
Parallel Performance-Energy Predictive Modeling of
Browsers: Case Study of Servo

Rohit Zambre?, Lars Bergstrom†, Laleh Aghababaie Beni∗, Aparna Chandramowlishwaran?

?EECS, University of California, Irvine, CA
∗ICS, University of California, Irvine, CA

†Mozilla Research, USA

Abstract—Mozilla Research is developing Servo, a parallel web
browser engine, to exploit the benefits of parallelism and con-
currency in the web rendering pipeline. Parallelization results in
improved performance for pinterest.com but not for google.com.
This is because the workload of a browser is dependent on the
web page it is rendering. In many cases, the overhead of creating,
deleting, and coordinating parallel work outweighs any of its
benefits. In this paper, we model the relationship between web
page primitives and a web browser’s parallel performance using
supervised learning. We discover a feature space that is represen-
tative of the parallelism available in a web page and characterize
it using seven key features. Additionally, we consider energy
usage trade-offs for different levels of performance improvements
using automated labeling algorithms. Such a model allows us to
predict the degree of parallelism available in a web page and
decide whether or not to render a web page in parallel. This
modeling is critical for improving the browser’s performance
and minimizing its energy usage. We evaluate our model by
using Servo’s layout stage as a case study. Experiments on a
quad-core Intel Ivy Bridge (i7-3615QM) laptop show that we
can improve performance and energy usage by up to 94.52%
and 46.32% respectively on the 535 web pages considered in this
study. Looking forward, we identify opportunities to apply this
model to other stages of a browser’s architecture as well as other
performance- and energy-critical devices.

I. INTRODUCTION

For any particular browser, a heavier page takes longer to
load than a lighter one [15]. The workload of a web browser
is dependent on the web page it is rendering. Additionally,
with the meteoric rise of the Web’s popularity since the 1990s,
web pages have become increasingly dynamic and graphically
rich—their computational complexity is increasing. Hence, the
page load times of web browsers have become a growing
concern, especially when the user experience affects sales.
A two-second delay in page load time during a transaction
can result in abandonment rates of up to 87% [7]. Further
challenging matters, an optimization that works well for one
page may not work for another [29].

The concern of slow page load times is even more acute
on mobile devices. Under the same wireless network, mobile
devices load pages 3× slower than desktops, often taking
more than 10 seconds [22]. As a result, mobile developers
deploy their applications using low-level native frameworks
(e.g. Android, iOS, etc. applications) instead of the high-
level browser, which is usually the case for laptop developers.
However, these applications are hard to port to phones, tablets,

and smart TVs, requiring the development and maintenance of
a separate application for each platform. With a faster browser,
the universal Web will become more viable for all platforms.

The web browser was not originally designed to handle the
increased workload in today’s web pages while still delivering
a responsive, flicker-free experience for users. Neither was
its core architecture designed to take advantage of the multi-
core parallelism available in today’s processors. An obvious
way to solve the slow web browser problem is to build a
parallel browser. Mozilla Research’s Servo [14] is a new web
browser engine designed to improve both memory safety,
through its use of the Rust [13] programming language, and
responsiveness, by increasing concurrency, with the goal of
enabling parallelism in all parts of the web rendering pipeline.

Currently, Servo (see Section III) parallelizes its tasks
for all web pages without considering their characteristics.
However, if we naı̈vely attempt to parallelize web rendering
tasks for all content, we will incur overheads from the use of
excessive number of threads per web page. More importantly,
we may also penalize very small workloads by increasing
power usage or by delaying completion of tasks due to the
overhead of coordinating parallel work. Thus, the challenge
is to ensure fast and efficient page load times while prevent-
ing slowdowns caused by parallel overhead. We tackle this
challenge by modeling, using accurate labels and supervised
learning, the relationship between web page characteristics and
the parallel performance of a web rendering engine and its
energy usage within the complete execution of a browser. In
this paper, we work with Servo since it is currently the only
publicly available parallel browser. However, our modeling
approach can easily extend to any parallel browser on any
platform since our feature space is blind to the implementation
of a web rendering engine.

Precisely, we model with seven web page features that rep-
resent the amount of parallelism available in the page. These
features are oblivious to the implementation of a rendering
engine. We correlate these features to the parallel performance
in two stages of a parallel web rendering engine. The first
stage, styling, is the process in which the engine determines
the CSS styles that apply to the various HTML elements in a
page. The second stage analyzed in this work is layout. During
layout, the engine determines the final geometric positions of
all of the HTML elements. We choose these two stages since

ar
X

iv
:2

00
2.

03
85

0v
1 

 [
cs

.D
C

] 
 6

 F
eb

 2
02

0



Fig. 1. Normalized styling times of Servo, Our Model, and Ideal Model.

they consume a significant portion of overall rendering time,
especially for modern dynamic web pages. Internet Explorer
and Safari spend 40-70% of their web page processing time,
on an average, in the visual layout of the page [28].

We evaluate our model for Servo on a quad-core Intel Ivy
Bridge using off-the-shelf supervised learning methods on 535
web pages. Even with a large class-imbalance in our data set,
we demonstrate strong accuracies, approaching 88%. Figure 1
depicts the styling times taken by Servo and our model against
an optimal model (to which times are normalized) for the
top 20 web pages in the Alexa Top 500 [3] list. Ideal Model
represents the best time that is achieved using either 1, 2 or 4
threads (see Section IV for our experiment’s configuration).
Our Model represents the time taken using the number of
threads suggested by our proposed model. Servo represents
the time taken by 4 threads, the default number of threads
that the Servo browser engine, unlike our model, spawns for
the styling and layout stages on a quad-core processor. Our
Model performs as well as the Ideal Model in most cases.

We make three main contributions:

(1) Workload characterization – The workload of a browser
is dependent on the web page. We study and analyze the
Document Object Model (DOM) [5] tree characteristics
of a web page and use them to characterize the parallel
workload of the rendering engine (see Section II).

