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Abstract—FP-Growth algorithm is a Frequent Pattern Min-  Spark considers disk as the backend for checkpointing —
ing (FPM) algorithm that has been extensively used to study which can again significantly slow-down the computation and
correlations and patterns in large scale datasets. While seral increase data movement. Similarly, MillWheel is used faitfa
researchers have designed distributed memory FP-Growth gb-  tolerant stream processing and uses the disk as the backend
rithms, it is pivotal to consider fault tolerant FP-Growth, which g, checkpointing. Naturally, an advantage of using fault
can address the increasing fault rates in large scale syst&m iqjarant programming model is the fact that checkpointing a
In this work, we propose a novel parallel, algorithm-level o\ ey is automated. However, the performance penalty of

fault-tolerant FP-Growth algorithm. We leverage algorithmic . .
properties and MPI advanced features to guarantee anO(1) a fault tolerant programming model (due to disk-based check

space complexity, achieved by using the dataset memory spac pomtmg) or space ovelfhead (due to m—memory_checkpcgmtln

itself for checkpointing. We also propose a recovery algothm IS unattractive for scaling several MLDM algorithms at larg

that can use in-memory and disk-based checkpointing, thoug Vvolume and computing scale. _

in many cases the recovery can be completed without any disk  In the context of general-purpose programming systems, re-

access, and incurring no memory overhead for checkpointing cently proposed methods such as Scalable Checkpoint Restar

We evaluate our FT algorithm on a large scale InfiniBand cluser (SCR) [25] are able to provide in-memory checkpointing

with several large datasets using up to 2K cores. Our evaluin  for multi-level hierarchical file systems using non-blaui

demonstrates excellent efficiency for checkpointing and mvery methods. SCR also allows using spare main memory for in-

in comparison to the disk-based approach. We have also obsexd  memory checkpointing. Similarly, other researchers haee p

20x average speed-u.p in comparison to Spark, establllshlnglat posed programming model/runtime extensions to Charm++,

a well designed algorithm can easily c_)utperform a solution hsed and X10 for supporting fault tolerance. While these appheac

on a general fault-tolerant programming model. provide non-blocking checkpointing, the overall memory re

quirements increase, since the implementations need to use

) ) - ) spare memory for checkpointing. This can very well make the
Machine Learning and Data Mining (MLDM) algorithmsapproach infeasible, especially with weak scaling exeasti

are becoming ubiquitous in analysing large volume of daighere spare memory is scarce.

produced in science areas (instrument and simulation data)

I. INTRODUCTION

as well as other areas such as social networks and financial 160 = Overall Memary Usage
transactions. Frequent Pattern Mining (FPM) is an impartan 40 ] o g Sie
MLDM algorithm, which is used for finding attributes that 2 10

frequently occur together. Due to its high applicabilitgysral £ 100

FPM algorithms have been proposed in the literature such as £

Apriori [L0Q], Eclat [39], FP-Growth[[1[7], and GenMak [115]. §

However, FP-Growth has become extremely popular due to its g

relatively small space and time complexity requirements. 2 1

To address increasing data volumes, several researchers o . " o S

have proposed large scale distributed memory FP-Growth Percentile of Processed Transactions (%)

algorithms [11], [13], [[20], [[26], [I36]. One of the challeeg
that arise with execution on large-scale parallel systesnsHig. 1: Pattern of Memory Requirements of FP-Tree and Dataset
the increased likelihood (and frequency) of faults. Larg@les during FP-Tree build phase. As more transactions are psedes
systems frequently suffer from faults of several types imynalesser memory is required for dataset — which can be used for
components [7],129],[130],132]=[34]. checkpointing

Driven by these trends, several recent programming mod-
els such as Hadoop, Spark [38], and MillwWhegl [3] have In this paper, we present an in-depth study of FP-Growth
considered fault tolerance to be one of the most importaalgorithm for fault tolerance. Considering its two-passpar-
design consideration. Hadoop achieves fault tolerancesimgu ties (impact shown in Figufd 1), we propose a novel algorjthm
multiple replicas of the data structures in permanent gerawhich requiresO(1) space complexity for saving critical data
— possibly resulting in a significant amount of 1/O in thestructures, i.e., FP-Tree, in memory of other computingasod
critical path. Spark addresses this limitation by usingilResg The proposed algorithm incrementally leverages the memory
Distributed Datasets (RDDs), such that in-memory regheat allocated for the default algorithm for checkpointing FP-
can be used for fault tolerance. However, for very largerees — and possibly partial replica of transactions froheot
datasets, in-memory replication is infeasible. In seveaaes, computing nodes — ensuring &n(1) space overhead of our
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proposed algorithms. To further minimize time overhead f@can through the given dataset to find all single frequent
checkpointing, our solution not only leverages non-blagki items. FP-Tree creation step (the second pass) is the
properties, but use MPI-Remote Memory Access ( MPI-RMANost time consuming part of the overall calculation[35].

in addition to minimize any involvement of remote proceslence, we focus on fault tolerant FP-Tree creation step of
for checkpointing. By using MPI-RMA and contiguous datahe algorithm, since longer execution time also implieshkig
structures for implementing our proposed algorithms, we afault probability.

able to leverage Remote Direct Memory Access (RDMA

effectively. We believe that our proposed extensions m Faults

be included with existing solutions such as SCR, where alarge scale systems suffer from several fault types — per-
class of algorithms may re-use already allocated memory f@anent, transient, and intermittent. A permanent faulicity

checkpointing and recovery. requires a device (such as a compute node) to be replaced. We
o consider fault tolerance for permanent process faults i th
A. Contributions paper.We assume a fail-stop fault model — once a process
Specifically, we make the following contributions in thds perceived aslead/faulty it is presumed unavailable for the
paper: rest of the computation.

