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Abstract—FP-Growth algorithm is a Frequent Pattern Min-
ing (FPM) algorithm that has been extensively used to study
correlations and patterns in large scale datasets. While several
researchers have designed distributed memory FP-Growth algo-
rithms, it is pivotal to consider fault tolerant FP-Growth, which
can address the increasing fault rates in large scale systems.
In this work, we propose a novel parallel, algorithm-level
fault-tolerant FP-Growth algorithm. We leverage algorithmic
properties and MPI advanced features to guarantee anO(1)
space complexity, achieved by using the dataset memory space
itself for checkpointing. We also propose a recovery algorithm
that can use in-memory and disk-based checkpointing, though
in many cases the recovery can be completed without any disk
access, and incurring no memory overhead for checkpointing.
We evaluate our FT algorithm on a large scale InfiniBand cluster
with several large datasets using up to 2K cores. Our evaluation
demonstrates excellent efficiency for checkpointing and recovery
in comparison to the disk-based approach. We have also observed
20x average speed-up in comparison to Spark, establishing that
a well designed algorithm can easily outperform a solution based
on a general fault-tolerant programming model.

I. I NTRODUCTION

Machine Learning and Data Mining (MLDM) algorithms
are becoming ubiquitous in analysing large volume of data
produced in science areas (instrument and simulation data)
as well as other areas such as social networks and financial
transactions. Frequent Pattern Mining (FPM) is an important
MLDM algorithm, which is used for finding attributes that
frequently occur together. Due to its high applicability, several
FPM algorithms have been proposed in the literature such as
Apriori [10], Eclat [39], FP-Growth [17], and GenMax [15].
However, FP-Growth has become extremely popular due to its
relatively small space and time complexity requirements.

To address increasing data volumes, several researchers
have proposed large scale distributed memory FP-Growth
algorithms [11], [13], [20], [26], [35]. One of the challenges
that arise with execution on large-scale parallel systems is
the increased likelihood (and frequency) of faults. Large scale
systems frequently suffer from faults of several types in many
components [7], [29], [30], [32]–[34].

Driven by these trends, several recent programming mod-
els such as Hadoop, Spark [38], and MillWheel [3] have
considered fault tolerance to be one of the most important
design consideration. Hadoop achieves fault tolerance by using
multiple replicas of the data structures in permanent storage
— possibly resulting in a significant amount of I/O in the
critical path. Spark addresses this limitation by using Resilient
Distributed Datasets (RDDs), such that in-memory replication
can be used for fault tolerance. However, for very large
datasets, in-memory replication is infeasible. In severalcases,

Spark considers disk as the backend for checkpointing —
which can again significantly slow-down the computation and
increase data movement. Similarly, MillWheel is used for fault
tolerant stream processing and uses the disk as the backend
for checkpointing. Naturally, an advantage of using fault
tolerant programming model is the fact that checkpointing and
recovery is automated. However, the performance penalty of
a fault tolerant programming model (due to disk-based check-
pointing) or space overhead (due to in-memory checkpointing)
is unattractive for scaling several MLDM algorithms at large
volume and computing scale.

In the context of general-purpose programming systems, re-
cently proposed methods such as Scalable Checkpoint Restart
(SCR) [25] are able to provide in-memory checkpointing
for multi-level hierarchical file systems using non-blocking
methods. SCR also allows using spare main memory for in-
memory checkpointing. Similarly, other researchers have pro-
posed programming model/runtime extensions to Charm++,
and X10 for supporting fault tolerance. While these approaches
provide non-blocking checkpointing, the overall memory re-
quirements increase, since the implementations need to use
spare memory for checkpointing. This can very well make the
approach infeasible, especially with weak scaling executions,
where spare memory is scarce.
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Fig. 1: Pattern of Memory Requirements of FP-Tree and Dataset
during FP-Tree build phase. As more transactions are processed,
lesser memory is required for dataset — which can be used for
checkpointing

In this paper, we present an in-depth study of FP-Growth
algorithm for fault tolerance. Considering its two-pass proper-
ties (impact shown in Figure 1), we propose a novel algorithm,
which requiresO(1) space complexity for saving critical data
structures, i.e., FP-Tree, in memory of other computing nodes.
The proposed algorithm incrementally leverages the memory
allocated for the default algorithm for checkpointing FP-
Trees – and possibly partial replica of transactions from other
computing nodes – ensuring anO(1) space overhead of our

http://arxiv.org/abs/1610.05116v1


proposed algorithms. To further minimize time overhead for
checkpointing, our solution not only leverages non-blocking
properties, but use MPI-Remote Memory Access ( MPI-RMA)
in addition to minimize any involvement of remote process
for checkpointing. By using MPI-RMA and contiguous data
structures for implementing our proposed algorithms, we are
able to leverage Remote Direct Memory Access (RDMA)
effectively. We believe that our proposed extensions may
be included with existing solutions such as SCR, where a
class of algorithms may re-use already allocated memory for
checkpointing and recovery.

A. Contributions

Specifically, we make the following contributions in the
paper:

• We propose anO(1) in-memory checkpointing based FP-
Growth algorithm for large scale systems. The proposed
algorithm leverages overlapping communication with FP-
Tree build phase — such that the overhead of checkpoint-
ing is minimized.

• We propose three different fault tolerance parallel FP-
Growth mechanisms: a default Disk-based Fault tol-
erant FP-Growth (DFT), Synchronous Memory-based
Fault tolerant FP-Growth (SMFT), and an Asynchronous
Memory-based Fault tolerant FP-Growth (AMFT).

• We study the limitations of existing programming models
(Hadoop MapReduce, Spark and MillWheel) and imple-
ment our algorithms using Message Passing Interface
(MPI) [14], [16]. Specifically, we use MPI-RMA mecha-
nism to checkpoint critical data structures of FP-Growth
asynchronously. With recent developments in MPI-RMA
Fault tolerance [5], it is possible to use MPI for handling
faults, while providing native performance.

• We perform an in-depth evaluation of our proposed
approaches using up to 200M transactions and 2048
cores. Using 100M transactions on 2048 cores, the check-
pointing overhead is≈ 5%, while the recovery cost
for multiple failures is independent of the number of
processes.