(2) Performance-energy labeling of web pages – Con-
sidering performance speedups and energy usage
“greenups,” [24] we label web pages into different cat-
egories using three cost models. To do so, we propose
automated labeling algorithms for each cost model (see
Section V).

(3) Performance-energy modeling and prediction – Using
supervised learning, we construct, train, and evaluate our
proposed statistical inference models that capture the
relationship between web page characteristics and the
rendering engine’s performance and energy usage. Given
the features of a web page, we use the model to answer
two fundamental questions: (a) should we parallelize the
styling and layout tasks for this web page? If so, (b) what
is the degree of available parallelism? (see Section VI)

II. WEB PAGE CHARACTERIZATION

A wide variety of web pages exists in today’s World Wide
Web. Either a web page can contain minimal content with
little to no images or text, or it can include a wide variety
of multimedia content including images and videos. The left
column of Figure 2 depicts the web pages of google.com
and ehow.com, two contrasting instances that exemplify the
variety of web pages that one comes across on a daily basis.

(a) google.com

(b) ehow.com

Fig. 2. Contrasting types of web pages (left) and the visualization of their
DOM trees (right).

The right column of Figure 2 portrays a visual repre-
sentation (created using Treeify [16]) of the DOM tree of
the corresponding web pages. The DOM tree is an object
representation of a web page’s HTML markup. Qualitatively,
Figure 2 shows that simple web pages, like google.com,
have relatively small DOM trees, low number of leaves, and
are not as wide or as deep. On the other hand, complex web
pages, such as ehow.com, have relatively big trees, a high
number of leaves, and are much wider and deeper.



(a) airbnb.com (b) samsclub.com (c) westlake.com (d) facebook.com

Fig. 3. Width Vs. Depth graphs of the DOM trees of different web pages (note that the scales of the axes are different).

Browser optimizations are primarily applied to the style
application stage since it is the most CPU-intensive of all
stages [6]. It is during this step that the DOM tree is traversed
extensively to compute the styles for each element on the page.
Naturally, a parallel browser would then optimize this stage
using parallel tree traversals [28]. Hence, we identify DOM
tree features that correlate strongly with the performance of
these parallel tree traversals. Any amount of parallel speedup
or slowdown would depend on the structure of the DOM tree.
We intuitively choose the following set of nine characteristics
to capture the properties of a web page and its DOM tree:

1. Total number of nodes in the DOM tree (DOM-size)
2. Total number of attributes in the HTML tags used to

describe the web page (attribute-count)
3. Size of the web page’s HTML in bytes (web-page-size)
4. Number of levels in the DOM tree (tree-depth)
5. Number of leaves in the tree (number-of-leaves)
6. Average number of nodes at each level of the tree (avg-

tree-width)
7. Maximum number of nodes at a level of the tree (max-

tree-width)
8. Ratio of max-tree-width to average-tree-width (max-avg-

width-ratio)
9. Average number of nodes per level of the tree (avg-work-

per-level)
Our intuition is that large* and wide trees observe higher

speedups than small and narrow trees in parallel tree traversals
(captured by DOM-size and avg-tree-width). In consecutive
top-down and bottom-up parallel traversals (see Section III),
trees with a large number of leaves observe faster total
traversal completion time (captured by number-of-leaves).
Even amongst wide trees, those that don’t have abrupt changes
in tree-width, or are less deep, observe faster parallel traversals
(captured by tree-depth, max-avg-width-ratio). DOM-size
captures the total amount of work while avg-work-per-level
(= DOM-size/tree-depth) captures the average parallel work
on the web page. attribute-count, and web-page-size capture
the general HTML information about a web page. Although
we initially identify nine features, we only choose seven for

*The values of the features lie on a continuous spectrum and so, we cannot
assign discrete definition to descriptors such as “big,” “large,” “small,” “wide,”
“narrow,” etc.

modeling based on the results of the statistical correlation
of these characteristics to Servo’s parallel performance (see
Section VI).

To quantitatively analyze DOM trees, we plot the width of
the trees at each of their depth levels. In Figure 3, we do so
for airbnb.com, samsclub.com, westlake.com, and
facebook.com. Using these figures, we relate our intuition
to observed data. airbnb.com and samsclub.com are
examples of DOM tree structures that represent “good” levels
of available parallelism. The DOM-size of samsclub.com
is 2833 and hence, sufficient work is available. The DOM-size
of airbnb.com is 1247 which is much smaller than that of
samsclub.com. However, the DOM tree of airbnb.com
has a high avg-tree-width of 62.3, a characteristic that
favors parallelism. Our performance experiments show that
samsclub.com achieves 1.48× speedup with 2 threads
and 2.12× speedup with 4 threads. airbnb.com achieves
speedups of 1.2× and 1.43× with 2 and 4 threads respectively,
which, although significant, are not as high as those of
samsclub.com due to the lesser amount of available work.
The DOM trees of westlake.com and facebook.com
exemplify tree structures that represent “bad” candidates
for parallelism. These trees have large widths only for a
small number of depth levels. Hence, the avg-tree-widths
of these trees are low: 30.6 and 24.6 for westlake.com
and facebook.com respectively. These trees don’t have
enough amount of work to keep multiple threads occupied.
westlake.com shows slowdowns of 0.94× and 0.74×
with 2 and 4 threads respectively. Similarly, facebook.com
demonstrates slowdowns of 0.86×and 0.81× with 2 and 4
threads respectively.

III. SERVO OVERVIEW

Servo [14] is a web browser engine that is being designed
and developed by Mozilla Research. The goal of the Servo
project is to create a browser architecture that employs inter-
and intra-task parallelism while eliminating common sources
of bugs and security vulnerabilities associated with incorrect
memory management and data races. C++ is poorly suited to
prevent these problems.

