
PRESAGE: Protecting Structured Address
Generation against Soft Errors

Vishal Chandra Sharma, Ganesh Gopalakrishnan
School of Computing, University of Utah
Email: {vcsharma,ganesh}@cs.utah.edu

Sriram Krishnamoorthy
Pacific Northwest National Laboratory

Email: sriram@pnnl.gov

Abstract—Modern computer scaling trends in pursuit of larger
component counts and power efficiency have, unfortunately, lead
to less reliable hardware and consequently soft errors escaping
into application data (“silent data corruptions”). Techniques to
enhance system resilience hinge on the availability of efficient
error detectors that have high detection rates, low false positive
rates, and lower computational overhead. Unfortunately, efficient
detectors to detect faults during address generation (to index
large arrays) have not been widely researched. We present a
novel lightweight compiler-driven technique called PRESAGE for
detecting bit-flips affecting structured address computations. A
key insight underlying PRESAGE is that any address computa-
tion scheme that flows an already incurred error is better than a
scheme that corrupts one particular array access but otherwise
(falsely) appears to compute perfectly. Enabling the flow of errors
allows one to situate detectors at loop exit points, and helps
turn silent corruptions into easily detectable error situations.
Our experiments using PolyBench benchmark suite indicate that
PRESAGE-based error detectors have a high error-detection rate
while incurring low overheads.

I. INTRODUCTION

High performance computing (HPC) applications will soon
be running at very high scales on systems with large com-
ponent counts. The shrinking dimensions and reducing power
requirements of the transistors used in the memory elements
of these massively parallel systems make them increasingly
vulnerable to temporary bit-flips induced by energetic particle
strikes such as alpha particle and cosmic rays. These temporary
bit-flips occurring in memory elements are often referred as
soft errors. Previous studies project an upward trend in soft
error induced vulnerabilities in HPC systems thereby pushing
down their Mean-Time-To-Failure (MTTF) [1], [2].

These trends drastically increase the likelihood of a bit-flip
occurring in long-lived computations. Specifically, a bit-flip
affecting computational states of a program under execution
such as ALU operations or live register values, may lead to
a silent data corruption (SDC) in the final program output.
Making the matter worse, such erroneous values may prop-
agate to multiple compute nodes in massively parallel HPC
systems [3].

The key focus of this paper is to detect bit-flips affecting
address computation of array elements. For example, to load a
value stored in an array A at an index i, a compiler must first
compute the address of the location referred by the index i. A
compiler performs this operation under-the-hood by using the
base address of A and adding to it an offset value computed

using the index i. This style of address generation scheme
which uses a base address and an offset to generate the
destination address is often referred as the structured address
generation. Accordingly, the computations done in the context
of a structured address generation are referred as structured
address computations.

Computational kernels used in HPC applications often in-
volve array accesses inside loops thus requiring structured ad-
dress computations. For these kernels, there is a real chance of
one of their structured address computations getting affected
by a bit-flip. A structured address computation, pertaining to
an array, when subjected to a bit-flip may produce an incorrect
address which still refers to a valid address in the address space
of the array. Using the value stored at this incorrect but a valid
address may lead to SDC without causing a program crash or
any other user-detectable-errors.

In this paper, we demonstrate that the bit-flips affecting
structured address computations for aforementioned class of
computational kernels lead to non-trivial SDC rates. We also
present a novel technique for detecting bit-flips impacting
structured address computations. Given that the structured ad-
dress computations involve arithmetic operations thus requir-
ing the use of a CPU’s computational resources, we consider
an error model where bit-flips affect ALU operations and CPU
register files. We assume DRAM and cache memory to be
error-free which is a reasonable assumption as they are often
protected using ECC mechanism [4]–[7]. We further limit the
scope of our error model by considering only those ALU
operations and register values which correspond to structured
address computations.

Specifically, we make following contributions in this paper:

1) A fault injection driven study done on 10 benchmarks
drawn from PolyBench/C benchmark [8] demonstrating
that the structured address computations in those bench-
marks when subjected to bit-flips lead to non-trivial SDC
rates.

2) We present a novel scheme which employs instruction-
level rewriting of the address computation logic used in
structured address computations. This rewrite preserves
an error in a structured address computation by intention-
ally corrupting all structured address computations that
follow it. This requires creation of a dependency-chain
between all structured address computation pertaining

ar
X

iv
:1

60
6.

08
94

8v
1

 [
cs

.S
E

]
 2

9
Ju

n
20

16

to a given array. Enabling the flow of error helps in
following ways:
• Strategic Placement of Error Detectors: Instead of

checking each and every structured address computa-
tions for soft errors (which is prohibitively expensive),
we strategically place our error detectors at the end of
a dependency chain.

• Promoting SDCs to Program Crashes: By enabling
the flow of error in address computation logic, we
increase the chances of promoting an SDC to a user-
visible program crash.

3) We present a methodology for implementing our pro-
posed scheme as a compiler-level technique called
PRESAGE (PRotEcting Structured Address GEneration).
Specifically, we have implemented PRESAGE using
LLVM compiler infrastructure [9], [10] as a transforma-
tion pass. LLVM preserves the pointer related information
at LLVM intermediate representation (IR) level (as also
highlighted in recent works [11], [12]) while providing
the access to a rich set of application programming
interfaces (APIs) for seamlessly implementing PRESAGE
transformations. This is the key reason behind choosing
LLVM as tool-of-choice.

In summary, our error-detection approach is based on the
following principle:

The larger the fraction of system state an error
corrupts, the easier it is to detect them.