• We also show the effectiveness of our fault-tolerant FP-
Growth implementation – implementations outperforms
Spark implementations of the same algorithm by provid-
ing 20x average speed-up.

II. PRELIMINARIES

A. Frequent Pattern Mining

Frequent Pattern Mining (FPM) algorithms find items that
frequently occur together within transactions of a database.
An item or itemset is defined as frequent if its frequency is
higher than auser-defined threshold. Several FPM algorithms
have been proposed in the literature including Apriori, Eclat,
GenMax and FP-Growth. The FP-Growth algorithm is very
popular since it requires only two passes on the dataset,
does not involve candidate generation (unlike Apriori) and
provides a compressed representation of the frequent items
using aFrequent Pattern (FP)-Tree. We specifically focus on
designing parallel fault-tolerant versions of the FP-Growth
algorithm, due to its attractive properties.

During the first pass, FP-Growth algorithm finds items that
occur frequently. In the second pass, it creates an FP-Tree,
which is a modifiedTrie. The first pass requires a simple

scan through the given dataset to find all single frequent
items. FP-Tree creation step (the second pass) is the
most time consuming part of the overall calculation[35].
Hence, we focus on fault tolerant FP-Tree creation step of
the algorithm, since longer execution time also implies higher
fault probability.

B. Faults

Large scale systems suffer from several fault types — per-
manent, transient, and intermittent. A permanent fault typically
requires a device (such as a compute node) to be replaced. We
consider fault tolerance for permanent process faults in this
paper.We assume a fail-stop fault model — once a process
is perceived asdead/faulty, it is presumed unavailable for the
rest of the computation.

Since permanent node faults are commonplace in large
scale systems, several researchers have proposed techniques
for addressing these faults. Typically,checkpoint-restart[8],
[28] based methodologies are used. Application-independent
methods checkpoint the entire application space on a perma-
nent disk — however, they have been shown to scale only
on small size systems [8]. Application-dependent methods —
also known as Algorithm Based Fault Tolerance (ABFT) [1],
[12], [23], [31] methods reduce this overhead by selectively
checkpointing important data structures periodically. However,
depending up on the application characteristics, checkpointing
of critical data structures may still require disk access.

C. Fault Tolerant Programming Models

Recently, there has been a surge of large scale and fault
tolerant functional programming models such as Hadoop,
Spark, and MillWheel. Functional programming, in turn, uses
the concept of single assignment, where every mutation of a
variable is recorded, saved (on a permanent storage/memory
of another node), and replayed when a fault occurs.

Now, let us examine the implication of such a framework for
an algorithm like FP-Tree. Every change or mutation needs to
be recorded locally, and such records can be eventually saved
to permanent storage. In many cases, the step of saving a
new version of the FP-Tree on the disk is carried-out at the
end of the Reduce phase (of the MapReduce implementation).
For a two-phase algorithm such as FP-Tree, where most
of the time is spent on the second phase, no advantage is
achieved. Another possible implementation may choose to
divide the overall computation into multiple MapReduce steps.
The checkpointing can be executed at the end of each Reduce
phase. However, now the overall execution time will increase,
since saving a new version will either involve writing to a disk
(expensive) or neighbor’s memory. Since the reduce phase is
a blocking phase, the application will observe a significant
overhead of checkpointing, which will degrade the overall
performance. Naturally, a scalable algorithm should harness
best possible performance by using native execution, while
minimizing the cost of checkpointing, by usingnon-blocking
methods.

Now, in examining an alternate programming model, we
consider the Message Passing Interface (MPI) [14], [16],
which has been readily available and widely used on super-
computers and clusters, and beginning to find its place on
cloud computing systems. While MPI has been frequently
criticized for lack of fault tolerance support, recent literature
and implementations indicate that fault tolerance is addressed



well for permanent process faults [5]. More importantly,
recently introduced MPI One-sided - MPI one-sided com-
munication (also known as MPI-Remote Memory Access
(MPI-RMA)) [14], [16]- primitives provide necessary tools
for overlapping communication with computation. With this
observation, we focus on using MPI for designing fault tolerant
FP-Growth algorithm in this paper.

III. PARALLEL BASELINE ALGORITHM

Algorithm 1 shows the key steps of the parallel FP-Growth
algorithm, which we have used as the baseline for designing
fault tolerant FP-Growth algorithms.

A brief explanation of the steps is presented here: The first
step is to distribute the input database transactions among
|P | processes (Line 3) (Each process is a worker, which is
involved in computing itslocal FP-Tree). Each process (pi)
scans the local transactions and records the frequency of each
item (Line 4). To collect the global frequency, an all-to-all
reduction (byMPI_Allreduce) is used (incurringlog(|P |)
time complexity) (Line 5). After all-to-all reduction, theitems
with frequency greater than support threshold are saved, and
other items are discarded. Then, eachpi generates a local FP-
Tree (L.T ree) using its local transactions, which have at least
one frequent item (Line 6). Later, eachpi merges its local
FP-Tree with the FP-Trees from other processes to produce a
global FP-Tree (G.Tree) by using a ring communication algo-
rithm [35] (Line 7). Finally, frequent itemsets (FreqItemSet)
are produced using the output global FP-Tree (Line 8).

Algorithm 1 : Parallel FP-Growth Algorithm
1: Input: Set of transactionsS, Support thresholdθ
2: Output: Set of frequent itemsets
3: L.Trans← getLocalTrans(S)
4: L.FreqList← findLocalFreqItems(L.Trans, θ)
5: G.FreqList← Reduce Local Freq items through all processes
6: L.Tree← generateLocalFPTree(L.Trans, G.Freq.List)
7: G.Tree← generateGlobalFPTree(L.Tree)
8: FreqItemSet← miningGFPTree(G.Tree)

Further, we summarize the symbols we have used to model
the time and space complexity of the proposed fault tolerant
algorithms in Table I.