« We propose a®(1) in-memory checkpointing based FP- Since permanent node faults are commonplace in Ia(ge
Growth algorithm for large scale systems. The propos gale systems, several researchers have proposed teehiniqu

algorithm leverages overlapping communication with FPO" agdrezsing thhedsel faults. Typica(ljmecklpoin_t-rest%r[@, q
Tree build phase — such that the overhead of checkpoifgs] Pased methodologies are used. Application-independe
ing is minimized. methods checkpoint the entire application space on a perma-

« We propose three different fault tolerance parallel FBIENt disk — however, they have been shown to scale only
Growth mechanisms: a default Disk-based Fault tof? Small size systemsl[8]. Application-dependent methods —
erant FP-Growth (DFT), Synchronous Memory-basef|SO known as Algorithm Based Fault Tolerance (ABHT) [1],
Fault tolerant FP-Growth (SMFT), and an Asynchronou42]: [23], [31] methods reduce this overhead by seledfivel
Memory-based Fault tolerant FP-Growth (AMFT). C eckp(_)mtmg mportantdata_structures pe_rlo_dlcally\Mdr_berz

« We study the limitations of existing programming modeld€Pending up on the application characteristics, checkipg
(Hadoop MapReduce, Spark and MillWheel) and impIle critical data structures may still require disk access.
ment our algorithms using Message Passing Interfage =, it Tolerant Programming Models

(MPI) [14], [18]. Specifically, we use MPI-RMA mecha-
nism to checkpoint critical data structures of FP-Growth Recently, there has been a surge of large scale and fault

asynchronously. With recent developments in MPI-RMAQlerant functional programming models such as Hadoop,
Fault tolerance 5], it is possible to use MPI for handlingPa’k, and MillwWheel. Functional programming, in turn, sise
faults, while providing native performance. e concept of single assignment, where every mutation of a
« We perform an in-depth evaluation of our propose&a”able is recorded, saved (on a permanent storage/memory
approaches using up to 200M transactions and 20@Banother node), and replayed when a fault occurs.

cores. Using 100M transactions on 2048 cores, the checkNow, let us examine the implication of such a framework for
pointing overhead is~ 5%, while the recovéry cost an algorithm like FP-Tree. Every change or mutation needs to

for multiple failures is independent of the number ope recorded locally, and such records can be eventuallydsave
processes. to permanent storage. In many cases, the step of saving a
. We also show the effectiveness of our fault-tolerant FP€W version of the FP-Tree on the disk is carried-out at the
Growth implementation — implementations outperform%nd of the Reduce phas_e (of the MapReduce implementation).
Spark implementations of the same algorithm by provid=0f @ two-phase algorithm such as FP-Tree, where most

ing 20x average speed-up. of t_he time is spent on.the .second pha;e, no advantage is
achieved. Another possible implementation may choose to
[I. PRELIMINARIES divide the overall computation into multiple MapReducepste

- The checkpointing can be executed at the end of each Reduce
A. Frequent Pattern Mining phase. However, now the overall execution time will inceeas
Frequent Pattern Mining (FPM) algorithms find items thatince saving a new version will either involve writing to akli
frequently occur together within transactions of a databagexpensive) or neighbor's memory. Since the reduce phase is
An item or itemset is defined as frequent if its frequency & blocking phase, the application will observe a significant
higher than auser-defined threshol&everal FPM algorithms overhead of checkpointing, which will degrade the overall
have been proposed in the literature including Apriori,aEcl performance. Naturally, a scalable algorithm should hesne
GenMax and FP-Growth. The FP-Growth algorithm is vergest possible performance by using native execution, while
popular since it requires only two passes on the dataseiinimizing the cost of checkpointing, by usimgpn-blocking
does not involve candidate generation (unlike Apriori) anchethods.
provides a compressed representation of the frequent item&low, in examining an alternate programming model, we
using aFrequent Pattern (FP)-TreeWe specifically focus on consider the Message Passing Interface (MPI) [14]] [16],
designing parallel fault-tolerant versions of the FP-Gitowwhich has been readily available and widely used on super-
algorithm, due to its attractive properties. computers and clusters, and beginning to find its place on
During the first pass, FP-Growth algorithm finds items thaloud computing systems. While MPI has been frequently
occur frequently. In the second pass, it creates an FP-Tresticized for lack of fault tolerance support, recent fiéttire
which is a modifiedTrie. The first pass requires a simpleand implementations indicate that fault tolerance is askre



well for permanent process faults][5]. More importantlyises the disk as the safe storage for saving intermediate FP-
recently introduced MPI One-sided - MPI one-sided conirees, whereas the optimized algorithms use the memory orig
munication (also known as MPI-Remote Memory Accessally allocated to the database transactions for checitipgj
(MPI-RMA)) [14], [16]- primitives provide necessary toolsintermediate FP-Trees and transactions of other processes
for overlapping communication with computation. With thigwith a high overlap of communication with computation
observation, we focus on using MPI for designing fault tater achieved using MPI-RMA methodology).
FP-Growth algorithm in this paper. To design a fault tolerant FP-Growth algorithm, there are
. PARALLEL BASELINE ALGORITHM several design choices. Since we consider fail-stop matdel,
o is important to understand the design choices between

Algorithm[1 shows the key steps of the parallel FP-Growtipawninga new set of processes on a spare node versus
algorithm, which we have used as the baseline for designiggntinued-executiowith existing processes and nodes. We use
fault tolerant FP-Growth algorithms. _continued-execution, primarily because for most systéis,

A brief explanation of the steps is presented here: The fiigtricate to re-spawn, attach the processes/node to tiséirexi
Step is to distribute the input database transactions amw of processes, and continue recovery. |nstead’ continue
|| processes (Line 3) (Each process is a worker, which dgecution provides a simple mechanism to conduct recovery,

involved in computing itdocal FP-Tree). Each procesp;] without significant dependence on external software.
scans the local transactions and records the frequencychf ea

item (Line 4). To collect the global frequency, an all-tb-alA. Disk-based Fault Tolerant (DFT) FP-Growth

reduction (byMPI_allreduce) is used (incurrindog(| ) The Disk-based Fault Tolerant (DFT) algorithm is the
time complexity) (Line 5). After all-to-all reduction, tHeems haseline for other approaches prese(nted)in tﬁis paper.