Servo is written in Rust [13], a new language designed
by Mozilla Research specifically with Servo’s requirements
in mind. Rust provides a task-parallel infrastructure and a



Fig. 4. Processing stages and intermediate representations in a browser engine.
The circles represent data structures while the squares represent tasks.

strong type system that enforces memory safety and data-race
freedom. The Servo project is creating both a full web browser,
through the use of the purely HTML-based user interface
BrowserHtml [4], and a solid embeddable web rendering
engine. Although Servo was originally a research project, it
was implemented with the goal of production-quality code and
is in the process of shipping several of its components to the
Firefox browser.

The processing steps used by all browsers are very similar,
as many parts of the interpretation of web content are defined
by the standards from the World Wide Web Consortium (W3C)
and the Web Hypertext Application Technology Working
Group (WHATWG). As such, the steps Servo uses in Figure 4
should be unsurprising to those familiar with the implementa-
tion of other modern browsers [6]. Due to space constraints,
we describe only the phases relevant to this paper in detail. A
more detailed description of these stages is available in [20],
which, orthogonal to this work, outlines the language features
of Rust in the context of Servo.

The first step in loading a site is retrieving and parsing
the HTML and CSS files. The HTML translates into a DOM
tree and the CSS loads into style structures. Each node of
the tree corresponds to an HTML element in the markup.
The CSS style structures are used in styling. JavaScript may
execute twice, during parsing and after page-load during user-
interactivity when it can modify the DOM tree.

A. Styling

After constructing the DOM tree, Servo attaches styling
information in the style structures to this tree. In this process,
it builds another tree called the flow tree which describes
the layout of the DOM elements on the page in the correct
order. However, the flow tree and the DOM tree don’t hold a
one-to-one relation unlike that of the HTML markup and the
DOM tree. For example, when a list item is styled to have
an associated bullet, the bullet itself will be represented by a
separate node in the flow tree even though it is not part of the
DOM tree.

This stage contains the first step that is the subject of
analysis in this paper. Servo executes styling using parallel
tree traversals, an approach similar to the one employed by
Meyerovich et al. [28]. Conceptually, the first half of this
step is a trivially parallel process—each DOM tree node’s
style can be determined at the same time as any other node’s.
However, to prevent massive memory growth, Servo shares
the concrete style structures that are associated with multiple

Fig. 5. Parallel layout on reddit.com. Different colors indicate that layout
was performed by a different thread.

nodes, requiring communication between parallel threads. The
second half of this step is the construction of the flow tree.

B. Layout

The flow tree is then processed to determine the final
geometric positions of all the elements first and then to
produce a set of display list items.

Determining these positions is the second step that is
analyzed in this paper. In cases where no HTML elements
prevent simultaneous evaluation (e.g. floated elements and
mixed-direction writing modes), Servo performs consecutive
top-down and bottom-up parallel tree traversals to determine
the final positions of elements; the height of a parent node is
dependent on the cumulative height of its children, and the
widths of the children are reliant on the width of the parent.
These traversals execute incrementally and hence multiple
individual passes occur before the end of a page-load. Fig-
ure 5 shows one parallel execution with four cores rendering
reddit.com.

After final positions of the elements are computed, the
engine constructs display list items. These list items are the
actual graphical elements, text runs, etc. in their final on-screen
positions. The order in which to display these items is well-
defined by the CSS standard [17].

Finally, the to-be-displayed elements are painted into mem-
ory buffers or directly onto graphic-surfaces (compositing).
Servo may paint each of these buffers in parallel.

In the rest of the paper, we will use the term Overall
Layout to refer to the Styling and Layout stages together and
Primary Layout to refer to the Layout stage alone. Also,
unless specified otherwise, we refer to total times of all the
incremental passes performed for each stage. The sequential
baseline performance of Servo’s Overall Layout is nearly
2× faster than Firefox’s (Table 1 of [20]). This speedup
stems from the use of Rust instead of C++ as more opti-
mization opportunities exist in Rust. Additionally, the parallel
implementation of Overall Layout has been optimized i.e. we
observe high speedups on some websites: 3.2× and 2.5× with
4 threads on humana.com and kohls.com respectively.
In some cases, 2 threads perform better than 4 threads:
walgreens.com achieves 1.43× speedup with 2 threads



and 1.16× with 4 threads. We attribute such slowdowns to the
parallel overhead of synchronization, which we aim to mitigate
with our modeling. Currently, Servo uses a work-stealing
scheduler to schedule the threads that are spawned (once) to
perform the parallel tree traversals in Overall Layout.

IV. EXPERIMENTAL SETUP

The Web is extremely flexible and dynamic. Constantly
changing network conditions can add a significant amount of
variability in any testing that involves acquiring data directly
from the Internet. Further, due to advertising networks, A/B
testing, and rapidly changing site content, even consecutive
requests can have significantly different workloads.

Hence, to achieve repeatable and reliable performance re-
sults with Servo, we use Google’s Web Page Replay [18]
(WPR) to record and replay the HTTP content required for
our tests. At a high level, WPR establishes local DNS and
HTTP servers; the DNS server points to the local HTTP server.
During record, the HTTP server acquires the requested content
from the Internet and saves it to a local archive while serving
the requesting client. During replay, the HTTP server serves
all requests from the recorded archive. A 404 is served for any
content that is not within the archive. We used WPR to record
the web pages in our sample set first and then replay them
during the experiments. The replay mode guarantees that Servo
receives the same content every time it requests a particular
web page. For our testing platform, we use a quad-core Intel
i7-3615QM running OS X 10.9 with 8GB of RAM.

We collect our sample dataset from two sources: (1) Alexa
Top 500 [3] web pages in the United States during January
2016, and (2) 2012 Fortune 1000 [1]. We initially started with
1000 web pages but these contained domain names that were
either outdated or corresponded to server names and not actual
web pages (e.g. blogspot.com, t.co). Also, some web
pages caused runtime errors when Servo tried to load them
since it is a work in progress. After filtering out all such web
pages, we have a working set of 535 web pages.

