.47 236758.28 466.05 231575.37

TABLE 8: Results for Different Power Models

geographically distributed Internet data centers. Ren and
He developed COCA [54], a scheduling framework which
uses Lyapunov optimization to minimize operational cost
of the data center while satisfying carbon neutrality con-
straints. Each server which is modelled as a M/G/1/PS
(Memoryless/General/1/Processor-Sharing) queue adjusts
the amount of workload it can process and the processing
speed to dispatch jobs at a particular service rate. This work
uses one hour ahead electricity price prediction.

These approaches are applicable only for Internet data
center workloads and not batch system workloads. They
assume that requests are uniform with similar service times
and employ techniques which use overall request arrival
and service rate statistics. In a typical HPC or grid workload,
requests/jobs are highly non-uniform in terms of running
time, requested number of processors and queueing de-
lay. These works consider that the request is serviced in
the submission hour and do not consider requests which
require many hours or days of computation. Thus, the
combination of workload and service policy used in HPC
centers cannot be accurately modeled by these previous
works. Our work predicts the execution period of a job
using a history based queue waiting time predictor and
considers actual/predicted electricity prices during this fu-
ture period. These previous works also do not capture the
queue dynamics at HPC/grid systems which use space
sharing scheduling algorithms with policies like backfilling
and fairshare scheduling unlike the FIFO request queues in
Internet datacenters.

Grid scheduling:
Rathore and Chana [55] provide a detailed survey on

the state of the art in load balancing and job migration
techniques used in grid systems. England and Weissman
[56] have studied the benefits of sharing parallel jobs in com-
putational grids for both homogeneous and heterogeneous
grids. Our work considers a more realistic model of the
grid sites governed by batch queueing policies. In addition,
we also consider electricity prices. Mutz and Wolski [57],
developed auction based algorithms for implementing job
reservations in grid systems. Chard et. al. [58] proposed
an auction based scheduling framework where participat-
ing virtual organizations collaboratively arrive at schedul-
ing decisions. Sabin et. al. [59] proposed a metaschedul-
ing algorithm based on the multiple simultaneous reser-
vations at different systems in a heterogeneous multi-site
environment. Subramani et. al. [60] proposed greedy load
balancing strategies which schedule jobs ¿ at a subset of
the least loaded sites. None of these previous works are
cognizant of electricity price or job power characteristics.
To our knowledge, ours is the first work on metascheduling
HPC workloads across grid systems which optimizes both

response time and electricity cost.

7 CONCLUSIONS

The operational cost of large scale computing grids is ex-
pected to increase with the demand for more computational
power and time across various scientific domains. In this
paper, we presented a Minimum Cost Maximum Flow based
formulation of the grid scheduling problem to optimize the
total electricity price and average response time of HPC
jobs in large scale grids operating in day-ahead electricity
markets. Using two currently operational computational
grids,

REFERENCES

[1] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and
M. E. Papka, “Integrating Dynamic Pricing of Electricity into
Energy Aware Scheduling for HPC Systems,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13, 2013, pp. 60:1–60:11.

[2] A.-C. Orgerie, L. Lefevre, and J.-P. Gelas, “Save Watts in Your
Grid: Green Strategies for Energy-Aware Framework in Large
Scale Distributed Systems,” in Parallel and Distributed Systems,
2008. ICPADS ’08. 14th IEEE International Conference on, Dec 2008,
pp. 171–178.

[3] N. Rizvandi, J. Taheri, A. Zomaya, and Y. C. Lee, “Linear Com-
binations of DVFS-Enabled Processor Frequencies to Modify the
Energy-Aware Scheduling Algorithms,” in Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, 2010.

[4] I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “GreenSlot: Scheduling energy con-
sumption in green datacenters,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for, Nov 2011, pp. 1–11.

[5] G. Ghatikar, V. Ganti, N. Matson, and M. A. Piette, “Demand
Response Opportunities and Enabling Technologies for Data Cen-
ters: Findings from Field Studies,” Lawrence Berkeley National
Lab, PG&E/SDG&E/CEC/LBNL, Tech. Rep. LBNL-5763E, 2012,
http://drrc.lbl.gov/sites/all/files/LBNL-5763E.pdf.

[6] IBM LoadLeveler. [Online]. Available: http://www-03.ibm.com/
systems/software/loadleveler

[7] PBS Works. [Online]. Available: http://www.pbsworks.com
[8] IBM Platform LSF. [Online]. Available: http://www-03.ibm.com/

systems/services/platformcomputing/lsf.html
[9] “Maui scheduler.” [Online]. Available: https://www.

adaptivecomputing.com
[10] P. Murali and S. S. Vadhiyar, “Metascheduling of HPC Jobs in

Day-Ahead Electricity Markets,” in 22nd IEEE International Confer-
ence on High Performance Computing, HiPC 2015, Bengaluru, India,
December 16-19, 2015, 2015, pp. 386–395.