with frequency greater than support threshold are saved, eckpointing Algorithm and Complexity: In the FP-

other items are discarded. Then, eactyenerates a local FP- rowth algorithm, there are two critical data structureat th
Tree (L.Tree) using its local transactions, which have at leasfo oeded during the recovery process — database transac-
(l;r;e_rfrequgpht t';]emFéL_'lf'e 6)'f Later{heaqia merges t'ts Io%al tions themselves and intermediate FP-Trees generatedeby th
ob rFEPW_'l_ e Tre rges rom other processes t(') prol UChiBcesses. Under the DFT approach, the intermediate Fé Tre
global FP-Tree.T'rce) by using a ring communication al90-generated by each process are periodically saved on disk. Fo
rithm [35] (Line 7). Finally, frequent itemsets™¢eq/temSet) many supercomputers, the disks are located remotely, sich a
are produced using the output global FP-Tree (Line 8). a remote storage. In other cases, locally available SSDbe&an
used as well. The database transactions are already resitien
the disk. Hence, it is not necessary to checkpoint the datgaba

Algorithm 1 : Parallel FP-Growth Algorithm

1: Input: Set of transactions, Support threshold transactions.

gf (BL%tg;t; je; ;nggl‘#;tls'%e)msets Let us consider an equal distribution of database transac-
4 LFreqlist< findLocalFreqltemsl. Trans, ) tions to processedT(|/|P| transactions are av_aulable on each
5. G.FregList«— Reduce Local Freq items through all processes process). LetC be th_e number of checkpoints, Wh|C_h are
6: L.Tree« generateLocalFPTreB(I'rans, G.Freq.List) executed by the application. The number of checkpoints are
7: G.Tree« generateGlobalFPTreb(I'ree) derived as a function ofT|, and|P|, such that the cost of

8: FregltemSet— miningGFPTree(. T'ree) checkpointing can be amortized over the FP-Tree creation

phase. The DFT algorithm also needs to save metadata file
Further, we summarize the symbols we have used to modskociated with FP-Tree, which may be used during recovery.
the time and space complexity of the proposed fault tolerahihe space complexity of the metadata file is negligible,esinc

algorithms in Tablé]l. only a few integers need to be saved.
Let 54,4 represent the average size of an FP-Tree generated
. f H P|—1
LABLE I: Symbols used for Time-Space Complexity Model-by each process (calculated QTI‘D’I “). The time com-
g plexity for checkpointing intermediate FP-Treeﬂ(s%).
Name Symbol However, the actual time to checkpoint can escalate due to
Process Set P=1po - pir_i} the contention from multiple processes writing the cheaiipo
Transaction Database T ={to--tir_1} file simultaneously. The space complexity incurred by each
Average Local Transaction Size tavg process isO(C - squg), Which can be reduced further by
Minimum Support Threshold 0 recycling existing checkpoints.
Local FP-Tree Set S={so---spj-1} Recovery Algorithm and Complexity: In the DFT approach,
Average Local FP-Tree size Savg the recovery is initiated by the master,() (In our implemen-
Average time to merge two local FP-Trees m tation we use the default process — process with the first rank
Number of Checkpoints ¢ in MPI as the master),, reads the metadata file associated
Disk Access Bandwidth ! with the faulty processyf;), which provides the necessary
Network Bandwidth b information for conducting recovery. A recovery process) (

is selected, which reads checkpointed FP-Tregofrom the
disk and merges the checkpointed FP-Tree pfwvith its FP-
IV. PROPOSEDFP-GROWTH FAULT TOLERANT Tree, whilep,, reads dead process transactions from disk, and
ALGORITHMS re-distributes them among remaining processes.
In this section, we present several approaches for degjgnin The time complexity of the recovery algorithm is a function
fault tolerant FP-Growth algorithm. Our baseline algarith of reading the partial dataset and executing the recovery



algorithm. In the worst case, the entire transactions of tlaad allocate a separatgindow of memory, which can be
faulty process need to be re-executed. Hence, the worst cased by other processes for checkpointing their FP-Treds an
time complexity is% (reading the dataset)r% (re- database transactions. With this technique, the overaltesp
distributing among process) . (re-computation), where, complexity of the algorithm i€)(1).

is the average cost of merging a transaction in an existingBesides optimal space complexity, the objective of SMFT
FP-Tree (In the worst case, the FP-Tree is null, since allgorithm is to minimize the time complexity of checkpoigi
transactions are re-executed). both the FP-Trees and database transactions. Consid€ring
Implementation Details: As mentioned earlier, each processis the number of checkpoints, under a naive algorithm, each
saves a copy of local FP-Tree in a safe storage. Thus, gquiocess can checkpoint its existing FP-Tree to anotheregsoc
implementation depends on checkpointing local FP-Tree anevery% steps. Since the time overhead of checkpointing
disk — LEPpacrup file. This file associated with anotherjs non-negligible, as this stegocksfor the communication to
metadata file describes the checkpointed FP-Tree by storinghmplete before continuing to process remaining transasti

a set of description values such as: checkpoint timestampevery checkpointing step — with increasing FP-Tree size
and last processed transaction. Each process asynchlpnaus the overhead of blocking increases. Hence, it is important
updates both files, during the execution. In the case ofr&iluto consider non-blocking methods of checkpointing, sugt th

the recovery operation is performed in two steps: The pregommunication cost of checkpointing can be overlapped with
determined recovery proceps process reads the last checkcomputation.

pointed FP-Tree of the faulty procepg from the disk and  gMmET algorithm uses MPI one-sided non-blocking methods
merges it with its local FP-Tree. At the same time, the mastgf; checkpointing. Specifically, as the database transasti
process reads the metadata fileof to decide the set of 510 processed, a similar amount of memory is added to a
transactions to be recovered from the disk. The master psocgeckpoint windowThe algorithm uses dynamic allocation
recovers unprocessed transactions and redistributestth#m®  o5ire in MPI-RMA MPT Win create dynamic, that
remaining processes. remcn i 1F Y .