For our performance testing, we use Servo’s internal pro-
filing tool that spits out a CSV file containing user times of
the Styling and Primary Layout stages. For our energy testing,
we use Apple’s powermetrics [12] to capture processor power
usage. In both the energy and timing experiments, we call
Servo to open a web page and terminate it as soon as the
page load is complete. Across all browsers, page load entails
fully loading and parsing all resources, reflecting any changes
through re-styling and layout. Servo goes a bit further in the
automation harness and will also wait until any changes to the
display list have been rendered into graphics buffers and until
the in-view graphics buffers composite to the final surface.
In the energy experiments, we allowed a sleep time of 10
seconds before each run of Servo to prevent incorrect power
measurements due to continuous processor usage.

Servo makes it possible to specify the number of threads
to spawn in the Overall Layout stage. Given that our platform
is a quad-core, we used 1, 2, and 4 as the number of threads
for each web page. Since Servo is still under development, we

observe non-repeatable behavior. To account for repeatability,
we run 5 trials with each thread number for each web page for
both the performance and energy experiments. With 5 trials,
the medians of the median absolute deviations (MAD) of all
1-, 2- and 4-thread executions are low: 6.76, 7.46, and 7.49
respectively. MAD is a robust measure of the variability of a
data sample [26].

V. PERFORMANCE AND ENERGY AUTOMATED LABELING

In this section, we propose tunable, automated labeling
algorithms that can be used with any web browser on any
testing platform to classify web pages into different categories.
Automated labeling eliminates the need for a domain expert
to manually and accurately label data. Given the labels, a
predictive model can be trained using supervised learning
methods. For labeling, we consider three cost models:
1. Performance – Labels depend only on performance im-

provements from parallelization.
2. Energy – Labels depend only on energy usage increases

from parallelization.
3. Performance and Energy – Labels depend on both per-

formance improvements and energy usage increases from
parallelization.

Although we collected user times for both the Styling and
Primary Layout stages on Servo, we focus our comparisons
on the former for the following reasons – (1) The Styling stage
works on the DOM tree while the Primary Layout stage works
on the flow tree. Since we characterize web pages using the
DOM tree, we expect Styling performance to correlate strongly
to the tree characteristics. (2) The medians of total Styling time
and total Primary Layout time as percentages of the Overall
Layout time (single-thread execution) are 67.19% and 7.83%.
Clearly, Styling time primarily defines Overall Layout time.
Figure 6 shows these percentages for a sample of 40 randomly
selected web pages.

Another interesting observation is that an individual serial
pass of Primary Layout ranges between 1 and 55 ms. This
range is much smaller than the 1 to 320 ms range of an indi-
vidual serial Styling pass. Hence, parallelizing tree traversals
for the Primary Layout stage will most likely result in poorer
performance due to thread communication and scheduling
overheads. Our results validate this analysis. On average, the
time taken by an individual parallel pass for Primary Layout
is 3.92 ms, 7.01 ms, and 9.82 ms with 1, 2, and 4 threads
respectively. We also observe an increase in the average total
times for Primary Layout with parallelization: 221.39 ms,
242.56 ms, 263.73 ms with 1, 2 and 4 threads respectively.

We compare the energy usage values of Servo in Overall
Layout using 1, 2, and 4 threads. Although the data corre-
sponds to the processor energy usage between the beginning
and termination of Servo, these values are mainly affected by
parallelization of Overall Layout because this stage constitutes
the majority of the browser’s execution time. We cannot obtain
energy measurements at the granularity of function calls using
Powermetrics [12], or any external energy profiling tool.



Fig. 6. Styling and Primary Layout time division in Overall Layout for a random sample of 40 web pages

A. Performance Cost Model

In the Performance Cost Model, we consider only parallel
runtimes to label the web pages appropriately. Consider an
arbitrary number of thread configurations where each config-
uration uses t threads. The values of t are distinct. We first
define the following terms.
• xt – time taken by t threads
• tserial = 1 (serial execution)
• pt = xtserial/xt (speedup)
• pmax

t – maximum value of pt
• pmin – minimum threshold that demarcates a significant

speedup (to disregard measurement-noise)
The following steps describe the labeling process for a

single web page:
1. For each thread configuration, we compute its speedup with

respect to serial execution.
2. We calculate pmax

t for a web page using a maximum
operation on the set of all its pt values.

3. If pmax
t > pmin, we assign a label t where t corresponds

to that of pmax
t . Otherwise, we label the web page as tserial

since all other pt values would be smaller than pmin.

Algorithm 1 Performance labeling of a web page
1: Input:
2: T : { t | t is number of threads in a configuration }
3: P : { pt | pt is speedup using t threads, ∀ t ∈ T }
4: pmin: minimum threshold for significant speedup
5: procedure PERFORMANCE-LABELING
6: pmax

t ← max(P )
7: if pmax

t > pmin then
8: label← t
9: else

10: label← tserial

11: return label

Hence, if there are n thread-configurations, we have n possi-
ble labels. If the label of a web page is t, it means that using
t threads achieves the best performance for that web page.
Note that these labels are nominal values. They only identify
the category and don’t represent the total number of thread-
configuration or their order. Algorithm 1 formally describes

the classification of web pages using the Performance Cost
Model.

For our experimental testbed with 4 cores, we had three
thread-configurations: 1 thread (t = 1), 2 threads (t = 2), and
4 threads (t = 4). For a browser, where the running times
are in the order of milliseconds, even a small performance
improvement is significant. However, to account for noise
in our measurements, we consider a 10% speedup to be
significant. We attribute speedups less than 10% to noise.
Hence, we set the threshold value of pmin = 1.1. Using
Algorithm 1, the total number of web pages categorized into
labels 1, 2, and 4 are 299 (55.88%), 49 (9.15%), and 187
(34.95%) respectively.