The rest of the paper is organized as follows. Sec. §II provides
a literary review of the closely related work done in this
area. Sec. §III explains the key idea through a set of small
examples. Sec. §IV formally introduces the key concepts
and the methodology used for implementing PRESAGE. In
Sec. §V, we provide a detailed analysis of the experimental
results carried out to measure the efficacy of PRESAGE.
Finally, Sec. §VI summarizes they key takeaways and future
directions for this work.

II. BACKGROUND & RELATED WORK

A previous work by Casas-Guix et al. [13] shows that
an Algebraic Multigrid (AMG) solver is relatively immune
to faults as they can often recover to an acceptable final
answer even after encountering a momentary bit-flip in the
data state. They however realize that any fault in the space
of pointers often wreaks havoc, since the corrupted pointers
tend to write data values into intended memory spaces. As a
solution, they propose the use of pointer triplication, which
not only helps detect errors in the value of a pointer variable
but also correct the same. Unfortunately, pointer triplication
comes with a high overhead of runtime checks. Also, they
do not focus on the scenarios where corruptions in structured
address computations lead to SDC which is the key focus of
our work.

Another work by Wei et al. [11] highlights the difference
between the results of the fault injection experiments done
using a higher-level fault injector LLFI targeting instructions

at LLVM IR level, and a lower-level, PIN based, fault in-
jector performing fault injections at x86 level. This work
highlights that LLVM offers a separate instruction called
getElementPtr for carrying out structured address com-
putations whereas at x86-level same instruction can be used
for computing address as well as performing non-address
arithmetic computations. Another recent work by Nagarakatte
et al. [12] shows how by associating meta-data and by using
Intel’s recently introduced MPX instructions, one can guard
C/C++ programs against pointer-related memory attacks. The
key portion of this work is also implemented using LLVM
infrastructure. The above two works, in a way, influenced our
decision to choose LLVM for implementing PRESAGE.

Researchers have also explored the development of
application-level error detectors for detecting soft-error affect-
ing a program’s control states [14]–[16]. Another key area
in application-level resilience is the algorithm based fault
tolerance (ABFT) which exploits the algorithmic properties
of well-known applications to derive efficient error detectors
[17], [18]. Researchers have also focused in the past to
optimize the placement of application level error detectors at
strategic program points.The information about these strategic
location are usually derived through well established static and
dynamic program analysis techniques [19]–[22]. To the best
of our knowledge, none of the previous works have focused
on protecting structured address generation leading to SDC
which is the key focus of our work.

III. MOTIVATING EXAMPLE

Fig. 2 presents a simple C function foo1 performing store
operations to even-indexed memory locations of an array
a[] of size 2n inside a for loop. It also stores the last
accessed array address into a variable addr at the end of
every loop-iteration. Fig. 1 represents the corresponding x86
code emitted for the foo1 function when compiled using
clang compiler with O1 optimization level. Registers %esi
and %ecx represent the variable n and the loop iterator i
of the function foo1 whereas registers %rdi and %rax
correspond to the array’s base address and index respectively.
In every loop iteration, a destination array address is computed
by the expression (%rdi,%rax,0x8) which evaluates to
(0x8*%rax +%rdi), the value in register %rax is incre-
mented by 2, and the base address stored in %rdi remains
fixed. It is worth noting that the final address computation
denoted by the expression (%rdi,%rax,0x8) is not user-
visible and is something compiler does under-the-hood.

In contrast to the fixed base address (FBA) scheme used
in the function foo1, function foo2 (shown in Fig. 3), a
semantically equivalent version of foo1, introduces a novel
relative base address (RBA) scheme. Specifically, foo2 uses
an array address computed in a loop iteration (addr) as the
new base address for the next loop iteration along with a
relative index (rid) as shown in Fig. 2.

This simple but powerful scheme creates a dependency
chain in the address computation logic as the computation of
any new address would depend on the last computed address.

L0 : cmp 0x2 ,% e s i
L1 : j l L12
L2 : xor %eax ,% eax
L3 : mov 0x1 ,% ecx
L4 : xorps %xmm0,%xmm0
L5 : c v t s i 2 s d %ecx ,%xmm0
L6 : c l t q
L7 : movsd %xmm0, (% rdi ,%rax , 8)
L8 : add 0x2 ,% eax
L9 : i n c %ecx
L10 : cmp %ecx ,% e s i
L11 : jne L4
L12 : re tq

Fig. 1: x86 representation of the foo() function

L0 : void foo1 (double * a , unsigned n){
L1 : double * add r =a ;
L2 : f o r (i n t i =1 ; i<n ; i ++){
L3 : i n t i d =2* i−2;
L4 : add r=&a [i d] ;
L5 : * add r = i ;

}
}

Fig. 2: foo1() function

L0 : void foo2 (double *a , i n t n){
L1 : double * add r =a ;
L2 : i n t p i d =0 ;
L3 : f o r (i n t i =1 ; i<n ; i ++){
L4 : i n t i d =2* i−2;
L5 : i n t r i d = id−p i d ;
L6 : add r [r i d]= i ;
L7 : p i d = i d ;
L8 : add r=&addr [r i d] ;

}
}

Fig. 3: foo2() function

Fig. 4: Function foo1 with no dependency-chains Fig. 5: Function foo2 with a dependency-chain introduced in
addr

Therefore, our RBA scheme guarantees that if an address
computation of an array element gets corrupted then all sub-
sequent address computations would also become erroneous.
This in turn enables us to strategically place error detectors at
a handful of places in a program (preferably at all program
exit points) thereby making the whole error detection process
very lightweight.