> ] allows incremental increase in the size of the checkpaintin
Advantages and Limitations of DFT: The proposed DFT emary space during the execution. However, this dynamic
algorithm is largely equivalent to designing a fault toldra

G h algorith : d : llocation technique requires synchronization betweetih bo
FP-Growth algorithm using MapReduce programming mo%‘- perated processes to perform each single checkpoinhwhi

mogy
els such as Hadoop/Spark. However, an advantage is t Ggs more overhead to the checkpoint process. SMFT check-

g can spe'\(/l:g::ally talgelladv%ntaghg ﬁf na:clve comm_urglcan int overhead comes from different sources: waiting tiithe t
y using . ESpecially when nigh performance Interco 'énchronization, communication —which is negligible thse

Pects are a\llali_lal_ale: Dis.k_-l_bhased_aplp:joach rﬁ%l.(.es I?/FOT SUBR" well known communication model LogGR][4]—, and
rom several limitations: These include prohibitive /OSt0 \1emon allocation and de-allocation cost,

for checkpointing/recovering local FP-Trees and recawgri . . -
unprocessed transactions, and centralized bottleneckeof t Figurel2 shows an overview over the FP-Tree checkpointing

master process in the case of failure to re-read unprocesggar"“t'or.1 in SMFT approach. Assuming procgssieeds to
transactions from the disk chieckpoint on process,.q4.. memory, each time period, i.e.,

Lo, 1, ... bn, ProcesPyarger re-initiates a checkpoint space that
B. Synchronous Memory-based Fault Tolerant (SMFT) FRan handle procegs checkpointed local FP-Tree. In this case,
Growth processp; can remotely checkpoint its local FP-Tree to the

As discussed above, the primary limitation of the DETEw assigned location without communicating with checkpoi

approach is that it uses disk-based checkpointing and eegov PfO®SPrarget- _ , _
which is prohibitive for scaling the FP-Growth algorithmRecovery Algorithm: Assuming a procesg; fails while
Hence, it is important to consider memory based fault tolera€xecuting the FP-Tree phase. On fault recovery, the regover
FP-Growth algorithm. processp, (in the simplistic case, a neighbor suchgs; 1)
Since available memory size is relatively small in comherges checkpointed FP-Tree jof stored on its memory to
parison to the disk size, it is also unattractive to incufs local FP-Tree. Ifp, has also stored part of the database
additional space complexity for in-memory checkpointirfg dransactions frompy, it re-distributes these transactions to
FP-Trees and database transactions from other proces8H¥er processes, which are still active in the computafitve.
SMFT involves checkpointing method where the overall spaégcovered transactions can be gathered from the memory of
complexity of the algorithm remains constant. Additiogalve Pr. if they were checkpointed by, before failure. In the
overlap the checkpointing of FP-Trees and database transg@se of disk recovery, lost transactions can be read from the
tions by using non-blocking primitives provided by the MPflisk using two different ways. First, dataset transactio@y
one-sided model. We present the checkpointing, and regovBg read from the disk by using the master process and re-
methods with their time-space complexity analysis in th@istributed evenly among the remaining processes. However
ensuing sections. in this case, disk access will be the most expensive parteof th
Checkpointing Algorithm: The premise of constant spaceoverall recovery algorithm. So, we suggest using all abégla
complexity is based on the two-pass properties of the FProcesses to read samples of failed procesp ffom the
Growth aigorithm. During the FP-Tree creation phase, ongésk in parallel. With this, each process will only access th
a database transaction is processed, the memory occupiedlisy to reads5— transactions. Further, since failed process
the transaction can be used for checkpointing. We leverage held the data checkpointed by procgss_; , process
this property of the algorithm to checkpoint the FP-Treed am,_; performs a critical checkpoint on process. — in the
database transactions. Specifically, once a transactipmis simplest case, the processes can be assumed to be connected
cessed, we reclaim the memory consumed by the transactiora virtual ring topology. Using this methodology, there is
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Fig. 2: SMFT FP-Tree Checkpointing Operation Overview

always at least one replica of the FP-Tree of each processincrease the size of the checkpointed space. The new virtual
Advantages and Limitations of SMFT: The primary ad- address is communicated {g;, which is used byp; for
vantage of SMFT is that it avoids reading/writing from theheckpointing the actual data usiMgI_Put operation.
disk. Naturally, SMFT achieves native performance usind MP A processp; may also checkpoint its remaining local
and is expected to incur low overhead for checkpointing witihansactions orp; memory to avoid reading it from disk in
non-blocking MPI one-sided communication. The recoveityhe case of failure. If the fault occurs before checkpomtin
algorithm uses memory to recover the database transagifionshe transactions, remaining transactions are recoved fr
possible. By distributing the transactions of a failed psxto the disk. However, ifp; fails after dataset transactions have
other active processes, the algorithm is able to minimize theen checkpointed, they can be redistributed directly by
recovery overhead. In the case of disk-based transact®nsy,,,,.; to other available processes. Transactions checkpoint-
covery, SMFT uses all processes to read recovered traosacting can be performed similar to FP-Tree checkpointing on
from the disk in parallel to avoid master process bottleneckl'rans.chk,q,r4e¢ VEctor of the target process.

SMFT approach has two main limitations. First, each two
processep; andpy..4e: Need to synchronize in all checkpomta
to share the addrgss of checkpoint vector and the size Algorlthm 2 : SMFT FP-Growth Algorithm
checkpointed FP-Tree or checkpointed transactions. $gcon Procedure: initialization(chk_schema = SMFT)
SMFT algorithm requires de-allocating existing space and
allocating new space for checkpointing window. The ovedhea ' C'éat€ FPT.chk;, Trans.chk; and metadata; vectors on P,
of synchronization, de-allocation and allocation are ob=e . (én'"a"y'i;n]fg)‘hk_ T b and data: add ¢
during FP-Tree creation phase. We address these two limit&: re);%(/)jed bt and metadata; addresses for

pdate //using MPI-RMA.
tions in the AMFT approach, presented later.
Implementation Details: In SMFT, each proces®.q,get Procedure: performLFPChk (L.Tree)
allocates three memory vectors. These vectors are used to
handle checkpoints from procegs namely: F' PT'.chkiqrget 1: Synchronize withPs,.. to resize theF PT.chk; vector.
vector to handle local FP-Tree of proceeding procgss 2: Add (L.F'PTree, F'PT.chkiarger) (MPI_Put)
Trans.chk,rger Vector to handle transactions checkpoint of 3: Updatemetadatatarget vector MPI_Put)
pi, andmetadataqrger VECtor that includes a set of param-
eters to describe both checkpoint vectors. These vecters ar
allocated anq g)_(posed for read/update by each process usTgSynchronize WIthP, . 10 resize thel'rans.chkrarger VeCtor.
MPI-RMA primitives. © Add (RemainingT T hktarger) (MPI_Put)
glrans., rans.c target