B. Energy Cost Model

In the Energy Cost Model, we consider only the energy
usage values to label the web pages. The algorithm for labeling
is the same as Algorithm 1. Instead of using speedup values,
we consider greenup [24] (energy usage improvement) values.
Let yt represent the energy consumed by t threads. For each
thread configuration, we compute its greenup, et with respect
to serial execution (et = ytserial/yt). emin is the minimum
threshold that demarcates a significant greenup.

Since our experimental platform is a laptop, we did not use
the Energy Cost Model to classify our web pages. We will
consider this model in the future for energy-critical mobile
devices.

C. Performance and Energy Cost Model

In the Performance and Energy Cost Model, we consider
both timing and energy usage values to label the web pages.
In cases where we can guarantee significant performance im-
provements through parallelization, we also need to consider
increases in energy usage. Spawning more threads could result
in higher energy usage especially if the parallel work scheduler
is a power-hungry one such as a work-stealing scheduler (as is
the case currently in Servo). Hence, we consider performance
improvements through parallelization to be useful only if the
corresponding energy usage is lesser than an assigned upper
limit. We label web pages using this cost model with a
bucketing strategy as described below.



Similar to the classification in the previous two cost models,
we consider an arbitrary number of thread configurations
where each configuration uses t threads. Each thread config-
uration has a corresponding speedup, pt and a greenup, et.
In addition to the terminology defined in the previous two
subsections, we define the following terms.
• PETt – performance-energy tuple (PET), { pt, et }

which represents the speedup and greenup achieved using
t threads.
• PjPj+1 – PET bucket to which a certain number of PETs

belong. Pj and Pj+1 represent speedup values where j ∈
N. A PET, PETt ∈ PjPj+1 if Pj < pt < Pj+1. One can
define an arbitrary number of such buckets to categorize
the tuples. Note that the value of P1 (lower limit of the
first bucket) is always pmin.

• Ej – energy usage increase limit (defined in terms of
greenup) for a performance bucket PjPj+1 where j ∈ N.
Ej demarcates the tolerance of energy usage increase for
all PETt ∈ PjPj+1.

In this labeling, we perform the following steps for each
web page:
1. We ignore all the values of pt that are lower than pmin and

we define PET buckets based on design considerations.
2. If the filtering results in an empty set, we label the web page

as tserial. Otherwise, we organize the remaining speedups
and greenups into PETs and assign them to the right PET
buckets.

3. Starting from the last bucket (one with highest speedups),
a) We sort the PETs in the descending order w.r.t. pt

values.
b) We look at the PET with the highest speedup, pt within

this bucket and check to see if the corresponding energy
usage, et is less than the bucket’s energy usage limit, Ej .
If the check is not satisfied, we look at the next largest
speedup in this bucket and repeat this step.

c) When all PETs in a bucket don’t satisfy the condition,
we look at a lower bucket (one with the next highest
speedups) and repeat the process. We do so until a PET
satisfies the check against the energy usage limit.

4. If none of the PETs satisfy the condition, we label the web
page as tserial. Otherwise, we label the web page as the
value of t corresponding to the first PET that satisfies the
condition.

Algorithm 2 formally describes the classification of the web
pages using the Performance and Energy Cost Model and
Figure 8 portrays a visual representation of the same.

For our case study with Servo, we had three thread config-
urations: 1 thread (t = 1), 2 threads (t = 2), and 4 threads
(t = 4). We set the value of pmin = 1.1 (from Section V-A).
Figure 7 depicts the histogram of Servo’s p2 and p4 values.
The histogram shows that, out of the significant speedups
(~40%), the half point lies roughly at 1.3. Thus, we used
two performance buckets: P1P2 and P2P3 where P1 = pmin,
P2 = 1.3, and P3 = 12.87 (the largest observed speedup). For
the first bucket, we set the energy usage increase tolerance,

Fig. 7. Histogram of speedup values. The bin labels are upper limits.

E1 = 0.9† since a 10% energy usage increase can make a
noticeable difference in overall battery life of a laptop. For
the second bucket, we chose a tolerance, E2 = 0.85 since
an energy usage increase beyond 15% is not acceptable for
any performance improvement. Using Algorithm 2, the total
number of web pages categorized into labels 1, 2, and 4 are
317 (59.25%), 50 (9.34%), and 168 (31.40%) respectively.

Algorithm 2 Performance-Energy labeling of a web page
1: Input:
2: T : { t | t is number of threads in a configuration }
3: PET : {PETt | PETt = { pt, et }, where

pt is speedup using t threads,
et is greenup using t threads, ∀ t ∈ T }

4: P : {PjPj+1 | PjPj+1 is a bucket of PETs whose
Pj < pt < Pj+1 }

5: E: {Ej | Ej is energy usage increase limit for PjPj+1,
∀PjPj+1 ∈ P }

6: pmin: minimum threshold for significant speedup
7: procedure PERFORMANCE-ENERGY-LABELING
8: label← tserial
9: for PjPj+1 ∈ P do // highest j to lowest j

10: PET
′ ← all PETt ∈ PjPj+1

11: PET
′′ ← sortDescending(PET

′
w.r.t pt)

12: for each PETt ∈ PET
′′

do
13: if et > Ej then
14: label← t
15: break
16: return label

VI. PERFORMANCE MODELING AND PREDICTION

Our aim is to model the relationship between a web page’s
characteristics and the parallel performance of the web render-
ing engine to perform styling and layout on that page. With
such a model, given a new web page, a browser will be able
to predict the parallel performance improvement. The browser
can then decide the number of threads to spawn during Overall
Layout for a given web page using a statistically constructed
model. When parallelization is beneficial, the browser should
also consider energy usage values and check for tolerable

†These values can be tweaked based on design and device considerations.
We choose these values for Servo on a quad-core Intel Ivy Bridge.



Fig. 8. A visual representation of the Performance and Energy Cost Model’s labeling algorithm for a given web page. (a) N PETs and M PET buckets. (b)
Based on Pj and Pj+1 values, the PETs are assigned to the right buckets. (c) Algorithm-flow to choose the correct label for a web page.