For example, in functions foo1 and foo2, the address of
a new array element, computed during every loop iteration,
is stored in the variable addr. The value stored in the
variable addr may get corrupted in following scenarios:
Error Scenario I: A bit-flip occurs in the value stored in
the loop-iterator variable i in functions foo1 and foo2.
Error Scenario II: A bit-flip affecting the value stored in the
absolute index variable id in functions foo1 and foo2.
Error Scenario III: A bit-flip occurs in the value stored in
the relative index variable rid which is only present in the
functions foo2.
Error Scenario IV: A bit-flip affecting the value stored in the
variable addr in functions foo1 and foo2.

The above program-level sites are listed in Table I for easy
reference. With respect to the error scenario IV, it is evident
that only in the case of foo2, when the result of final address

computation stored in addr is corrupted during one of the
loop iterations, all subsequent address computations in the
remaining loop iterations would also get corrupted due to the
dependency chain introduced in the address computation logic.
We further demonstrate the evidence of these dependency
chains, introduced by our RBA scheme, through a small set of
fault injection driven experiments. Fig. 4 presents the result of
two independent runs for function foo1. The X-axis shows
the number of loop iteration whereas the Y-axis shows the
value stored in the variable addr. The execution with label
foo1_addr represents a fault-free execution of foo1. The
execution with label foo1_addr_corrupt represents a
faulty execution of foo1 where a single bit fault is introduced
at bit position 6 of the value stored in addr during the tenth
loop iteration. Similarly, Fig. 5 presents the result of two
independent runs for function foo2 such that a single bit
fault is introduced at bit position 6 of the value stored in
addr during the first loop iteration in the faulty execution
represented by the label foo2_addr_corrupt We can
clearly notice that only in the case of function foo2, once an
address value stored in addr gets corrupted, all subsequent
address values stored in addr are also corrupted.

Fault Site Description
i Loop iterator variable.
id Absolute index variable.

addr
A variable containing an address of a
location in the array a[].

rid
Relative index variable (only present in
foo2).

TABLE I: List of fault sites in functions foo1 and foo2

IV. METHODOLOGY

Sec. §III demonstrates that a simple rewrite of the address
computation logic introduces a dependency chain thereby
enabling the flow of error. Given that the address computation
is often done in a user-transparent manner by a compiler, we
implement our technique at the compiler-level. Specifically, we
choose LLVM compiler infrastructure to implement our tech-
nique as a transformation pass (hereon referred as PRESAGE)
which works on LLVM’s intermediate representation (IR).
Our implementation eliminates the need for any manual effort
from programmers thereby allowing our technique to scale
to non-trivial programs. LLVM’s intermediate representation
(IR) provides a special instruction called getelementptr
(hereon referred as GEP for brevity) for performing address
computation of Aggregate types including Array type1.
Therefore, all analyses implemented as part of PRESAGE
are centered around the GEP instruction. A GEP instruction
requires a base address, one or more index values, and size of
an element to compute an address and the computed address
is often referred as structured address. Given the key focus of
our work is to protect these structured addresses, the definition
of an array on which PRESAGE transformations are applied
closely follows the LLVM’s Array type definition with some
restrictions as explained below:
Definition 1: An array in this paper always refers to a
contiguous arrangement of elements of the same type laid out
linearly in the memory.
Definition 2: All structured address computations protected
using PRESAGE must always use only one index for address
computations. It is important to note that this is needed
only to simplify the implementation and does not limit the
scope of PRESAGE as multi-dimensional arrays can be easily
represented using single-indexed scheme. For example, a two-
dimensional array could be laid out linearly in memory by
traversing it in row-major or column-major fashion.
Definition 3: The base addresses used in all structured address
computations protected by PRESAGE must be immutable. For
example, if a PRESAGE transformation is applied on a callee
function to protect its structured address computations then the
callee function must not mutate those base addresses which
are referenced in structured address computations protected
by PRESAGE.
Definition 4: Let A be an array of arbitrary length and Ai

1LLVM’s type system is explained in its language reference manual located
at: http://llvm.org/docs/LangRef.html

represents the ith element of the array from its first element
which starts with an index 0. The address γ(Ai) of Ai is
computed using FBA scheme as shown in Eq. 1 where β(Ai)
represents the base address used to calculate the address of
Ai, and sA denotes the size (in bytes) of the elements of the
array A.

γ(Ai) = β(Ai) + (sA ∗ i) (1)

Definition 5: The address of Ai when computed using our
RBA scheme uses a previously computed address γ(Aj) as
the new base address (hereafter referred as relative base) and
is denoted as γ(Ai�j) as shown in Eq. 2. The relative index
value used in Eq. 2 is computed by simply subtracting the
index value of the relative base (Aj) from the index value
of Ai. In scenarios where the relative base information is not
known, the RBA scheme falls back to the FBA scheme for
address computation.

γ(Ai�j) = γ(Aj) + (sA ∗ (i− j)) (2)

Theorem: If we consider Ai and Aj as valid elements of an
array A, then γ(Ai�j) ≡ γ(Ai) iff β(Ai) ≡ β(Aj).
Proof : Rewriting γ(Aj) in Eq. 2 using Eq. 1, we get Eq. 3.

γ(Ai�j) = β(Aj) + (sA ∗ j) + (sA ∗ (i− j)) (3)

By further simplying Eq. 3, we finally get Eq. 4.

γ(Ai�j) = β(Aj) + (sA ∗ i) (4)

Using Eqs. 4 and 1, we get: γ(Ai�j) ≡ γ(Ai) iff β(Ai) ≡
β(Aj).

Term Description

F
A target function on which PRESAGE
transformations are applied.

b
A base address with at least one user
in the target function.

B A basic block in the target function.