[11] J. B. Orlin, “A Polynomial Time Primal Network Simplex Al-
gorithm for Minimum Cost Flows,” in Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA
’96. Philadelphia, PA, USA: SIAM, 1996, pp. 474–481.

[12] Extreme Science and Engineering Discovery Environment
(XSEDE). [Online]. Available: https://www.xsede.org/

[13] NorduGrid. [Online]. Available: http://www.nordugrid.org/
[14] XSEDE: Metascheduling with Condor-G. [Online]. Available:

https://www.xsede.org/web/guest/metascheduling-condor-g
[15] The Top500 List. [Online]. Available: http://top500.org/

17

[16] “Market Performance Report August 2014,” California ISO, Sep.
2014. [Online]. Available: http://www.caiso.com/Documents/
MarketPerformanceReport August 2014.pdf

[17] P. Murali and S. Vadhiyar, “Qespera: an Adaptive Framework for
Prediction of Queue Waiting Times in Supercomputer Systems,”
Concurrency and Computation: Practice and Experience, vol. 28, no. 9,
pp. 2685–2710, 2016.

[18] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using
System-Generated Predictions Rather Than User Runtime Es-
timates,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 6, pp. 789–803, 2007.

[19] S. Vazhkudai and J. M. Schopf, “Using Regression Techniques to
Predict Large Data Transfers,” Int. J. High Perform. Comput. Appl.,
vol. 17, no. 3, pp. 249–268, 2003.

[20] H. Monti, A. Butt, and S. Vazhkudai, “Just-in-time Staging of Large
Input Data for Supercomputing Jobs,” in Petascale Data Storage
Workshop, 2008. PDSW ’08. 3rd, Nov 2008, pp. 1–5.

[21] Parallel Workloads Archive. [Online]. Available: www.cs.huji.ac.
il/labs/parallel/workload/

[22] U. Lublin and D. G. Feitelson, “The Workload on Parallel Super-
computers: Modeling the Characteristics of Rigid Jobs,” J. Parallel
Distrib. Comput., vol. 63, no. 11, pp. 1105–1122, Nov. 2003.

[23] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling User Runtime
Estimates,” in Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing, ser. JSSPP’05, 2005, pp. 1–35.

[24] I. Kim and O. de Weck, Structural and Multidisciplinary Optimiza-
tion, vol. 31, pp. 105–116, 2006.

[25] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2005.

[26] “HTCondorTMVersion 8.0.7 Manual,” http://research.cs.wisc.
edu/htcondor/manual/v8.0/3 4User Priorities.html, [Online].

[27] D. Gale and L. S. Shapley, “College admissions and the
stability of marriage,” The American Mathematical Monthly,
vol. 69, no. 1, pp. pp. 9–15, 1962. [Online]. Available:
http://www.jstor.org/stable/2312726

[28] D. G. Feitelson and E. Shmueli, “A case for conservative workload
modeling: Parallel job scheduling with daily cycles of activity,”
in 17th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst.
(MASCOTS), Sep 2009.

[29] The Grid Workloads Archive. [Online]. Available: gwa.ewi.
tudelft.nl/

[30] O. Peleg, “Python Scheduler Simulator,” Feb. 2010. [Online].
Available: http://code.google.com/p/pyss/

[31] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel Job
Scheduling: a Status Report,” in Proceedings of the 10th Workshop on
Job Scheduling Strategies for Parallel Processing, ser. JSSPP’04, 2005,
pp. 1–16.

[32] TeraGrid Wiki. [Online]. Available: http://www.teragridforum.
org/mediawiki/images/5/5f/RPQueue Info.xls

[33] D. L. Hart, “Measuring Teragrid: Workload Characterization for
a High-performance Computing Federation,” Int. J. High Perform.
Comput. Appl., vol. 25, no. 4, pp. 451–465, Nov. 2011.

[34] Federal Energy Regulatory Commission. [Online]. Available:
http://www.ferc.gov/industries/electric/indus-act/rto.asp

[35] Nord Pool Spot. [Online]. Available: www.nordpoolspot.com/
[36] BSP SouthPool Regional Energy Exchange. [Online]. Available:

www.bsp-southpool.com/
[37] S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency in High

Performance Computing,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, April 2008,
pp. 1–8.

[38] Intel Xeon Processor E5-2600 Series. [Online]. Avail-
able: download.intel.com/support/processors/xeon/sb/xeon
E5-2600.pdf

[39] W. Pfeiffer and N. Wright, “Modeling and Predicting Application
Performance on Parallel Computers using HPC Challenge Bench-
marks,” in IEEE International Symposium on Parallel and Distributed
Processing, IPDPS, 2008, pp. 1–12.

[40] A. P. andR.C. Whaley, J. Dongarra, and A. Cleary, “HPL A
Portable Implementation of the High Performance Linpack Bench-
mark for Distributed-Memory Computers,” http://www.netlib.
org/benchmark/hpl.

[41] D. G. Feitelson, “Metrics for Parallel Job Scheduling and Their
Convergence,” in Revised Papers from the 7th International Workshop
on Job Scheduling Strategies for Parallel Processing, ser. JSSPP ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 188–206.