For in-memory checkpointing, SMFT requires that each3 Updatemetadatatarge: vector MPI_Put)
processp; selects another process for checkpointing. While
SMFT supports any arbitrary topology, in the simplest case, Procedure: performRecovery (o, G.Freq.List, Prec)
the processes can be assumed to be connected in a virtual ring
topology. Each procegs uses the memory of adjacent proces-1: Prcc process:merge {.Tree, Py.chkF PTreeree, G.Freq.List)
sorp;+1 for checkpointing its local FP-Tree and transactions2: if Trans.chk is NULL then
Therefore, each procesgs,; should prepare its checkpoint 3:  diskTransReefictadatarec)
buffers (FPT checkpointandtransaction checkpointgectors) 4 €lse
to handle the data checkpointed by procgsswhen needed gj d”_‘femTra“SRea(m"s'Chk"“' metadatarec)
during recovery. - endl

To perform a single checkpoint, each pair of processes
(pz,pmrqet) need to perform three operations. Firgty,get Algorithm [2 shows the checkpointing and recovery algo-
increases the size of theetadatatgrger aNd F PT .chkigrger  rithms for SMFT. Ininitialization procedure, each process
data structure, such that the new checkpomt frgntan be create three vector8' PT.chk;, Trans.chk; and metadata;
handled. The operation of determining the size of the checkectors to handle proceeding process checkpoints (Line 1).
pointedp; local FP-Tree requires synchronization betwggn These vectors are allocated and exposed using MPI-RMA
and pargee. Specifically, p; sends a checkpointing requestechnology for facilitating remote read/update (Line 2tiB
t0 prarger iNCluding the volume of data to be checkpointedPer formLFPChk procedure and PerformTransChk
Dtarget USESMPI_Win_create_dynamic mechanism to procedures, illustrate checkpoint operation in SMFT fothbo

Procedure: performTransChk (L.T'rans)




local FP-Tree and transactions, respectively. Propessyn- of procesg; is checkpointed omy,,4.; available transactions
chronizes with its source procegs.. by receiving its check- space. However, in Figure_Bb both remaining transactions
point size and resizing its checkpoint buffer to hangle. and local FP-Tree of procegs are checkpointed t@:q,get
data. Procesp; finalizes the synchronization operation bymemory (i.e., memory space availability is required).
sending the new checkpoint vector address to the source

process (Line 1). Next, proceps usesMPI_Put function to process P,

checkpoint its data and updates thetadatavector on target Unprocessed Trans.

process memory (Lines 2-3).

The per formRecovery procedure shows the recovery al-
gorithm in SMFT. The predetermined recovery procgsss
used to recover failed proces% by merging checkpointed - -
local FP-Tree ofP; it has on its memory to local FP-Tree [ P Local FP-Tree J N #toca o-rree
(Line 1). Further, failed process transactions can be &eaV
with the aid ofmetadatavector directly fromrecovery process
memory if available or from the disk if not (Lines 2-6). Disk-
based recovery should be performed in parallel to speed-up
the total recovery time.

Process P; Trans Vector
Process P;

Process Prarget Process Parget

Unprocessed Trans. Unprocessed Trans.

Prarget Local Trans. Vector Prarget Local Trans. Vector

C. Asynchronous Memory-based Fault Tolerant (AMFT) FP-

Growth (a) Local FP-Tree (b) Unprocessed
row Checkpointing Transactions and Local
In the SMFT approach, we observed the advantages of using FP-Tree Checkpointing

in-memory checkpointing of FP-Tree and database transac-
tions. However, there are a few limitations of SMFT. Specif-
ically, a pair of processes need to synchronize for memory
allocation and address exchange — which reduces the overall he effectiveness of AMFT checkpointing algorithmis in its
effectiveness of the MPI One-sided model. simplicity. Unlike SMFT, there is no synchronization recad

We address the limitations of SMFT by proposingraly between any pair of processes, and memory allocation is not
one-sided mechanism for checkpointing, i.e., Asynchrenotequired as well. By using MPI-RMA on high performance
Memory-based Fault Tolerant (AMFT). Under AMFT, we usénterconnects such as InfiniBand, we expect AMFT to be a
the memory ofalready processettansactions for checkpoint- near-optimal checkpointing algorithm for designing lasgale
ing instead of allocating new space. Similar to SMFT, undé&P-Growth algorithm. As expected, since each process gimpl
the AMFT approach, it is possible to checkpoint the FHnitiates the communication for the checkpoint, the expéct
Trees and a portion of the database transactions. We desctifhe complexity of the checkpointing @(%), using the
the checkpointing, recovery and implementation detailthef | ogGP model[[4]. g

AMFT approach as follows. _ Recovery Algorithm: The recovery algorithm for AMFT is
Checkpointing Algorithm: Consider a subset of two pro-similar to SMFT. AsSUming.,c; is the recovery process
cessesc P — p; and piarget- The checkpoint fromp; is =~ when a fault occurs (om;), recovery process,..
stored ONpiarge:- TO €nable truly one-sided mechanism foperges the checkpointed FP-Treepfvith its FP-Tree and re-
checkpointingp; must ensure that its checkpoint size is lesgjstributes the dead processtransactions among a subset of
than the size of the already processed transactiops.jjct-  available processes (suchlag |P|), if an in-memory check-
In AMFT, we achieve this objective by using atomic operasioygint is available locally. Otherwise, all available preses
on variables allocated using MPI-RMA and exposing it tecovered unprocessed transactions of the failed progess
read/update by other processes. The original parallel FHegm the disk in parallel.