E(B1,B2)
A boolean function which returns true
only if an edge exists from B1 to B2.

LBp
(B)

A set of all immediate predecessor basic
blocks of B.

LBs(B)
A set of all immediate successor basic
blocks of B.

LBe
(F)

A set of all exit basic blocks
in the target function F .

Lb(F)
A set of all immutable base addresses
in F .

LG(B,b)
A set of all GEP instructions in B which
use the base address b.

Mφ

A two-level nested hashmap with first key
a basic block, second key a base address
mapped to a phi node.

MG

A two-level nested hashmap with first key
a basic block, second key a base address
mapped to a GEP instruction.

TABLE II: Glossary of terms referred in this paper.

http://llvm.org/docs/LangRef.html

A. Error Model
We consider an error model where soft errors induce a

single-bit fault affecting CPU register files and ALU op-
erations. We assume that memory elements such as data-
cache and DRAM are error free as they are usually protected
using ECC mechanism. We implement our error model by
targeting runtime instances of LLVM IR level instructions of
a target function for fault injection. For example, if there are
N dynamic IR-level instructions observed corresponding to
a target function, then we choose one out of N dynamic
instructions with a uniform random probability of 1

N and
flip the value of a randomly chosen bit of the destination
virtual register, i.e., the l.h.s. of the randomly chosen dynamic
instruction. Similar error models have been proposed in the
past for various resilience studies and it provides a reasonable
estimate of application-level resiliency of an application [16],
[23]. Given that our focus is to study soft errors affecting
structured address computation, we consider all fault sites
which when subjected to a random single-bit bit-flip may
affect the output of one or more GEP instructions of a target
program. Specifically, we propose two following error models
which mainly differ in the dynamic fault site selection strategy.

1) Error Model I: As described in Sec. §III, error sce-
nario affecting structured addressed computations are broadly
categorized into soft errors affecting index values and the
final output of GEP instructions. Error model I considers the
scenario where index values are corruption-free but the final
output of one of the GEP instruction has a random single-bit
corruption. This is done by randomly choosing from dynamic
instances of all GEP instructions of a target function, and
injecting a bit-flip in the final address computed the GEP
instruction.

2) Error Model II: Error model II considers the case where
the index value of one of the dynamic instances of GEP
instructions are corrupted including the dynamic fault sites
corresponding to the set of def-use leading to the index-value

The above two error models are implemented using an open-
source and publicly available fault injector tool VULFI [24],
[25]. Also, note that in our error models, we do not target base
addresses as these are small in numbers (one per array) and
can be easily protected through replication without incurring
severe performance or space overhead.

B. PRESAGE Transformations
We refer to two or more GEP instructions as same-class

GEPs if they use the same base address. PRESAGE creates
a dependency chain between same-class GEPs in a two-stage
process.

1) Inter-Block Dependency Chains: The first stage in-
volves enabling dependency chains between same-class GEPs
in different basic blocks. Intuitively, it would require first GEP,
for a given base address, appearing in all basic blocks be
transformed in a manner such that it uses the address computed
by the last same-class GEP in its predecessor basic block as
the relative base. However, we need a bit more careful analysis
as a basic block may have more than one predecessor basic

blocks. Moreover, it might be possible that not all predecessor
blocks have a same-class GEP or a predecessor block might be
a back edge (i.e., there is a loop enclosing the basic block and
its predecessor basic block). Therefore, we propose a three-
step process for linking same-class GEPs in different basic
blocks as explained by Figs. 6 and 7.

1: procedure CREATEINTERBLKDEPCHAIN(F ,MG ,Mφ)
2: for all B in BFS(F) do
3: e ← GetIncomingEdgeCount(B)
4: for all b in Lb(F) do
5: φ ← CreateEmptyPHINode(b,e)
6: InsertPHINodeEntry(B,b,φ,Mφ)
7: for all Bp in LBp

(B) do
8: if HasGEP(Bp,b,MG) then
9: G ← GetGEP(Bp,b,MG)

10: SetIncomingEdge(Bp,B,φ,G)
11: end if
12: end for
13: end for
14: end for
15: end procedure

Fig. 6: Creating Inter-Block Dependency Chains

As a first step, as shown in Fig. 6, we iterate over all basic
blocks of a target function F in a breadth-first order. In a
given basic block B with an incoming edge count e, we insert
a phi node for each unique base address appearing in Lb(F)
for selecting a value from same-class incoming GEP values
(each belonging to a unique predecessor basic block). For a
given base address b, the respective phi node entry is used as
the relative base by the first GEP (with base b) in the current
basic block B. In case, B does not have a valid GEP entry for
b , then we call B a pass-through basic block with respect
to b. In this case, we simply pass the phi node value to the
successor basic blocks.

We use a phi node because all PRESAGE transformations
are applied at LLVM IR and LLVM uses the single static
assignment (SSA) form thus requiring a phi node to select a
value from one or more incoming values. For each phi node
entry created in B, if valid incoming GEP values are available
from one or more predecessor basic blocks, the phi node
is updated with those values by calling the SetIncomingEdge
routine.