TABLE I: Symbols used for Time-Space Complexity Model-
ing

Name Symbol

Process Set P = {p0 · · · p|P |−1}
Transaction Database T = {t0 · · · t|T |−1}

Average Local Transaction Size tavg
Minimum Support Threshold θ

Local FP-Tree Set S = {s0 · · · s|P |−1}
Average Local FP-Tree size savg

Average time to merge two local FP-Trees m
Number of Checkpoints C
Disk Access Bandwidth l

Network Bandwidth b

IV. PROPOSEDFP-GROWTH FAULT TOLERANT

ALGORITHMS

In this section, we present several approaches for designing
fault tolerant FP-Growth algorithm. Our baseline algorithm

uses the disk as the safe storage for saving intermediate FP-
Trees, whereas the optimized algorithms use the memory orig-
inally allocated to the database transactions for checkpointing
intermediate FP-Trees and transactions of other processes
(with a high overlap of communication with computation
achieved using MPI-RMA methodology).

To design a fault tolerant FP-Growth algorithm, there are
several design choices. Since we consider fail-stop model,it
is important to understand the design choices betweenre-
spawninga new set of processes on a spare node versus
continued-executionwith existing processes and nodes. We use
continued-execution, primarily because for most systems,it is
intricate to re-spawn, attach the processes/node to the existing
set of processes, and continue recovery. Instead, continued-
execution provides a simple mechanism to conduct recovery,
without significant dependence on external software.

A. Disk-based Fault Tolerant (DFT) FP-Growth

The Disk-based Fault Tolerant (DFT) algorithm is the
baseline for other approaches presented in this paper.
Checkpointing Algorithm and Complexity: In the FP-
Growth algorithm, there are two critical data structures that
are needed during the recovery process — database transac-
tions themselves and intermediate FP-Trees generated by the
processes. Under the DFT approach, the intermediate FP-Trees
generated by each process are periodically saved on disk. For
many supercomputers, the disks are located remotely, such as
a remote storage. In other cases, locally available SSDs canbe
used as well. The database transactions are already resident on
the disk. Hence, it is not necessary to checkpoint the database
transactions.

Let us consider an equal distribution of database transac-
tions to processes (|T |/|P | transactions are available on each
process). LetC be the number of checkpoints, which are
executed by the application. The number of checkpoints are
derived as a function of|T |, and |P |, such that the cost of
checkpointing can be amortized over the FP-Tree creation
phase. The DFT algorithm also needs to save metadata file
associated with FP-Tree, which may be used during recovery.
The space complexity of the metadata file is negligible, since
only a few integers need to be saved.

Let savg represent the average size of an FP-Tree generated

by each process (calculated as
∑|P |−1

i=0
si

|P | ). The time com-

plexity for checkpointing intermediate FP-Trees isO(
C·savg

l
).

However, the actual time to checkpoint can escalate due to
the contention from multiple processes writing the checkpoint
file simultaneously. The space complexity incurred by each
process isO(C · savg), which can be reduced further by
recycling existing checkpoints.
Recovery Algorithm and Complexity: In the DFT approach,
the recovery is initiated by the master (pm) (In our implemen-
tation we use the default process — process with the first rank
in MPI as the master).pm reads the metadata file associated
with the faulty process (pf ), which provides the necessary
information for conducting recovery. A recovery process (pr)
is selected, which reads checkpointed FP-Tree ofpf from the
disk and merges the checkpointed FP-Tree ofpf with its FP-
Tree, whilepm reads dead process transactions from disk, and
re-distributes them among remaining processes.

The time complexity of the recovery algorithm is a function
of reading the partial dataset and executing the recovery



algorithm. In the worst case, the entire transactions of the
faulty process need to be re-executed. Hence, the worst case
time complexity is |T |

|P |·l (reading the dataset)+ |T |
|P |·b (re-

distributing among process) +m (re-computation), wherem
is the average cost of merging a transaction in an existing
FP-Tree (In the worst case, the FP-Tree is null, since all
transactions are re-executed).
Implementation Details: As mentioned earlier, each process
saves a copy of local FP-Tree in a safe storage. Thus, our
implementation depends on checkpointing local FP-Tree on
disk — LFPBackup file. This file associated with another
metadata file describes the checkpointed FP-Tree by storing
a set of description values such as: checkpoint timestamp
and last processed transaction. Each process asynchronously
updates both files, during the execution. In the case of failure,
the recovery operation is performed in two steps: The pre-
determined recovery processpr process reads the last check-
pointed FP-Tree of the faulty processpf from the disk and
merges it with its local FP-Tree. At the same time, the master
process reads the metadata file ofpf to decide the set of
transactions to be recovered from the disk. The master process
recovers unprocessed transactions and redistributes themto the
remaining processes.
Advantages and Limitations of DFT: The proposed DFT
algorithm is largely equivalent to designing a fault tolerant
FP-Growth algorithm using MapReduce programming mod-
els such as Hadoop/Spark. However, an advantage is that
it can specifically take advantage of native communication
by using MPI, especially when high performance intercon-
nects are available. Disk-based approach makes DFT suffer
from several limitations: These include prohibitive I/O cost
for checkpointing/recovering local FP-Trees and recovering
unprocessed transactions, and centralized bottleneck of the
master process in the case of failure to re-read unprocessed
transactions from the disk.

B. Synchronous Memory-based Fault Tolerant (SMFT) FP-
Growth

As discussed above, the primary limitation of the DFT
approach is that it uses disk-based checkpointing and recovery,
which is prohibitive for scaling the FP-Growth algorithm.
Hence, it is important to consider memory based fault tolerant
FP-Growth algorithm.

Since available memory size is relatively small in com-
parison to the disk size, it is also unattractive to incur
additional space complexity for in-memory checkpointing of
FP-Trees and database transactions from other processes.
SMFT involves checkpointing method where the overall space
complexity of the algorithm remains constant. Additionally, we
overlap the checkpointing of FP-Trees and database transac-
tions by using non-blocking primitives provided by the MPI
one-sided model. We present the checkpointing, and recovery
methods with their time-space complexity analysis in the
ensuing sections.
Checkpointing Algorithm: The premise of constant space
complexity is based on the two-pass properties of the FP-
Growth algorithm. During the FP-Tree creation phase, once
a database transaction is processed, the memory occupied by
the transaction can be used for checkpointing. We leverage
this property of the algorithm to checkpoint the FP-Trees and
database transactions. Specifically, once a transaction ispro-
cessed, we reclaim the memory consumed by the transaction

and allocate a separatewindow of memory, which can be
used by other processes for checkpointing their FP-Trees and
database transactions. With this technique, the overall space
complexity of the algorithm isO(1).