Growth algorithm is slightly modified to atomically update The worst case time complexity of AMFT approach is
the size of available checkpointing space — this step doggnjlar to SMFT. In the worst case, the entire transactioes a

not require communication with any other process. When read from disk in parallel as mentioned in SMFT approach
decides to checkpoint its FP-Tree, it atomically reads t%th( |T|

value of available checkpointing spacemg, 4... By carefully ) time complexity, and recomputed byg ||

Fig. 3: AMFT Checkpointing Operation Overview

[P[-[P—1]-1
designing the checkpointing interval, it is highly likelyat the Processes m%). However, in many cases — especially
size of the available checkpointing spacezgn,. . is greater when the fault occurs during later stages of FP-Tree build
than the size required by;. In the pathological case, peri- phase — disk will be completely avoided, resulting in much
odically reads the available checkpointing space, tilltba- faster recovery in comparison to the worst case scenario.
dition is satisfied — in practice, this situation is not obvesl. Implementation Details:
In the common casey; simply initiates the checkpoint using Algorithm [3 illustrates the checkpointing and recovery
MPI_Put. Besides local FP-Tree, remaining (unprocessepgjocedures for AMFT algorithm. During the initialization
transactions of procegs can also be checkpointed tg,.,.: procedure, each process has its oWinans; vector that
memory if there is enough space. Checkpointing transastiozontains local set of transactiodsTrans (Line 1). In line
is one-time operation that improves the recovery process By each procesp; creates a single vector, i.enctadata;,
reading failed process’s transactions directly from clpeakt that represents a set of parameters to describe the status of
memory space instead of disk. L.Trans vector and checkpointed data of source progess
Figure [3 illustrates AMFT checkpointing operation bystored onp; memory. In line 3, MPI-RMA technology is used
showing two different cases. In Figurel 3a only local FP-Tree shared both vectors, i.€lrans; and metadata;, to other



Algorithm 3 : AMFT FP-Growth Algorithm Access (RDMA) interconnects such as InfiniBand. We use

Procedure: initialization(chk_schema = AMFT) aggressive compiler optimizations with Intel compiler V.3
for performance evaluation.
1: Assumel'rans; vector is the memory space contaihsI'rans on P; 2) Datasets: To evaluate different proposed fault tolerant
2: Createmetadata; vector onP; to describePs,. checkpoint (initially- FP-Growth algorithms, we use IBM Quest dataset genera-
empty). tor [2] for generating large scale synthetic datasets. |IBM€

3: Exp_oseTmnsi and metadata; vectors addresses for read/updatedataset generator has been Widely used in several studigs, a
lusing MPI-RMA accurately reflects the pattern of transactions in realdvor

datasets[[9], [122],[136],[137]. For experimental evaluatio

we use two synthetic datasets with 100 and 200 million

Procedure: performChk (L.FPTree, L.Trans, Piarget )

1: if Transiarge: has enough space fdr. F PTree of P; then transactions. The number of items per transaction is 15-20.
2. add@.FPTree, Transtarget) ( (MPI_Put) A total of 1000 item-ids are used.

3: end if

4: if Transtarge: has enough space for remainifigT'rans of P; (Only ~ B. Overhead of Supporting FP-Growth Fault Tolerance

~one té’:e)the” 1) Checkpointing Overhead Evaluatioihile the recov-

21 ond i €-Trans, Transtarger) (MP1_Pu) ery algorithm is executed only during faults, the cost ofahe

pointing is incurred even in the absence of faults. Natyrall

7: Updatemetadataiqrget VECtOr Pl_Put L 2 .. L . 4
pealemetadatatarget M ) it is critical to minimize the checkpointing time — espebjal

Procedure: performRecovery (Py, G.Freq.List, Prec ) when the fault rates are low.
1. Prec process:merge {.Tree, Py.chkF PTree, G.Freq.List)
2: if Trans.checkpoint is NULL then TABLE II: DFT, AMFT, and SMFT systems slowdowns
23 | diskTransRecvfietadata) related to w/o FT FP-Growth algorithm
. else
5: memTransRecd{rans, metadata) # Cores| Sup. | DFT (%) SMFT (%) AMFT (%)
6 end if TOOM | 200M | 100M | 200M | TOOM | 200M
. 256 | 0.03 | 19.76 | 35.50 | 10.85| 12.23| 6.08 | 104
0.05 | 67.31| 69.01| 31.02| 40.8 | 21.62 | 29.09
512 | 0.03 | 15.28| 25.87| 9.76 | 10.01 | 566 | 9.32
0.05 | 54.11 | 58.07| 29.77 | 38.88 | 18.50| 255
processes. 1024 | 0.03 | 13.77 | 22.22| 6.67 | 11.52| 4.47 | 9.14
Both L.F PTree and remaining transactions. T'rans can — 8-8g ‘11(1)1; iggg 2676%7 4816394 142-2211 17898
be checkpointed usinger formChk procedure. Each process 005 | 2739 | 3561 | 15.83| 30.15| 511 | 9.02

should readnetadataiqrger ON target process;q,rqe: to check
for space availability before checkpointing (Lines 1-6e-R , .
maining transactiot..Trans checkpointing is only performed  Figurel4 shows the checkpointing overhead of DFT, SMFT
one time once a space is available. and AMFT algorithms using 100M, 200M transactions and
Theper form Recovery procedure shows the recovery algoSUPPOrt threshold) values of 0.03 and 0.05. Talfle Il presents
rithm in AMFT approach. Like the SMFT recovery algorithm{he data in a tabular form, by showing the percentage of
the recovery proces®, process is used to recover by §Iowdown in comparison to the defaul_t parallel algorithratth
merging latest checkpointed FP-Treg it has with its local S not fault-tolerant. In Figurél4(a), if we focus on strong
FP-Tree.p; unprocessed transactions can be recover fropfaling evaluation (keeping the overall work constant and
recovery processemory if it was checkpointed before failure"créasing the number of processes), the algorithm scalgs v

or directly from disk (Lines 2-6). well (scaling from 256 -512 processes, we observe super-
4 ( ) linear speed-up due to better cache utilization). Simiteresl-
V. PERFORMANCE EVALUATION ups are observed for DFT, SMFT, and AMFT algorithms,