At this point, we already have created phi node entries in
each basic block (including all pass-through basic blocks), and
have populated these phi nodes with incoming GEP values
wherever applicable. As a next step, as shown in Fig. 7, for
a basic block B with each of its pass-through predecessor
basic block with respect to a base address b, the respective
phi node φ is updated with the predecessor’s phi node entry
φp by calling SetIncomingEdge routine. If a back-edge exists
from a pass-through predecessor basic block Bp to B (i.e.,
there is exists a loop enclosing B and Bp) then B may receive
invalid data from Bp as Bp is also successor basic block of B.
Therefore, we invoke the procedure UpdateInterBlkDepChain

1: procedure UPDATEINTERBLKDEPCHAIN(F ,Mφ ,MG ,P)
2: for all B in BFS(F) do
3: for all Bp in LBp

(B) do
4: for all b in Lb(F) do
5: s ← ¬HasGEP(Bp,b,MG)
6: s ← s ∧ HasPHI(Bp,b,Mφ)
7: s1 ← s ∧ ¬IsBackEdge(Bp,B)
8: s1 ← s1 ∧ (P = Pass1)
9: s2 ← s ∧ IsBackEdge(Bp,B)

10: s2 ← s2 ∧ (P = Pass2)
11: if s1 ∨ s2 then
12: φ ← GetPHINode(B,b,Mφ)
13: φp ← GetPHINode(Bp,b,Mφ)
14: SetIncomingEdge(Bp,B,φ,φp)
15: end if
16: end for
17: end for
18: end for
19: end procedure

Fig. 7: Updating Inter-Block Dependency Chains

in Fig. 7 twice. In the first pass, the phi node entries of
all pass-through predecessor basic blocks of B which do not
have back edges to B, are assigned to the respective phi node
entries in B. In the second pass, we repeat the steps of the first
pass with the exception that this time we select the phi node
entries of all pass-through predecessor basic blocks of B which
do have back edges to B.

1: procedure CREATEINTRABLKDEPCHAIN(F ,MG ,Mφ)
2: for all B in BFS(F) do
3: for all b in Lb(F) do
4: for all G in LG(B,b) do
5: if IsFirstGEP(G) then
6: φ ← GetPHINode(B,b,Mφ)
7: br ← GetRelativeBase(φ,b)
8: pid ← GetPrevIdx(φ)
9: end if

10: id ← GetCurrentIdx(G)
11: rid ← GetRelativeIdx(id,pid)
12: Gn ← CreateNewGEP(γ,rid)
13: pid ← id
14: InsertGEP(Gn,G)
15: ReplaceAllUses(G,Gn)
16: DeleteGEP(G)
17: end for
18: end for
19: end for
20: end procedure

Fig. 8: Creating Intra-Block Dependency Chains

2) Intra-Block Dependency Chains: The second stage
involves creating intra-block dependency chains. As shown in
Fig. 8, for each basic block B of a target function F and for

each unique base address b ∈ Lb(B), if there exist one or more
same-class GEP instructions which use b as the base, we need
to transform these GEPs to create a dependency chain. In other
words, each GEP uses the value computed by the previous
GEP as the relative base using our RBA scheme as explained
in Eq. 2. For the first occurrence of GEP instruction in B with
base b, we extract the relative base information using the phi
node entry φ created in the previous stage. At runtime, the phi
node φ will receive the last address computed using the base
address b from one of the predecessor basic blocks of B. In
summary, for each GEP instruction G, an equivalent version
Gn is created using the relative base and the relative index
values. All uses of G are then replaced by Gn and G is then
finally deleted.

C. Detector Design

1: procedure INSERTDETECTORS(F ,MG ,Mφ)
2: for all Be in LBe(F) do
3: for all b in Lb do
4: φ ← GetPHINode(B,b,Mφ)
5: br ← GetRelativeBase(φ,b)
6: rid ← GetRelativeIdx(φ)
7: pid ← GetPrevIdx(φ)
8: G ← CreateNewGEP(br,rid)
9: Gd ← CreateNewGEP(b,pid)

10: InsertEqvCheck(G,Gd)
11: end for
12: end for
13: end procedure

Fig. 9: Algorithm for Error Detectors

The error detectors are designed to protect against single-
bit faults injected using error model I. As shown in Fig. 9,
in each exit basic block Be, for each unique base address b,
PRESAGE makes available the value computed of the last run
GEP instruction with base b and the relative index value used.
Additionally, PRESAGE also makes available the absolute
index value which along with the base address b can also be
used to reproduce the output of the last run GEP instruction
with base b. The error detectors then simply check if the
output G produced by the last run GEP instruction matches
the recomputed value Gd using the base address b and the
absolute index value. Given that in error model I, we consider
the base address and index value to be corruption free, the
error detectors are precise with respect to error model I as
they do not report any false positives.

Fig. 10 shows the LLVM-level control-flow graph (CFG)
of the function foo1 presented in Sec.§III. Similarly, Fig. 11
shows the LLVM-level CFG of the PRESAGE transformed
version of the function foo1. The GEP instruction in function
foo1 (Fig. 10) which stores the computed address in register
%13 is replaced by a new GEP instruction (Fig. 11) in the
PRESAGE transformed version of foo1 which uses relative
base and relative index value for address computation. The
PRESAGE transformed version of foo1 in Fig. 10 also has

Fig. 10: LLVM IR level CFG representation of the function
foo1 Fig. 11: LLVM IR level CFG representation of PRESAGE

transformed version of the function foo1

error detector code inserted in the exit basic block. Specif-
ically, %GEP_duplct represents the recomputed version of
the address which is compared against the observed address
value %GEP_obsrvd. In case of a mismatch, the global
variable @detectCounter is set to report error detection
to the end user.

V. EXPERIMENTAL RESULTS

A. Evaluation Strategy
Our evaluation strategy involves measuring the effectiveness

of the proposed error detectors in terms of SDC detection rate
and performance overhead. In addition, we analyze the impact
of PRESAGE transformations on an application’s resiliency
using a fault injection driven study. We consider 10 bench-
marks listed in TableIV drawn from the PolyBench/C bench-
mark suite [26]. These benchmarks represent a diverse set
of applications from areas such as stencils, algebraic kernels,
solvers, and BLAS routines. For each of these benchmarks,

Experiment Set Description

Native FIC EM-I

A fault-injection campaign (FIC)
using error model I on the native
version of a target benchmark.