Besides optimal space complexity, the objective of SMFT
algorithm is to minimize the time complexity of checkpointing
both the FP-Trees and database transactions. ConsideringC
as the number of checkpoints, under a naive algorithm, each
process can checkpoint its existing FP-Tree to another process
at every |T |

|P |·C steps. Since the time overhead of checkpointing
is non-negligible, as this stepblocksfor the communication to
complete before continuing to process remaining transactions,
at every checkpointing step — with increasing FP-Tree size
— the overhead of blocking increases. Hence, it is important
to consider non-blocking methods of checkpointing, such that
communication cost of checkpointing can be overlapped with
computation.

SMFT algorithm uses MPI one-sided non-blocking methods
for checkpointing. Specifically, as the database transactions
are processed, a similar amount of memory is added to a
checkpoint window. The algorithm uses dynamic allocation
feature in MPI-RMA ,MPI_Win_create_dynamic, that
allows incremental increase in the size of the checkpointing
memory space during the execution. However, this dynamic
allocation technique requires synchronization between both
cooperated processes to perform each single checkpoint which
adds more overhead to the checkpoint process. SMFT check-
point overhead comes from different sources: waiting time till
synchronization, communication —which is negligible based
on well known communication model LogGP [4]—, and
memory allocation and de-allocation cost.

Figure 2 shows an overview over the FP-Tree checkpointing
operation in SMFT approach. Assuming processpi needs to
checkpoint on processptarget memory, each time period, i.e.,
t0, t1, ...,tn, processptarget re-initiates a checkpoint space that
can handle processpi checkpointed local FP-Tree. In this case,
processpi can remotely checkpoint its local FP-Tree to the
new assigned location without communicating with checkpoint
processptarget.
Recovery Algorithm: Assuming a processpf fails while
executing the FP-Tree phase. On fault recovery, the recovery
processpr (in the simplistic case, a neighbor such aspf+1)
merges checkpointed FP-Tree ofpf stored on its memory to
its local FP-Tree. Ifpr has also stored part of the database
transactions frompf , it re-distributes these transactions to
other processes, which are still active in the computation.The
recovered transactions can be gathered from the memory of
pr, if they were checkpointed bypf before failure. In the
case of disk recovery, lost transactions can be read from the
disk using two different ways. First, dataset transactionsmay
be read from the disk by using the master process and re-
distributed evenly among the remaining processes. However,
in this case, disk access will be the most expensive part of the
overall recovery algorithm. So, we suggest using all available
processes to read samples of failed process (n

p
) from the

disk in parallel. With this, each process will only access the
disk to read n

P (P−1) transactions. Further, since failed process
pf held the data checkpointed by processpf−1 , process
pf−1 performs a critical checkpoint on processprec — in the
simplest case, the processes can be assumed to be connected
in a virtual ring topology. Using this methodology, there is
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Fig. 2: SMFT FP-Tree Checkpointing Operation Overview

always at least one replica of the FP-Tree of each process.
Advantages and Limitations of SMFT: The primary ad-
vantage of SMFT is that it avoids reading/writing from the
disk. Naturally, SMFT achieves native performance using MPI
and is expected to incur low overhead for checkpointing with
non-blocking MPI one-sided communication. The recovery
algorithm uses memory to recover the database transactions, if
possible. By distributing the transactions of a failed process to
other active processes, the algorithm is able to minimize the
recovery overhead. In the case of disk-based transactions re-
covery, SMFT uses all processes to read recovered transactions
from the disk in parallel to avoid master process bottleneck.

SMFT approach has two main limitations. First, each two
processespi andptarget need to synchronize in all checkpoints
to share the address of checkpoint vector and the size of
checkpointed FP-Tree or checkpointed transactions. Second,
SMFT algorithm requires de-allocating existing space and
allocating new space for checkpointing window. The overhead
of synchronization, de-allocation and allocation are observed
during FP-Tree creation phase. We address these two limita-
tions in the AMFT approach, presented later.
Implementation Details: In SMFT, each processptarget
allocates three memory vectors. These vectors are used to
handle checkpoints from processpi namely:FPT.chktarget
vector to handle local FP-Tree of proceeding processpi,
Trans.chktarget vector to handle transactions checkpoint of
pi, andmetadatatarget vector that includes a set of param-
eters to describe both checkpoint vectors. These vectors are
allocated and exposed for read/update by each process using
MPI-RMA primitives.

For in-memory checkpointing, SMFT requires that each
processpi selects another process for checkpointing. While
SMFT supports any arbitrary topology, in the simplest case,
the processes can be assumed to be connected in a virtual ring
topology. Each processpi uses the memory of adjacent proces-
sor pi+1 for checkpointing its local FP-Tree and transactions.
Therefore, each processpi+1 should prepare its checkpoint
buffers (FPT checkpointsandtransaction checkpointsvectors)
to handle the data checkpointed by processpi, when needed
during recovery.

To perform a single checkpoint, each pair of processes
(pi, ptarget) need to perform three operations. First,ptarget
increases the size of themetadatatarget andFPT.chktarget
data structure, such that the new checkpoint frompi can be
handled. The operation of determining the size of the check-
pointedpi local FP-Tree requires synchronization betweenpi
and ptarget. Specifically, pi sends a checkpointing request
to ptarget including the volume of data to be checkpointed.
ptarget usesMPI_Win_create_dynamic mechanism to

increase the size of the checkpointed space. The new virtual
address is communicated topi, which is used bypi for
checkpointing the actual data usingMPI_Put operation.

A process pi may also checkpoint its remaining local
transactions onpi memory to avoid reading it from disk in
the case of failure. If the fault occurs before checkpointing
the transactions, remaining transactions are recovered from
the disk. However, ifpi fails after dataset transactions have
been checkpointed, they can be redistributed directly by
ptarget to other available processes. Transactions checkpoint-
ing can be performed similar to FP-Tree checkpointing on
Trans.chktarget vector of the target process.