Fig. 9. Statistical correlation strengths: R-values.

amounts. Hence, our goal is to build a predictive model that
allows a browser to decide the number of threads to spawn
for its Overall Layout stage for any given web page by only
looking at the web page’s essential characteristics.

In this section, we construct and describe predictive models
for Servo using off-the-shelf supervised learning methods on
the Performance and Energy Cost Model (see Section V-C).
For each of the models, our predictive features are the char-
acteristics of a web page that we describe in Section II. Since
the features lie on different scales‡, we use Normal Standard-
ization§ (using MATLAB’s zscore [11]) on the features to
prevent one feature to dominate the other during learning.
Figure 9 shows the correlation coefficient, R-values between
the nine features and the speedups and greenups observed
with 2 (p2, e2 values) and 4 (p4, e4 values) threads. We see
that a positive linear¶ relation exists between parallel benefits
and the web page features. However, the exact relationship
between the predictors and results is unlikely to be strictly
linear, as is evident from our modeling results. Also, we see
that tree-depth and max-avg-width-ratio, by themselves, do

‡e.g. DOM-size’s statistical range is 8307 while avg-tree-width’s is 436.
§The values of a feature are distributed according to its Normal distribution

such that the mean of the feature is 0 and its standard deviation is 1.
¶Statistical correlation measures the strength of only linear relationships

between two variables.

not correlate strongly (< 0.1) with the speedups and greenups
observed in our dataset. However, when used in combination
with other features, as in avg-work-per-level, we note a
stronger relationship. For our modeling, we choose the seven
predictor features that have R-values greater than 0.1. The
output for each of the models is one of the three labels: 1, 2, or
4 representing 1 thread, 2 threads, and 4 threads respectively.
These response labels are nominal values.

Our dataset has a large class imbalance i.e. one label has
many more observations than the other. For the Performance
and Energy Cost Model, only 49 instances are labeled 2
while 299 and 187 are labeled 1 and 4 respectively. Also, the
predictor to observation ratio for our data set is quite small.
Hence, we don’t face the issue of over-fitting.

To validate and test our models, we use cross-validation
using a 90-10% training-testing ratio i.e. we divide our dataset
into 10 subsets. Using each of these 10 subsets as the testing
set (55 samples) and the remaining data as the training set
(480 samples), we train 10 models. For each of the models, we
predict labels for their corresponding testing sets, which results
in 10 model prediction accuracies. We consider the mean and
maximum of these 10 accuracies. When we are not able to use
cross-validation, we use the holdout-set technique (again using
a 90-10% training-testing ratio) wherein the data is divided
into two sets: training and testing. We choose to use the
cross-validation or holdout-set techniques because they result
in true prediction error values and not “model errors” [2].
Additionally, they don’t rely on any parametric or theoretic
assumptions about the data.

We experimented with the following supervised learning
algorithms: Multinomial Logistic Regression (MNR), Ensem-
ble Learning, and Neural Networks. We choose these three
methods to capture non-linear relationships between web page
characteristics and a rendering engine’s parallel performance.

MNR: In this multinomial logit model, the probability of
each label for a web page is expressed as a non-linear function,
using logit link functions of the predictor tree characteristics.
We trained our model using MATLAB’s mnrfit [9] function.
With a 90-10% training-test divide for cross-validation, we
observe a mean and maximum accuracy of 72.22% and



87.27% respectively.
Ensemble Learning: For Ensemble Learning framework,

the results of many models are combined to generate the final
prediction. For our data, we used the AdaBoostM2 (a variant
of Adaptive Boosting for multi-class data) learning method on
100 simple Decision Tree learners and also on 100 Decision
Trees with surrogate splits. We did so using MATLAB’s
fitensemble [8] function. Using regular trees, with a 90-
10% divide, we observe a mean accuracy of 71.12% and a
maximum of 83.63%. Using trees with surrogate splits, we
see a mean accuracy of 69.44% and a maximum of 85.45%.

Neural Networks. Artificial Neural Networks consist of
simple, connected elements. By training the weights of the
connections between different elements, a large neural net-
work can capture complex relationships between variables.
For our data, we use a small neural network with 1 hidden
layer containing 10 neurons. We do so using MATLAB’s
nprtool [10]. Since MATLAB currently does not support
cross-validation for its classifying neural network models, we
use the holdout-set method to measure the accuracy of this
model. We use 80% of the data for training, 10% for validation
(which is essentially a part of training), and 10% for testing.
The accuracy of this model on the testing set is 77.8%; the
accuracy on all of the data is 71.61%. We attribute these lower
(than those of MNR and Ensemble Learning) accuracies to the
simplicity of the model and the lack of cross-validation.

The high accuracies of these off-the-shelf learning meth-
ods emphasize the effectiveness of our automated labeling
algorithms. Instead of concentrating our efforts on tweaking
the parameters of machine learning techniques to extract
higher accuracies on our limited dataset, we demonstrate high
accuracies by using accurate labeling algorithms that can be
used on any dataset.

Limitations. These accuracies, however, are not greater
than 90%. Machine learning models have the potential to be
highly accurate but are heavily dependent on a large amount of
accurate training data. They behave as “black boxes” with the
actual underlying relationships between variables remaining
undiscovered to the user [19], [32], [33]. Our data for this case
study is relatively small and is from a prototype; Servo is a
project under development and is undergoing constant change.
Many components of Servo haven’t been optimized for per-
formance yet. Also, with multiple threads being spawned to
exploit and explore concurrency in browser tasks, repeatability
of executions is hard to acquire. Consequently, our data has a
fair share of outliers—35% of the working set of web pages
observes a MAD greater than 25. The class imbalance in
our dataset is also an important factor that influences model
accuracies since we don’t have an equal share of training data
for each class.