Native FIC EM-II
Same as Native FIC EM-I except
that error model II is used.

Presage FI EM-I

A fault-injection campaign (FIC)
using error model I on benchmarks
transformed using PRESAGE.

Presage FI EM-II
Same as Presage FI EM-I except
that error model II is used.

TABLE III: Summary of experiments

we perform four set of experiments, summarized in TableIII.
Each experiment set involves a fault injection campaign (FIC),
consisting of 5000 independent experimental runs. In each
experimental run, we carry out a fault-free and a faulty
execution of a target benchmark using identical program input
parameters and compare the outcome of the two executions.
The program input parameters (such as array size used in the
benchmark) are randomly chosen from a predefined range of
values. During a fault-free execution, no faults are injected
whereas during a faulty execution, a single-bit fault is injected
in a dynamic LLVM IR instruction selected randomly using
either error model I or error model II as explained in Sec. §IV.

Note that we only target the key function(s) that imple-
ment the core logic of a benchmark for fault injection. For
example, in the jacobi-2d benchmark, we only target the
kernel jacobi 2d which implements the core jacobi kernel and
ignore the other auxiliary functions such as the function used
for array initialization or the program’s main().

Given that the benchmarks chosen produce one or more re-
sult arrays as the final program output, we compare respective
elements of the result arrays produced by the faulty and fault-
free executions to categorize the outcome of the experimental
run as:
SDC: The executions ran to completion, but the corresponding
elements of the result arrays of the fault-free and faulty
execution are not equivalent.
Benign: The correponding elements of the result arrays of the
fault-free and faulty execution are equivalent.
Program Crash: The program crashes or terminates prema-
turely without producing the final output.

We analyze the impact of PRESAGE transformations on

Fig. 12: Outcomes of the fault injection campaigns

an application’s resiliency by comparing the outcomes of the
experiment sets Native FIC EM I with Presage FI EM-I, and
Native FIC EM-II with Presage FI EM-II.

B. Fault Injection Campaigns
Fig.12 shows the result of FIC done under each experiment

set listed in TableIII. Each column in the figure represents an
FIC consisting of 5000 runs. Therefore, the total number of
fault injections done across 10 benchmarks and 4 experiment
sets stands at 0.2 million (4 experiment sets × 10 benchmarks
× 5000 fault injections).
Non-trivial SDC Rates: The results for experiment sets
Native FIC EM-I and Native FIC EM-II shown in Fig.12
demonstrate that non-trivial SDC rates are observed when
structured address computations are subjected to bit flips.
Specifically, for the experiment set Native FIC EM-I, we
observe a maximum and a minimum SDC rates of 32.2% and
18.5%, for the benchmarks trmm and bicg, respectively. In
case of Native FIC EM-II, we observe a greater contrast, with
a maximum SDC rate of 43.6% and a minimum SDC rate of
2.3% for the benchmarks trmm and adi, respectively.
Promotion of SDCs to Program Crashes: When com-
paring the results of experiment sets Presage FI EM-I and
Presage FI EM-II with that of Native FIC EM-I and Na-
tive FIC EM-II, we observe that PRESAGE transformations
lead to a sizable fraction of SDCs getting promoted to
program crashes. Specifically, Presage FI EM-I reports an
average increase of 12.5% (averaged across all 10 benchmarks)
in the number of program crashes when compared to Na-
tive FI EM-I, with a maximum increase of 19.3% reported
for the cholesky benchmark. Similarly, Presage FI EM-
II reports an average increase of 7.8% (averaged across all
10 benchmarks) in the number of program crashes when
compared to Native FI EM-II with a maximum increase of
16.8% reported for the jacobi-2d benchmark.

C. Detection Rate & Performance Overhead
Fig.13 shows the percentage of SDCs reported in Fig.12

under Presage FIC EM-I that are detected by the PRESAGE-
inserted error detectors. Except for the benchmark fdtd-2d,
we are able to detect 100% of the SDCs caused by a random

Fig. 13: SDC detection rate & performance overhead

bit-flip injected using error model I. In case of fdtd-2d, we
are able to detect only 74% of the reported SDCs because a
fraction of GEP instructions in fdtd-2d have mutable base
addresses. Recall that the PRESAGE transformations can only
be applied to GEP instructions with immutable base addresses.

For the benchmarks adi, seidel-2d, gesummv, bicg,
and cholesky, we notice that the error detectors incur
almost negligible overheads ranging between 0.3% and 3.2%.
Benchmarks lu and atax report overhead figures of less
than 20% whereas the benchmarks jacobi-2d, fdtd-2d,
trmm, and atax report overhead figures of close to 40%.

Upon further investigation (details omitted for brevity),
we found that the higher overheads for some of the bench-
marks are due to the dependency chains (especially inter-
block dependency chains) introduced by the PRESAGE trans-
formations. Recall that due to these dependency chains, a
structured address computation in a basic block might require
a previously computed address from one of its predecessor
basic blocks. Due to this dependency, a register value may
have to be kept alive for a longer duration, increasing the
chances of a register spill, which in turn leads to a higher
overhead. Therefore, we recommend additional care while
deploying PRESAGE on any new program by first checking
(on small test inputs) if the introduced overhead is within

acceptable limits for the end user. Finding an optimal set of
dependency chains or splitting a dependency chain into smaller
ones to provide the best trade-off between the detection rate
and overhead is beyond the scope of this paper and constitutes
future work.