Algorithm 2 : SMFT FP-Growth Algorithm
Procedure: initialization(chk schema = SMFT)

1: Create FPT.chki, Trans.chki and metadatai vectors on Pi

(initially-empty).
2: Expose FPT.chki, Trans.chki and metadatai addresses for

read/update //using MPI-RMA.

Procedure: performLFPChk (L.Tree)

1: Synchronize withPsrc to resize theFPT.chki vector.
2: Add (L.FPTree, FPT.chktarget) (MPI Put)
3: Updatemetadatatarget vector (MPI Put)

Procedure: performTransChk (L.Trans)

1: Synchronize withPsrc to resize theTrans.chktarget vector.
2: Add (RemainingTrans., Trans.chktarget) (MPI Put)
3: Updatemetadatatarget vector (MPI Put)

Procedure: performRecovery (pf , G.Freq.List, Prec)

1: Prec process:merge (L.Tree, Pf .chkFPTreerec, G.Freq.List)
2: if Trans.chk is NULL then
3: diskTransRec(metadatarec )
4: else
5: memTransRec(Trans.chkrec, metadatarec)
6: end if

Algorithm 2 shows the checkpointing and recovery algo-
rithms for SMFT. Ininitialization procedure, each process
create three vectorsFPT.chki, Trans.chki andmetadatai
vectors to handle proceeding process checkpoints (Line 1).
These vectors are allocated and exposed using MPI-RMA
technology for facilitating remote read/update (Line 2). Both
PerformLFPChk procedure andPerformTransChk
procedures, illustrate checkpoint operation in SMFT for both



local FP-Tree and transactions, respectively. Processpi syn-
chronizes with its source processpsrc by receiving its check-
point size and resizing its checkpoint buffer to handlepsrc
data. Processpi finalizes the synchronization operation by
sending the new checkpoint vector address to the source
process (Line 1). Next, processpi usesMPI_Put function to
checkpoint its data and updates themetadatavector on target
process memory (Lines 2-3).

The performRecovery procedure shows the recovery al-
gorithm in SMFT. The predetermined recovery processpr is
used to recover failed processPf by merging checkpointed
local FP-Tree ofPf it has on its memory to local FP-Tree
(Line 1). Further, failed process transactions can be recovered
with the aid ofmetadatavector directly fromrecovery process
memory if available or from the disk if not (Lines 2-6). Disk-
based recovery should be performed in parallel to speed-up
the total recovery time.

C. Asynchronous Memory-based Fault Tolerant (AMFT) FP-
Growth

In the SMFT approach, we observed the advantages of using
in-memory checkpointing of FP-Tree and database transac-
tions. However, there are a few limitations of SMFT. Specif-
ically, a pair of processes need to synchronize for memory
allocation and address exchange — which reduces the overall
effectiveness of the MPI One-sided model.

We address the limitations of SMFT by proposing atruly
one-sided mechanism for checkpointing, i.e., Asynchronous
Memory-based Fault Tolerant (AMFT). Under AMFT, we use
the memory ofalready processedtransactions for checkpoint-
ing instead of allocating new space. Similar to SMFT, under
the AMFT approach, it is possible to checkpoint the FP-
Trees and a portion of the database transactions. We describe
the checkpointing, recovery and implementation details ofthe
AMFT approach as follows.
Checkpointing Algorithm: Consider a subset of two pro-
cesses∈ P — pi and ptarget. The checkpoint frompi is
stored onptarget. To enable truly one-sided mechanism for
checkpointing,pi must ensure that its checkpoint size is less
than the size of the already processed transactions inptarget.
In AMFT, we achieve this objective by using atomic operations
on variables allocated using MPI-RMA and exposing it to
read/update by other processes. The original parallel FP-
Growth algorithm is slightly modified to atomically update
the size of available checkpointing space — this step does
not require communication with any other process. Whenpi
decides to checkpoint its FP-Tree, it atomically reads the
value of available checkpointing space onptarget. By carefully
designing the checkpointing interval, it is highly likely that the
size of the available checkpointing space onptarget is greater
than the size required bypi. In the pathological case,pi peri-
odically reads the available checkpointing space, till thecon-
dition is satisfied — in practice, this situation is not observed.
In the common case,pi simply initiates the checkpoint using
MPI_Put. Besides local FP-Tree, remaining (unprocessed)
transactions of processpi can also be checkpointed toptarget
memory if there is enough space. Checkpointing transactions
is one-time operation that improves the recovery process by
reading failed process’s transactions directly from checkpoint
memory space instead of disk.

Figure 3 illustrates AMFT checkpointing operation by
showing two different cases. In Figure 3a only local FP-Tree

of processpi is checkpointed onptarget available transactions
space. However, in Figure 3b both remaining transactions
and local FP-Tree of processpi are checkpointed toptarget
memory (i.e., memory space availability is required).

Pi Local FP Tree

Unprocessed Trans. Unprocessed Trans.

Ptarget Local Trans. Vector target Local Trans. Vector

Unprocessed Trans.

Local FP Tree

Process Trans Vector

(a) Local FP Tree Checkpointing (b) Unprocessed Transactions and Local

FP Tree checkpointing

Process Pi
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(a) Local FP-Tree
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(b) Unprocessed
Transactions and Local
FP-Tree Checkpointing

Fig. 3: AMFT Checkpointing Operation Overview

The effectiveness of AMFT checkpointing algorithm is in its
simplicity. Unlike SMFT, there is no synchronization required
between any pair of processes, and memory allocation is not
required as well. By using MPI-RMA on high performance
interconnects such as InfiniBand, we expect AMFT to be a
near-optimal checkpointing algorithm for designing largescale
FP-Growth algorithm. As expected, since each process simply
initiates the communication for the checkpoint, the expected
time complexity of the checkpointing isO( |T |

log|P |.C ), using the
LogGP model [4].
Recovery Algorithm: The recovery algorithm for AMFT is
similar to SMFT. Assumingptarget is the recovery process
prec. When a fault occurs (onpi), recovery processprec
merges the checkpointed FP-Tree ofpi with its FP-Tree and re-
distributes the dead processpi transactions among a subset of
available processes (such aslog |P |), if an in-memory check-
point is available locally. Otherwise, all available processes
recovered unprocessed transactions of the failed processpi
from the disk in parallel.