Despite our limitations, we observe confident accuracies on
each of these models. This exactitude fosters our intuition that
the web page characteristics are indeed related to the parallel
performance and energy usage of a browser and that the
practical parallelism benefits are predictable by these features.
The best performing model, MNR, compared to the current

implementation of Servo, achieves a maximum of 94.52%
performance savings (2.48 ms with 1 thread vs. 45.41 ms
with 4 threads on indeed.com) and a maximum of 46.32%
energy savings (84.88 J with 1 thread vs. 158.14 J with 4
threads on starbucks.com). By performance savings of
x%, we mean our model shaves off x% of the program’s
execution time. Similarly, by energy savings of y%, we mean
our model shaves off y% of the program’s energy usage.

VII. RELATED WORK

Research on parallel browser architectures and browser
tasks began only recently, starting, to the best of our knowl-
edge, in 2009. Although multi-core processors are ubiquitous
today on both laptops and mobile devices, the browsers are
yet to utilize their benefits. The growing concern of slow page
load times, especially on mobile devices, and the unexploited
parallelism benefits in commodity browsers are the primary
motivations for this ongoing research. Below we outline ex-
isting research on parallelizing and analyzing browser-tasks.

Browser Workload Characterization. Gutierrez et al. [25]
present characterization of an Android browser at the micro-
architecture level using 11 web pages. Our approach, on the
other hand, is agnostic to the platform on which a browser
runs. Zhu et al. [35] correlate the web page variances to
the difference in page load times and energy usage of the
serial Firefox browser by characterizing the HTML and CSS
elements of a web page. Our approach is similar in spirit: we
consider only web page features to be predictive of a browser’s
performance. However, we find additional DOM tree features
that are representative of the degree of the parallel workload
in a page.

Browser Performance-Energy Analyses. Thiagarajan et
al. [30] present a breakdown of energy usage by the different
elements, such as CSS and Javascript, of a serial browser.
Additionally, they propose a few optimizations to improve the
power consumption of web browsers, such as re-organizing
Javascript files or removing unnecessary CSS rules. Zhu et al.
also focus on scheduling methods of heterogeneous systems
to improve the energy efficiency of mobile processors. They
evaluate benefits of a big.LITTLE heterogeneous system for
a trade-off between performance and energy. However, both
these projects assess on serial browsers. Our work, on the
other hand, analyzes performance and energy trade-offs for
a parallel browser while remaining agnostic to the browser
implementation and execution platform. To the best of our
knowledge, this work is the first of its kind.

Parallel Browsers. In general, browsers use processes to
isolate tabs and windows to enhance security. Gazelle [31]
uses two processes per page while Chrome uses a process-per-
page approach. This method doesn’t exploit parallelism within
the tasks. ZOOMM [23] explores the challenges in managing
concurrency in multi-core mobile-device browsers. This work
exploits parallelism within the styling, image decoding, and
JavaScript tasks leaving layout as future work. Mai et al. [27]
propose that browser developers should focus on parallelizing
web pages rather than browser-tasks. They build Adrenaline,



a server-client browser. On the other hand, Mozilla Research’s
Servo exploits both safety, particularly through its use of Rust,
and parallelism between browser tasks and also within the
tasks themselves. So far, Servo has exploited parallelism in
its styling, layout and painting tasks, and is continuing to
explore parallelism in other computational bottlenecks such as
parsing. Servo is being developed for Android as well. More
importantly, our work is not on parallelizing layout but is in
predicting the degree of parallelism inherent in rendering a
web page by considering the parallel performance and energy
usage of a browser.

Parallelizing Browser Tasks. Several research projects
on parallelizing browser-tasks such as styling [21], [28] and
parsing [34] exist. Meyerovich et al. [28] introduce fast and
parallel algorithms for CSS selector matching, layout solv-
ing and font rendering, and demonstrate speedups as high
as 80× using 16 threads for six websites. However, they
implement only a subset of CSS (without cascading) and
evaluate their algorithm in isolation (not within a browser)
without considering effects on energy usage. Servo adheres
to the complete CSS specification, and our work is modeled
within the complete execution of a browser while considering
energy usage constraints.

VIII. CONCLUSION

The workload of a web rendering engine is dependent
on the web page it is rendering; we model the relationship
between key web page features and the parallel performance
of the rendering engine using supervised learning methods.
Specifically, we characterize web pages using DOM tree and
HTML characteristics that correlate to the Overall Layout
task but are blind to the rendering engine’s implementation.
We propose accurate and tunable, automated labeling algo-
rithms that categorize web pages into a user-defined num-
ber of classes. Moreover, our algorithm accounts for trade-
offs between performance improvements and energy usage
increases for multi-core processors. Using multinomial logit
classification, ensemble learning, and simple neural networks,
we demonstrate robust predictive model accuracies, achieving
87.27% with 535 web pages within the complete execution of
a browser. On a laptop platform, our best performing model
delivers performance and energy savings up to 94.52% and
46.32% respectively.

ACKNOWLEDGMENTS

We would like to thank Sean McArthur from Mozilla,
Subramanian Meenakshi Sundaram and Forough Arabshahi
from the University of California, Irvine and others from
Mozilla Research for helping us in conducting and analyzing
our experiments.

REFERENCES

[1] 2012 Fortune 1000. http://booleanstrings.com/wp-content/uploads/2014/
01/fortune1000-2012.xls.

[2] Accurately Measuring Model Prediction Error. http://scott.fortmann-roe.
com/docs/MeasuringError.html.

[3] Alexa top 500. http://www.alexa.com/topsites/countries/US.
[4] BrowserHTML. https://github.com/browserhtml/browserhtml.

[5] DOM definition. http://www.w3.org/DOM/#what.
[6] How browsers work. http://www.html5rocks.com/en/tutorials/internals/

howbrowserswork/.
[7] How Fast Should A Website Load? http://www.hobo-web.co.uk/

your-website-design-should-load-in-4-seconds/.
[8] MATLAB fitensemble. http://www.mathworks.com/help/stats/

fitensemble.html.
[9] MATLAB mnrfit. http://www.mathworks.com/help/stats/mnrfit.html.