D. False Positives & False Negatives
We refer to the errors flagged during the execution of a

PRESAGE-transformed program as a false positive when no
faults are injected during the execution. Conversely, if there
are no errors reported during the execution of a PRESAGE-
transformed program while an error is actually injected during
the execution, then we regard it as a false negative.

The basic philosophy of the PRESAGE detectors is to
recompute the final address observed at the end point of a
dependency chain and compare the recomputed address against
the observed final address. Also, in error model I, the index
and the base address of a GEP instruction are assumed to
be corruption-free but the final address computed by it can
be erroneous. Therefore, under error model I, whenever the
recomputed address does not match the observed address, it
attributes it to an actual bit-flip. In summary, the detectors
never report false positives under error model I. Even in the
case of error model II, where we subject the index value
of a GEP instruction to a bit-flip, the value recomputed by
the detectors would use the same corrupted index value to
reproduce the same corrupted observed value. Thus even
under error model II, the error detectors must not report false
positive. However, it may report false negatives, including in
cases where we inject bif flips into GEP instructions that
have mutable base addresses, as in the case of fdtd-2d
benchmark.

E. Coverage Analysis
Table IV provides an insight into the kind of coverage

provided by the PRESAGE-based error detectors. Total SIC
denotes the total static instruction count of the LLVM IR
instructions corresponding to key function(s) of a benchmark
that are targeted for fault injections. SIC-I and SIC-II rep-
resents the subset of instructions represented by SIC chosen
using error model I and error model II respectively. Clearly,
SIC-I and SIC-II represent a significant portion of SIC with
the share of SIC-I ranging between 15.5% and 28.5% where as
that of SIC-II ranging between 63.3% and 21.7%. The ratio
between SIC-I and SIC-II roughly varies from 1:3 (in case
of seidel-2d) to 1:1 (in case of gesummv and bicg).
Avg. DIC-I is a counterpart of SIC-I, representing the average
dynamic instruction count averaged over DIC observed during
each experimental run of an FIC done under the experiment set
Native FIC EM-I. Similarly, Avg. DIC-II denotes the average
dynamic instruction count averaged over DIC observed during
each experimental run of an FIC done under the experiment set
Native FIC EM-II. Clearly, the fault sites considered under
error model I and II constitute a significant part of the overall
static instruction count of the benchmarks considered in our
experiments.

VI. CONCLUSIONS & FUTURE WORK

Researchers in the HPC community have highlighted the
growing need for developing cross-layer resilience solutions
with application-level techniques gaining a prominent place
due to their inherent flexibility. Developing efficient light-
weight error detectors has been a central theme of application-
level resilience research dealing with silent data corruption.
Through this work, we argue that, often, protecting structured
address computations is important due to their vulnerability to
bit flips, resulting in non-trivial SDC rates. We experimentally
support this argument by carrying out fault injection driven
experiments on 10 well-known benchmarks. We witness SDC
rates ranging between 18.5% and 43.6% when instructions in
these benchmarks pertaining to structured address computa-
tions are subjected to bit flips.

Next, guided by the principle that maximizing the propa-
gation of errors would make them easier to detect, we intro-
duce a novel approach for rewriting the address computation
logic used in structured address computations. The rewriting
scheme, dubbed the RBA scheme, introduces a dependency
chain in the address computation logic, enabling sufficient
propagation of any error and, thus, allowing efficient place-
ment of error detectors. Another salient feature of this scheme
is that it promotes a fraction of SDCs (user-invisible) to
program crashes (user-visible). One can argue that promoting
SDCs to program crashes may lead to a bad user experience.
However, a program crash is far better than an SDC whose
insidious nature does not raise any user alarms while silently
invalidating the program output.

We have implemented our scheme as a compiler-level tech-
nique called PRESAGE developed using the LLVM compiler
infrastructure. In Sec.§IV, we formally presented the key
steps involved in implementing the PRESAGE transformations
which include creating inter-block and intra-block dependency
chains, and a light-weight detector placed strategically at all
exit points of a program. We reported high detection rates
ranging between 74% and 100% with the performance over-
head ranging between 0.3% and 42.8% across 10 benchmarks.
In addition, the PRESAGE-transformed benchmarks witness
an average and a maximum increase of 12.5% and 19.3%
respectively in program crashes as compared to their original
versions when faults are injected using error model I. These
figures stands at 7.8% and 16.8% respectively when error
model II is used instead of error model I for fault injections.

Our current work also identifies some challenges we plan
to address as part of the future work. Specifically, we ob-
serve a relatively higher detection overhead for some of the
benchmarks, due to increased register pressure caused by the
introduction of dependency chains as explained earlier. In
the future, we plan to explore efficient ways of mining GEP
instructions in a program that are best suited for PRESAGE
transformations without adversely impacting performance. Al-
though, the main focus of our work is to provide coverage
explicitly for error model I, we also observe that PRESAGE
provides partial coverage for error model II by promoting a

Benchmark
Avg. DIC-I
(in millions)

Avg. DIC-II
(in millions) SIC-I SIC-II

Total
SIC %SI-I %SI-II

adi 59.2 157.5 30 69 161 18.6% 42.8%
fdtd-2d 63.7 24.8 68 98 249 27.3% 39.3%

seidel-2d 74.8 36.8 42 114 180 23.3% 63.3%
jacobi-2d 64.2 97.1 56 112 196 28.5% 57.1%
gesummv 0.4 0.7 5 5 22 22.7% 22.7%

trmm 39.1 107.1 14 39 90 15.5% 43.3%
atax 0.5 0.7 22 26 91 24.1% 28.5%
bicg 0.4 0.7 5 5 23 21.7% 21.7%

cholesky 0.3 0.8 16 39 89 17.9% 43.8%
lu 0.6 1.9 15 35 77 19.4% 45.4%

TABLE IV: Benchmark description

fraction of SDCs to program crashes. As future work, we plan
to explore techniques used in the context of verification and
polyhedral transformations to develop comprehensive error
detection mechanisms for error model II. Finally, through this
work, we hope to bring to the resilience community’s notice
the importance and the need for developing efficient error
detectors for protecting structured address computations.