The worst case time complexity of AMFT approach is
similar to SMFT. In the worst case, the entire transactions are
read from disk in parallel as mentioned in SMFT approach
with ( |T |

|P |·|P−1|·l ) time complexity, and recomputed bylog |P |

processes in ( |T |
|P |·log |P | ). However, in many cases — especially

when the fault occurs during later stages of FP-Tree build
phase — disk will be completely avoided, resulting in much
faster recovery in comparison to the worst case scenario.
Implementation Details:

Algorithm 3 illustrates the checkpointing and recovery
procedures for AMFT algorithm. During the initialization
procedure, each process has its ownTransi vector that
contains local set of transactionsL.T rans (Line 1). In line
2, each processpi creates a single vector, i.e.,metadatai,
that represents a set of parameters to describe the status of
L.T rans vector and checkpointed data of source processpsrc
stored onpi memory. In line 3, MPI-RMA technology is used
to shared both vectors, i.e.,Transi andmetadatai, to other



Algorithm 3 : AMFT FP-Growth Algorithm
Procedure: initialization(chk schema = AMFT)

1: AssumeTransi vector is the memory space containsL.Trans on Pi

2: Createmetadatai vector onPi to describePsrc checkpoint (initially-
empty).

3: ExposeTransi and metadatai vectors addresses for read/update
//using MPI-RMA

Procedure: performChk (L.FPTree, L.Trans, Ptarget )

1: if Transtarget has enough space forL.FPTree of Pi then
2: add(L.FPTree, Transtarget) ( (MPI Put)
3: end if
4: if Transtarget has enough space for remainingL.Trans of Pi (Only

one time)then
5: add(L.Trans, Transtarget) (MPI Put)
6: end if
7: Updatemetadatatarget vector (MPI Put)

Procedure: performRecovery (Pf , G.Freq.List, Prec )

1: Prec process:merge (L.Tree, Pf .chkFPTree, G.Freq.List)
2: if Trans.checkpoint is NULL then
3: diskTransRecv(metadata)
4: else
5: memTransRecv(Trans, metadata)
6: end if

processes.
Both L.FPTree and remaining transactionsL.T rans can

be checkpointed usingperformChk procedure. Each process
should readmetadatatarget on target processptarget to check
for space availability before checkpointing (Lines 1-6). Re-
maining transactionL.T rans checkpointing is only performed
one time once a space is available.

TheperformRecovery procedure shows the recovery algo-
rithm in AMFT approach. Like the SMFT recovery algorithm,
the recovery processPr process is used to recoverpf by
merging latest checkpointed FP-Treepf it has with its local
FP-Tree.pf unprocessed transactions can be recover from
recovery processmemory if it was checkpointed before failure
or directly from disk (Lines 2-6).

V. PERFORMANCEEVALUATION

In this section, we present a detailed performance evaluation
of the proposed fault tolerant FP-Growth algorithms, i.e.,DFT,
SMFT, and AMFT that were presented in section IV. For each
fault tolerant algorithm, we present a detailed performance
analysis of the checkpointing and recovery overhead. We use
up to 200 million transactions and a large scale evaluation us-
ing up to 2048 cores. At the end of this section, a comparison
against a fault-tolerant version executed on Spark is presented.

A. Setup

1) Experimental Testbed:We use Stampede supercomputer
at the Texas Advanced Computing Center (TACC) for per-
formance evaluation. The Stampede supercomputer is Dell
PowerEdge C8220 cluster with 6,400 Dell PowerEdge server
nodes, each with 32GB memory, (2) Intel Xeon E5 (8-core
Sandy Bridge) processors. We use MVAPICH2-2.1, a high
performance MPI library available on Remote Direct Memory

Access (RDMA) interconnects such as InfiniBand. We use
aggressive compiler optimizations with Intel compiler v15.0.1
for performance evaluation.

2) Datasets: To evaluate different proposed fault tolerant
FP-Growth algorithms, we use IBM Quest dataset genera-
tor [2] for generating large scale synthetic datasets. IBM Quest
dataset generator has been widely used in several studies, and
accurately reflects the pattern of transactions in real-world
datasets [9], [22], [36], [37]. For experimental evaluation,
we use two synthetic datasets with 100 and 200 million
transactions. The number of items per transaction is 15-20.
A total of 1000 item-ids are used.

B. Overhead of Supporting FP-Growth Fault Tolerance

1) Checkpointing Overhead Evaluation:While the recov-
ery algorithm is executed only during faults, the cost of check-
pointing is incurred even in the absence of faults. Naturally,
it is critical to minimize the checkpointing time — especially,
when the fault rates are low.

TABLE II: DFT, AMFT, and SMFT systems slowdowns
related to w/o FT FP-Growth algorithm

# Cores Sup. DFT (%) SMFT (%) AMFT (%)
100M 200M 100M 200M 100M 200M

256 0.03 19.76 35.59 10.85 12.23 6.08 10.4
0.05 67.31 69.01 31.02 40.8 21.62 29.09

512 0.03 15.28 25.87 9.76 10.01 5.66 9.32
0.05 54.11 58.07 29.77 38.88 18.50 25.5

1024 0.03 13.77 22.22 6.67 11.52 4.47 9.14
0.05 41.17 52.93 27.87 41.34 12.21 18.8