[42] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing Electricity cost:
Optimization of Distributed Internet Data Centers in a Multi-
Electricity-Market Environment,” in INFOCOM, 2010 Proceedings
IEEE, March 2010, pp. 1–9.

[43] D. C. Nurmi, J. Brevik, and R. Wolski, “QBETS: Queue Bounds
Estimation from Time Series,” in Proceedings of the 2007 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’07, 2007, pp. 379–380.

[44] H. Li, J. Chen, Y. Tao, D. Gro, and L. Wolters, “Improving a Local
Learning Technique for Queue Wait Time Predictions,” Cluster
Computing and the Grid, IEEE International Symposium on, vol. 0,
pp. 335–342, 2006.

[45] ERCOT: Electric Reliability Council of Texas. ”www.ercot.com/”.
[46] I. J. Laros, K. Pedretti, S. Kelly, W. Shu, and C. Vaughan, “Energy

Based Performance Tuning for Large Scale High Performance
Computing Systems,” in Proceedings of the 2012 Symposium on High
Performance Computing, ser. HPC ’12, 2012.

[47] S. Song, R. Ge, X. Feng, and K. Cameron, “Energy Profiling and
Analysis of the HPC Challenge Benchmarks,” International Journal
of High Performance Computing Applications, vol. 23, no. 3, pp. 265–
276, Aug. 2009.

[48] “XSEDE Perfsonar DashBoard,” http://psarch.psc.xsede.org/
maddash-webui.

[49] “GridFTP Metrics,” http://speedpage.psc.edu.
[50] Statistics for www.nordugrid.org (2014). [Online]. Available:

http://www.nordugrid.org/access/
[51] Z. Zhou, Z. Lan, W. Tang, and N. Desai, “Reducing Energy Costs

for IBM Blue Gene/P via Power-Aware Job Scheduling,” in Job
Scheduling Strategies for Parallel Processing, ser. JSSPP, 2013, pp. 96–
115.

[52] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew,
“Greening Geographical Load Balancing,” in Proceedings of the
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’11, 2011, pp.
233–244.

[53] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the Electric Bill for Internet-Scale Systems,” in Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication, ser.
SIGCOMM ’09, 2009, pp. 123–134.

[54] S. Ren and Y. He, “COCA: Online Resource Management for Cost
Minimization and Carbon Neutrality in Data Centers,” in Super
Computing, 2013.

[55] N. Rathore and I. Chana, “Load Balancing and Job Migration
Techniques in Grid: A Survey of Recent Trends,” Wireless Personal
Communications, pp. 1–37, 2014.

[56] D. England and J. Weissman, “Costs and Benefits of Load Sharing
in the Computational Grid,” in Job Scheduling Strategies for Parallel
Processing, ser. JSSPP, 2004, pp. 160–175.

[57] A. Mutz and R. Wolski, “Efficient Auction-based Grid Reserva-
tions using Dynamic Programming,” in SC. IEEE/ACM, 2008,
p. 16.

[58] K. Chard and K. Bubendorfer, “A Distributed Economic Meta-
scheduler for the Grid,” in Cluster Computing and the Grid, 2008.
CCGRID ’08. 8th IEEE International Symposium on, May 2008, pp.
542–547.

[59] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, “Schedul-
ing of Parallel Jobs in a Heterogeneous Multi-site Environment,”
in Proceedings of the 10th Workshop on Job Scheduling Strategies for
Parallel Processing, ser. JSSPP’03, 2003, pp. 87–104.

[60] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan,
“Distributed Job Scheduling on Computational Grids using Multi-
ple Simultaneous Requests,” in High Performance Distributed Com-
puting, 2002. HPDC-11 2002. Proceedings. 11th IEEE International
Symposium on, 2002, pp. 359–366.

18

Prakash Murali is currently doing PhD in the
computer science department at Princeton Uni-
versity, USA. He received a Masters degree from
Indian Institute of Science, Bangalore (IISc). In
IISc, he was advised by Prof. Sathish Vadhiyar
and he worked on problems related to schedul-
ing in HPC systems. He subsequently worked as
a software engineer at IBM Research, India in
the areas of parallel graph and tensor algorithms
and workload scheduling in datacenters.

Sathish Vadhiyar is an Associate Professor in
Supercomputer Education and Research Cen-
tre, Indian Institute of Science. He obtained his
B.E. degree from the Department of Computer
Science and Engineering at Thiagarajar College
of Engineering, India in 1997 and received his
Master’s degree in Computer Science at Clem-
son University, USA in 1999. He graduated with
a Ph.D from the Computer Science Department
at University of Tennessee, USA in 2003. His
research areas are building application frame-

works including runtime frameworks for irregular applications, hybrid
execution strategies, and programming models for accelerator-based
systems, processor allocation, mapping and remapping strategies for
Torus networks for different application classes including irregular, multi-
physics, climate and weather applications, middleware for production
supercomputer systems and fault tolerance for large-scale systems.