VII. ACKNOWLEDGEMENT

This work was supported in part by the U.S. Department
of Energys (DOE) Office of Science, Office of Advanced
Scientific Computing Research, under award 66905. Pacific
Northwest National Laboratory is operated by Battelle for
DOE under Contract DE-AC05-76RL01830. The Utah authors
were supported in part under the same DOE project with award
number 55800790, NSF Award CCF 1255776, and SRC Tasks
2425.001, 2426.001.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward Exascale Resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374–388, 2009.

[2] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward Exascale Resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5–28, 2014.

[3] R. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C. Cher, and P. Bose,
“Understanding the propagation of transient errors in HPC applica-
tions,” in International Conference for High Performance Comput-
ing,Networking, Storage and Analysis (SC), Austin, TX, USA, 2015.

[4] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor mem-
ory applications: A state-of-the-art review,” IBM Journal of Research
and Development, vol. 28, no. 2, pp. 124–134, 1984.

[5] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397–404, Sept 2005.

[6] J. Kim, M. Sullivan, S. Gong, and M. Erez, “Frugal ECC: efficient and
versatile memory error protection through fine-grained compression,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, Austin, TX, USA, 2015, pp. 12:1–12:12.

[7] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: strong, safe, and flex-
ible codes for reliable computer memory,” in International Symposium
on High Performance Computer Architecture, HPCA, Burlingame, CA,
USA, 2015, pp. 101–112.

[8] “PolyBench/C: The polyhedral benchmark suite,” http://web.cs.ucla.edu/
∼pouchet/software/polybench/.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO), 2004, pp. 75–86.

[10] “The LLVM Compiler Infrastructure,” http://llvm.org/.
[11] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the

accuracy of high-level fault injection techniques for hardware faults,” in
International Conference on Dependable Systems and Networks, DSN
2014, Atlanta, GA, USA, 2014, pp. 375–382.

[12] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Everything you
want to know about pointer-based checking,” in Summit on Advances in
Programming Languages (SNAPL), 2015, pp. 190–208.

[13] M. Casas, B. Supinski, G. Bronevetsky, and M. Schulz, “Fault Resilience
of the Algebraic Multi-Grid Solver,” in Proc. of the 2012 International
Conference on Supercomputing (ICS). IEEE Computer Society Press,
2012, pp. 00–00.

[14] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking
by software signatures,” IEEE Transactions on Reliability, vol. 51, pp.
111–122, 2002.

[15] D. S. Khudia and S. A. Mahlke, “Low Cost Control Flow Protection
Using Abstract Control Signatures,” in LCTES, 2013, pp. 3–12.

[16] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “To-
wards Formal Approaches to System Resilience,” in PRDC, 2013.

[17] J. Sloan, R. Kumar, and G. Bronevetsky, “An algorithmic approach
to error localization and partial recomputation for low-overhead fault
tolerance,” in International Conference on Dependable Systems and
Networks (DSN), 2013.

[18] D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, and Z. Chen, “New-sum: A novel online abft scheme
for general iterative methods,” in International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2016, pp.
43–55.

[19] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Application-Based Met-
rics for Strategic Placement of Detectors,” IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC), pp. 75–82, 2005.

[20] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
Soft Error Reliability on the Cheap,” in Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2010, pp.
385–396.

[21] M. a. de Kruijf, K. Sankaralingam, and S. Jha, “Static analysis and
compiler design for idempotent processing,” Programming Language
Design and Implementation (PLDI), 2012.

[22] S. Sastry Hari, S. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Application resiliency analyzer for transient faults,” in IEEE Micro,
vol. 33, no. 3, pp. 58–66, May 2013.

[23] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI:
an intermediate code-level fault injection tool for hardware faults,” in
International Conference on Software Quality, Reliability and Security,
QRS Vancouver, BC, Canada, 2015, pp. 11–16.

[24] V. C. Sharma, G. Gopalakrishnan, and S. Krishnamoorthy, “Towards
reseiliency evaluation of vector programs,” in 21st IEEE Workshop
on Dependable Parallel, Distributed and Network-Centric Systems
(DPDNS), 2016.

[25] “VULFI - an LLVM based fault injection framework,” fv.cs.utah.edu/
fmr/vulfi.

[26] “Polybench benchmark suite,” https://sourceforge.net/projects/
polybench.

http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://llvm.org/
fv.cs.utah.edu/fmr/vulfi
fv.cs.utah.edu/fmr/vulfi
https://sourceforge.net/projects/polybench
https://sourceforge.net/projects/polybench

	I Introduction
	II Background & Related Work
	III Motivating Example
	IV Methodology
	IV-A Error Model
	IV-A1 Error Model I
	IV-A2 Error Model II

	IV-B PRESAGE Transformations
	IV-B1 Inter-Block Dependency Chains
	IV-B2 Intra-Block Dependency Chains

	IV-C Detector Design

	V Experimental Results
	V-A Evaluation Strategy
	V-B Fault Injection Campaigns
	V-C Detection Rate & Performance Overhead
	V-D False Positives & False Negatives
	V-E Coverage Analysis

	VI Conclusions & Future work
	VII Acknowledgement
	References