2048 0.03 10.13 17.56 6.05 8.69 4.21 7.9
0.05 27.39 35.61 15.83 30.15 5.11 9.92

Figure 4 shows the checkpointing overhead of DFT, SMFT
and AMFT algorithms using 100M, 200M transactions and
support threshold (θ) values of 0.03 and 0.05. Table II presents
the data in a tabular form, by showing the percentage of
slowdown in comparison to the default parallel algorithm that
is not fault-tolerant. In Figure 4(a), if we focus on strong
scaling evaluation (keeping the overall work constant and
increasing the number of processes), the algorithm scales very
well (scaling from 256 -512 processes, we observe super-
linear speed-up due to better cache utilization). Similar speed-
ups are observed for DFT, SMFT, and AMFT algorithms,
respectively. Since the support threshold is high (0.05), the
number of frequent item-ids is relatively small. Hence, the
overall computation time is less than 50s. Naturally, the slow
down observed by DFT and SMFT is high — 67% and
31%, respectively. AMFT only experiences a slowdown of
21%. We expected negligible overhead for AMFT. However,
we experienced slowdown, because for small scales such as
256 processes, the size of individual FP-Tree is larger (in
comparison to larger process counts). Unfortunately, current
MPI-RMA implementations are not always optimized for bulk
data transfers. To validate this argument, we observe the
column for AMFT with 100M transactions. On 2048 cores —
with strong scaling — the overhead of checkpointing reduced
to 5%. For lower support threshold, as shown in Figure 4(b),
the overall slowdown for AMFT is 4-6%, while DFT overhead
is 10-20%, for different process counts.

Figure 4(c) shows the performance comparison of DFT,
SMFT, and AMFT algorithms using 200M transactions and



0

10

20

30

40

50

60

256 512 1024 2048

E
xe
cu
ti
o
n
T
im

e
in
S
e
co
n
d
s

# cores

W/O FT

AMFT

SMFT

DFT

(a) 100M Trans.θ=0.05

0

500

1000

1500

2000

2500

256 512 1024 2048

E
xe
cu
ti
o
n
T
im

e
in

S
e
co
n
d
s

# cores

W/O FT

AMFT

SMFT

DFT

(b) 100M Trans.θ=0.03

0

20

40

60

80

100

120

140

160

256 512 1024 2048

E
x
e
cu
ti
o
n
T
im

e
in

S
e
co
n
d
s

# cores

W/O FT

AMFT

SMFT

DFT

(c) 200M Trans.θ=0.05

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

256 512 1024 2048

E
xe
cu
ti
o
n
T
im

e
in
S
e
co
n
d
s

# cores

W/O FT

AMFT

SMFT

DFT

(d) 200M Trans.θ=0.03

Fig. 4: Proposed FT mechanisms checkpointing overhead withdifferent number of transactions, support threshold, and cores

0.05 support threshold. We observe similar pattern as Fig-
ure 4(a). While we expect relatively high overheads for DFT
and SMFT approaches, we observe higher relative overhead
for AMFT approach as well. We argue that for larger trans-
actions per process, the size of the FP-Tree is larger. Since
MPI-RMA runtimes are less optimized for bulk transfer, the
slowdown is smaller, but non-negligible.

Figure 4(d) illustrates the performance of the proposed
approaches with 200M transactions and 0.03 support thresh-
old. The DFT approach observes a slowdown of 17-35% in
comparison to the basic parallel algorithm, while AMFT only
observes up to 10% overhead.

Clearly AMFT outperforms other approaches, especially the
disk-based approach easily without incurring any additional
space complexity. We also observe that with strong scaling,
which is usually a problem for distributed memory algorithms,
the relative overhead of AMFT decreases. We argue that it
is due to the unoptimized MPI-RMA protocols for bulk data
transfer. With further optimizations, as expected in near future,
these overheads are expected to reduce further. WithO(1)
space complexity and still acceptable checkpointing overhead
such as 10% for AMFT, we expect the proposed algorithm
to be used as the basis for future research and practical
deployments.

2) Recovery Overhead Evaluation:The effectiveness of
any fault tolerance mechanism is related to failure recovery
overhead besides the checkpointing overhead. In this sub-
section, we evaluate the recovery overhead in the case of
failure by injecting faults into FP-Growth parallel execution.
To simulate faults, we select a process to fail and the point of
failure. When reaching failure point, that process is eliminated
from the execution. We assume failure point after processing
80% of dataset transactions to fairly comparing recovering
algorithm for DFT, SMFT , and AMFT approaches.

In the case of failure, DFT recovery algorithm needs to
recover FP-Tree of failed process from the disk comparing
to both SMFT and AMFT approaches where FP-Tree is
recovered from memory. In the first set of experiments, we cal-
culate the speed-up using both SMFT and AMFT approaches
compared to DFT approach to recovery one failure process
as shown in Figure 5. In Figures 5a and 5c, with 0.05
support threshold, the average speed-up by SMFT algorithm is
1.36x while average gained speed-up by AMFT algorithm is
1.41x using 100M dataset in the recovery process. In the case
of 200M synthetic dataset, both SMFT and AMFT recovery
algorithms speed-up the total execution time with recoveryby
1.55x and 1.59x, respectively, compared to DFT algorithm. In
Figure 5b and 5d, with 0.03 support threshold, the recovered
FP-Tree becomes larger which negatively impacts the perfor-

mance of DFT approach compared to the other two approaches
(i.e., SMFT and AMFT). Thus, with 100M dataset, compared
to DFT approach, SMFT speeds-up the recovery process by
1.39x while AMFT speeds-up the recovery process with 1.46x.
Using 200M dataset, SMFT speeds-up the algorithm execution
with recovery by 1.51x while AMFT speeds-up the algorithm
with 1.68x.