[10] MATLAB nprtool. http://www.mathworks.com/help/nnet/ref/nprtool.
html.

[11] MATLAB zscore. http://www.mathworks.com/help/stats/zscore.html.
[12] Powermetrics. https://developer.apple.com/library/mac/documentation/

Darwin/Reference/ManPages/man1/powermetrics.1.html.
[13] The Rust language. http://www.rust-lang.org/.
[14] The Servo web browser engine. https://github.com/servo/servo.
[15] Study: Load Times For 69% Of Responsive Design Mobile

Sites Deemed Unacceptable. http://marketingland.com/
study-load-time-69-mobile-sites-deemed-unacceptable-81126.

[16] Treeify. http://treeify.herokuapp.com/.
[17] W3 painting order. http://www.w3.org/TR/CSS21/zindex.html#

painting-order.
[18] Web Page Replay. https://github.com/chromium/web-page-replay.
[19] E. Alpaydin. Introduction to machine learning. MIT press, 2010.
[20] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,

J. Moffitt, and S. Sapin. Engineering the Servo Web Browser Engine
using Rust. In Proceedings of the International Conference on Software
Engineering 2016, ICSE ’16, New York, NY, USA, 2016. ACM.

[21] C. Badea, M. R. Haghighat, A. Nicolau, and A. V. Veidenbaum. Towards
Parallelizing the Layout Engine of Firefox. In Proc. of the 2nd USENIX
Conf. on Hot topics in parallelism, pages 1–1. USENIX Assoc., 2010.

[22] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar.
Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 439–453, 2015.

[23] C. Cascaval, S. Fowler, P. Montesinos-Ortego, W. Piekarski, M. Reshadi,
B. Robatmili, M. Weber, and V. Bhavsar. ZOOMM: A Parallel Web
Browser Engine for Multicore Mobile Devices. In Proc. of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Prog.,
PPoPP ’13, pages 271–280, New York, NY, USA, 2013. ACM.

[24] J. Choi, D. Bedard, R. Fowler, and R. Vuduc. A roofline model of
energy. In Parallel and Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, pages 661–672. IEEE, 2013.

[25] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver. Full-System Analysis and Characterization
of Interactive Smartphone Applications. In Workload Characterization
(IISWC), 2011 IEEE Intl. Symposium on, pages 81–90. IEEE, 2011.

[26] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. Detecting outliers:
Do not use standard deviation around the mean, use absolute deviation
around the median. Jrnl. of Exp. Social Psyc., 49(4):764–766, 2013.

[27] H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Montesinos. A Case
for Parallelizing Web Pages. In Presented as part of the 4th USENIX
Workshop on Hot Topics in Parallelism, 2012.

[28] L. A. Meyerovich and R. Bodik. Fast and Parallel Webpage Layout. In
Proc. of the 19th Intl. Conf. on WWW, pages 711–720. ACM, 2010.

[29] J. Nejati and A. Balasubramanian. An In-depth study of Mobile Browser
Performance. In Proc. of the 25th Intl. Conf. on WWW, pages 1305–
1315. Intl. WWW Conf. Steering Committee, 2016.

[30] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh.
Who Killed My Battery?: Analyzing Mobile Browser Energy Consump-
tion. In Proc. of the 21st Intl. Conf. on WWW, pages 41–50. ACM, 2012.

[31] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter. The Multi-Principal OS Construction of the Gazelle Web
Browser. In USENIX security symposium, volume 28, 2009.

[32] K. Warwick. March of the machines: the breakthrough in artificial
intelligence. University of Illinois Press, 2004.

[33] K. Warwick. Artificial intelligence: the basics. Routledge, 2012.
[34] Z. Zhao, M. Bebenita, D. Herman, J. Sun, and X. Shen. HPar: A practical

parallel parser for HTML–taming HTML complexities for parallel
parsing. ACM Transactions on Architecture and Code Optimization
(TACO), 10(4):44, 2013.

[35] Y. Zhu and V. J. Reddi. High-Performance and Energy-Efficient Mobile
Web Browsing on Big/Little Systems. In High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium on,
pages 13–24. IEEE, 2013.

http://booleanstrings.com/wp-content/uploads/2014/01/fortune1000-2012.xls
http://booleanstrings.com/wp-content/uploads/2014/01/fortune1000-2012.xls
http://scott.fortmann-roe.com/docs/MeasuringError.html
http://scott.fortmann-roe.com/docs/MeasuringError.html
http://www.alexa.com/topsites/countries/US
https://github.com/browserhtml/browserhtml
http://www.w3.org/DOM/#what
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
http://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/
http://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/
http://www.mathworks.com/help/stats/fitensemble.html
http://www.mathworks.com/help/stats/fitensemble.html
http://www.mathworks.com/help/stats/mnrfit.html
http://www.mathworks.com/help/nnet/ref/nprtool.html
http://www.mathworks.com/help/nnet/ref/nprtool.html
http://www.mathworks.com/help/stats/zscore.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/powermetrics.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/powermetrics.1.html
http://www.rust-lang.org/
https://github.com/servo/servo
http://marketingland.com/study-load-time-69-mobile-sites-deemed-unacceptable-81126
http://marketingland.com/study-load-time-69-mobile-sites-deemed-unacceptable-81126
http://treeify.herokuapp.com/
http://www.w3.org/TR/CSS21/zindex.html#painting-order
http://www.w3.org/TR/CSS21/zindex.html#painting-order
https://github.com/chromium/web-page-replay

	I Introduction
	II Web Page Characterization
	III Servo Overview
	III-A Styling
	III-B Layout

	IV Experimental Setup
	V Performance and Energy Automated Labeling
	V-A Performance Cost Model
	V-B Energy Cost Model
	V-C Performance and Energy Cost Model

	VI Performance Modeling and Prediction
	VII Related Work
	VIII Conclusion
	References