. ) ) respectively. Since the support threshold is high (0.0&, t
In this section, we present a detailed performance evaliaty,mher of frequent item-ids is relatively small. Hence, the
of the proposed fault tolerant FP-Growth algorithms, D&T,  oyerall computation time is less than 50s. Naturally, trvsl
SMFT, and AMFT that were presented in secfioh IV. For eagdhwn observed by DFT and SMFT is high — 67% and
fault tolerant algorithm, we present a detailed perforneangjo, respectively. AMFT only experiences a slowdown of
analysis of the checkpointing and recovery overhead. We Usfy, \we expected negligible overhead for AMFT. However,
up to 200 million transactions and a large scale evaluat®n e experienced slowdown, because for small scales such as
ing up to 2048 cores. At the end of this section, a compariseBg processes, the size of individual FP-Tree is larger (in
against a fault-tolerant version executed on Spark is ptede comparison to larger process counts). Unfortunately,eurr
MPI-RMA implementations are not always optimized for bulk
A. Setup data transfers. To validate this argument, we observe the
1) Experimental TestbediVe use Stampede supercomputerolumn for AMFT with 100M transactions. On 2048 cores —
at the Texas Advanced Computing Center (TACC) for pewith strong scaling — the overhead of checkpointing reduced
formance evaluation. The Stampede supercomputer is Dell5%. For lower support threshold, as shown in Figure 4(b),
PowerEdge C8220 cluster with 6,400 Dell PowerEdge sentbe overall slowdown for AMFT is 4-6%, while DFT overhead
nodes, each with 32GB memory, (2) Intel Xeon E5 (8-coiie 10-20%, for different process counts.
Sandy Bridge) processors. We use MVAPICH2-2.1, a high Figure[4(c) shows the performance comparison of DFT,
performance MPI library available on Remote Direct Memor$MFT, and AMFT algorithms using 200M transactions and
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Fig. 4: Proposed FT mechanisms checkpointing overheaddiffitrent number of transactions, support threshold, aoreés

0.05 support threshold. We observe similar pattern as Figrance of DFT approach compared to the other two approaches
ure[4(a). While we expect relatively high overheads for DF{i.e., SMFT and AMFT). Thus, with 100M dataset, compared
and SMFT approaches, we observe higher relative overhaadDFT approach, SMFT speeds-up the recovery process by
for AMFT approach as well. We argue that for larger transt.39x while AMFT speeds-up the recovery process with 1.46x.
actions per process, the size of the FP-Tree is larger. Sindging 200M dataset, SMFT speeds-up the algorithm execution
MPI-RMA runtimes are less optimized for bulk transfer, thevith recovery by 1.51x while AMFT speeds-up the algorithm
slowdown is smaller, but non-negligible. with 1.68x.

Figure [4(d) illustrates the performance of the proposed
approaches with 200M transactions and 0.03 support thresh-
old. The DFT approach observes a slowdown of 17-35% ¥n\BLE Ill: DFT, SMFT and AMFT Total Execution Time
comparison to the basic parallel algorithm, while AMFT °n|¥ncluding The Recovery Time
observes up to 10% overhead.

Clearly AMFT outperforms other approaches, especially thé& Cores| Sup. IigOTMTime 2(5:&) Sl'\(/l)g'\TA Time2 ég&C) All\gg'\TA Timez(()%ﬁﬂc)
disk-based approach easily without incurring any add#ion—zs—5531 231265 886026 2049.68| 694523 197201 6822.59
space complexity. We also observe that with strong scaling, 0.05| 67.12 | 182.685| 5657 | 13252 | 54.23 | 119.16
which is usually a problem for distributed memory algorigym| 512 8-82 9;»3-;55 33573%235 72262-9159 22281-;2 72(21;32 25366-25
Fhe relatlve Overhe.ad.Of AMFT decreases' We argue that !‘1024 0.03 | 609.52 | 1762.34| 415.12 | 1038.23| 399.52 | 1022.52
is due to the unoptimized MPI-RMA protocols for bulk data 0.05| 1588 | 4548 | 11.06 | 31.68 | 9.95 | 27.23
transfer. With further optimizations, as expected in neture, 2048 | 0.03| 438.85 | 1151.12] 280.23 | 629.62 | 272.85 | 609.62
these overheads are expected to reduce further. \With) 005] 1055 | 2704 ] 697 | 1512 | 640 | 1378

space complexity and still acceptable checkpointing axadh
such as 10% for AMFT, we expect the proposed algorithm Table [l summarizes the total execution time including the
to be used as the basis for future research and practiggdovery time of DFT, SMFT, and AMFT algorithms to handle
deployments. _ _ one failure using 256, 512, 1024, and 2048 cores with 0.03
2) Recovery Overhead Evaluatiorithe effectiveness of and 0.05 support threshold, respectively. Several obtenga
any fault tolerance mechanism is related to failure regpvegan be drawn from Figurel 5 and Talilel Ill. Both SMFT and
overhead besides the checkpointing overhead. In this SWMFT algorithms speed-up the FP-Growth algorithm recovery
section, we evaluate the recovery overhead in the casephcess compared to DFT algorithm. With smaller support
failure by injecting faults into FP-Growth parallel exeicmt.  threshold ¢=0.05), the size of checkpointed local FP-Trees
To simulate faults, we select a process to fail and the pdint gnd dead process recovered FP-Tree is small. Thus, in SMFT
failure. When reaching failure point, that process is el@atéd the synchronization overhead can be clearly shown compared
from the execution. We assume failure point after processito AMFT algorithm. In this case, AMFT outperforms SMFT
80% of dataset transactions to fairly comparing recoveriRggorithm as shown. However, in the case 6f50.03), the
algorithm for DFT, SMFT , and AMFT approaches. size of FP-Tree is larger and the synchronization overheads
In the case of failure, DFT recovery algorithm needs tgre small compared to checkpointing and recovery time. Thus
recover FP-Tree of failed process from the disk comparife speed-up difference between SMFT and AMFT decreases.
to both SMFT and AMFT approaches where FP-Tree jgnother observation that could be obvious is that the aeerag
recovered from memory. In the first set of experiments, we c&jpeed-up for both SMFT and AMFT algorithms increases with
culate the speed-up using both SMFT and AMFT approachggger dataset (i.e., 200M). The main reason of this that FP-
compared to DFT approach to recovery one failure procepgees become larger and DFT algorithm needs more time to
as shown in Figurél5. In Figurdsl5a anfl] 5c, with 0.0heckpoint or recover it from disk. Finally, with? €0.3), we

support threshold, the average speed-up by SMFT algoréhnphserve a super-linear speed-up from 256 to 512 cores due to
1.36x while average gained speed-up by AMFT algorithm isetter cash utilization.