TABLE III: DFT, SMFT and AMFT Total Execution Time
Including The Recovery Time

# Cores Sup. DFT Time (Sec) SMFT Time (Sec) AMFT Time (Sec)
100M 200M 100M 200M 100M 200M

256 0.03 2312.65 8860.26 2049.68 6945.23 1972.01 6822.59
0.05 67.12 182.685 56.57 132.52 54.23 119.16

512 0.03 948.125 3227.25 722.19 2268.12 701.12 2226.65
0.05 34.59 92.36 26.95 64.12 24.83 59.63

1024 0.03 609.52 1762.34 415.12 1038.23 399.52 1022.52
0.05 15.88 45.48 11.06 31.68 9.95 27.23

2048 0.03 438.85 1151.12 280.23 629.62 272.85 609.62
0.05 10.55 27.04 6.97 15.12 6.40 13.78

Table III summarizes the total execution time including the
recovery time of DFT, SMFT, and AMFT algorithms to handle
one failure using 256, 512, 1024, and 2048 cores with 0.03
and 0.05 support threshold, respectively. Several observations
can be drawn from Figure 5 and Table III. Both SMFT and
AMFT algorithms speed-up the FP-Growth algorithm recovery
process compared to DFT algorithm. With smaller support
threshold (θ=0.05), the size of checkpointed local FP-Trees
and dead process recovered FP-Tree is small. Thus, in SMFT
the synchronization overhead can be clearly shown compared
to AMFT algorithm. In this case, AMFT outperforms SMFT
algorithm as shown. However, in the case of (θ =0.03), the
size of FP-Tree is larger and the synchronization overheads
are small compared to checkpointing and recovery time. Thus,
the speed-up difference between SMFT and AMFT decreases.
Another observation that could be obvious is that the average
speed-up for both SMFT and AMFT algorithms increases with
larger dataset (i.e., 200M). The main reason of this that FP-
Trees become larger and DFT algorithm needs more time to
checkpoint or recover it from disk. Finally, with (θ =0.3), we
observe a super-linear speed-up from 256 to 512 cores due to
better cash utilization.

C. Comparison Against Spark

We compare our proposed AMFT FP-Growth algorithm
with Spark FP-Growth algorithm to show the effectiveness of
our proposed system. Although, it is common for MPI-based
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Fig. 5: SMFT and AMFT Recovery Speed up Compared to DFT Approach with Different Number of transactions, Support
Threshold , and Cores

implementations to outperform MapReduce-based implemen-
tations [18], we are particularly interested in absolute and
relative overheads for handling failures. Spark has a built-in
Machine Learning library (MLlib) that includes an FP-Growth
algorithm, which we use in our comparison. A set of experi-
ments has been conducted with different number of nodes and
using 500K synthetic dataset to show the performance of both
MPI-based and spark-based FP-Growth algorithms.
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Fig. 6: Spark and MPI-based (AMFT))with Different Support
Thresholdθ and using 500K Synthetic Dataset

Figure 6 shows the performance of AMFT algorithm com-
pared to Spark. With the absence of a failure, AMFT algorithm
outperforms spark FP-Growth version with an average speed-
up of 20x withθ = 0.01 and an average speed-up of 8.6x with
θ = 0.03. The average speed-up in the case of smaller thresh-
old (θ = 0.01) is larger because the size of checkpointed FP-
Trees is larger. Moreover, when checkpointing, the scalability
of AMFT algorithm is better than the Spark-based algorithm
because AMFT only depends on checkpointing FP-Trees and
a set of transactions periodically, which are both small with
larger number of cores. However, Spark depends on the RDD
mechanism by having in-memory replication of both FP-Trees
and transactions, overhead of which increases with a larger
number of cores.

In the case of a failure, the average gained speed-up from
using AMFT compared to Spark is 15.3x withθ = 0.01
and 8.34x withθ = 0.03. Performance of both AMFT and
Spark-based algorithms becomes better with larger number of
cores and/or smaller support threshold (i.e.,θ = 0.03) because
recovered FP-Tree is smaller in both cases.

VI. RELATED WORK

Several researchers have proposed FP-Growth algorithms
for both single node and distributed memory systems [6],
[10], [21], [24], [27], [40]. These algorithms have addressed

several issues for scalable FP-Growth such as memory utiliza-
tion, communication cost, and load-balancing. However, fault
tolerance has not been considered in these efforts.

Several programming models proposed recently provide
automatic fault tolerance using functional paradigms. These
include MapReduce implementations like Hadoop and Spark,
as well as MillWheel. There have been studies for using
MapReduce to parallelize frequent pattern mining algorithms,
including FP-Growth [19], [21], [40] and apriori [6], [24].
In these work, MapReduce achieves fault-tolerance by re-
executing all the tasks of the failed node(s). As far as we are
aware, recovery algorithm has to completely re-execute theFP-
Tree generation from scratch in these implementations, which
severely and negatively impacts the recovery performance.

Scalable Checkpoint/Restart library (SCR) is another way to
support fault tolerant MPI-based applications through a multi-
level checkpointing technique [25]. SCR handles hardware
failures in MPI application by performing less frequent and
inexpensive checkpoints on available compute nodes memory.
Our work has somewhat similar ideas, but further specializes
them by considering algorithm-specific properties.
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VIII. C ONCLUSION

This paper focuses on building a fault tolerance framework
to support FP-Growth algorithm in parallel systems. Three
fault tolerance algorithms have been proposed: Disk-based
Fault Tolerance (DFT), Synchronous Memory-based Fault Tol-
erance (SMFT), Asynchronous Memory-based Fault Tolerance
(AMFT). DFT algorithm represents the brute-force approach
to build a fault tolerance system using periodically checkpoints
on disk. However, the other two algorithms, i.e., SMFT and
AMFT, perform periodically checkpoints on memory instead
of disk to avoid I/O latency.

In SMFT algorithm, we shrink the processed transactions
space and allocate a new space that can remotely be ac-
cessed by other processes to perform FP-Tree and transactions
checkpoint. This algorithm requires synchronization between
processes before any single checkpoint which adds more
overhead to checkpointing operation. However, in AMFT
algorithm, we use the transactions vector itself as checkpoint
space to avoid any communication between processes during
the checkpointing operation.



An extensive evaluation over 256, 512, 1024, and 2048 cores
has been performed on large datasets, i.e., 100 and 200 million
transactions datasets. Our evaluation demonstrates excellent
efficiency for checkpointing and recovery in comparison to
the disk-based algorithm. Our detailed experimental evaluation
also shows low overheads and how we can outperform Spark
by an average of 20x withθ = 0.01 and 8.6x withθ = 0.03.

REFERENCES

[1] S. M. S. A. Abdulah. Addressing Disk Bandwidth Wall and Fault-
Tolerance for Data-intensive Applications. PhD thesis, The Ohio State
University, 2016.

[2] R. Agrawal and R. Srikant. Quest synthetic data generator. ibm almaden
research center, san jose, california, 2009.

[3] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
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