1.41x using 100M dataset in the recovery process. In the case
of 200M synthetic dataset, both SMFT and AMFT recoven.
algorithms speed-up the total execution time with recobsry
1.55x and 1.59x, respectively, compared to DFT algorittm. | We compare our proposed AMFT FP-Growth algorithm
Figure[Bb and3d, with 0.03 support threshold, the recovereith Spark FP-Growth algorithm to show the effectiveness of
FP-Tree becomes larger which negatively impacts the perfour proposed system. Although, it is common for MPI-based

Comparison Against Spark



18 W AMFT Rec. B SMFT Rec.

18

% [ MAMFT Rec. WSMFT Rec. z.; WAMFT Rec. SMFT Rec. 2 [ mAMFT Rec. _BSMFT Rec.
16

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
# cores # cores # cores # cores

(a) 100M Trans$#=0.05 (b) 100M Trans.#=0.03 (c) 200M Trans.#=0.05 (d) 200M Trans.#=0.03

Fig. 5: SMFT and AMFT Recovery Speed up Compared to DFT Apgroaith Different Number of transactions, Support
Threshold , and Cores

implementations to outperform MapReduce-based implemeseveral issues for scalable FP-Growth such as memoryatutiliz

tations [18], we are particularly interested in absolutel artion, communication cost, and load-balancing. Howevailtfa

relative overheads for handling failures. Spark has a 4ilt tolerance has not been considered in these efforts.

Machine Learning library (MLIlib) that includes an FP-Gréwt  Several programming models proposed recently provide

algorithm, which we use in our comparison. A set of experautomatic fault tolerance using functional paradigms. sehe

ments has been conducted with different number of nodes @andlude MapReduce implementations like Hadoop and Spark,

using 500K synthetic dataset to show the performance of bath well as MillWheel. There have been studies for using

MPI-based and spark-based FP-Growth algorithms. MapReduce to parallelize frequent pattern mining algargh

including FP-Growth [[19], [[21],[[400] and aprior{[[6]/[24].

In these work, MapReduce achieves fault-tolerance by re-

o executing all the tasks of the failed node(s). As far as we are
' aware, recovery algorithm has to completely re-execut&ke

. J] ﬂ Tree generation from scratch in these implementations;hwhi

1200 WAMFT - Che

1000

& 800
o

E
E 600
<

severely and negatively impacts the recovery performance.
Scalable Checkpoint/Restart library (SCR) is another way t
support fault tolerant MPI-based applications through dtimu
level checkpointing technique [25]. SCR handles hardware
failures in MPI application by performing less frequent and
(@) 500K Trans£=0.03 (b) 500K Trans§=0.01 inexpensive checkpoints on available compute nodes memory

Fig. 6: Spark and MPI-based (AMFT))with Different Supporur work has somewhat similar ideas, but further specislize
Thresholdd and using 500K Synthetic Dataset them by considering algorithm-specific properties.
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Figure[§ shows the performance of AMFT algorithm com- The research described in this paper is part of the Anal-

pared to Spark. With the absence of a failure, AMFT algorith%‘gs in Motion (AIM) Laboratory Directed Research and

outperforms spark FP-Growth version with an average spe o e .
up of 20x withd = 0.01 and an average speed-up of 8.6x with agg:gg?;m (LDRD) Initiative at Pacific Northwest Nationa

6 = 0.03. The average speed-up in the case of smaller thres
old (¢ = 0.01) is larger because the size of checkpointed FP- VIIl. CONCLUSION
Trees is larger. Moreover, when checkpointing, the schiabi Thi f buildi fault tol ¢ K
of AMFT algorithm is better than the Spark-based algorithm IS paper Tocuses on burlding a fault tolerance framewor

because AMFT only depends on checkpointing FP-Trees affgSuPPort FP-Growth algorithm in parallel systems. Three
a set of transactions periodically, which are both smalhwi dult tolerance algorithms have been proposed: Disk-based

larger number of cores. However. Spark depends on the R Bult Tolerance (DFT), Synchronous Memory-based Faut Tol
megchanism by having in-memory reglicationpof both FP—Tref ance (SMFT), Asynchronous Memory-based Fault Tolerance

and transactions, overhead of which increases with a large FT). DFT algorithm represents the brute-force approach

number of cores 0 build a fault tolerance system using periodically chexhis

In the case of a failure, the average gained speed-up fr%ﬁﬂ
using AMFT compared to Spark is 15.3x with = 0.01 f disk id 1O |
and 8.34x withd = 0.03. Performance of both AMFT and ©' %' to avoid l/O latency. .
Spark-based algorithms becomes better with larger numnber, In SMFT algorithm, we shrink the processed transactions

cores and/or smaller support threshold (ide= 0.03) because (S:E:g: d%@doﬁgc;cp?rtgc:ssn::{[osggﬁgrrtr??:tPC‘?rgergwgtt?;};mgiti%c-
recovered FP-Tree is smaller in both cases. §

checkpoint. This algorithm requires synchronization lestw
processes before any single checkpoint which adds more
overhead to checkpointing operation. However, in AMFT

Several researchers have proposed FP-Growth algorithatgorithm, we use the transactions vector itself as cheokpo
for both single node and distributed memory systefms [Gpace to avoid any communication between processes during
[10], 271, [24], |27], [40]. These algorithms have addregs the checkpointing operation.

disk. However, the other two algorithms, i.e., SMFT and
FT, perform periodically checkpoints on memory instead
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