
Scalable Exact Parent Sets Identification in Bayesian Networks Learning
with Apache Spark

Subhadeep Karan
Department of Computer Science and Engineering

University at Buffalo
Buffalo, NY, USA

Email: skaran@buffalo.edu

Jaroslaw Zola
Department of Computer Science and Engineering

Department of Biomedical Informatics
University at Buffalo

Buffalo, NY, USA
Email: jzola@buffalo.edu

Abstract—In Machine Learning, the parent set identification
problem is to find a set of random variables that best explain
selected variable given the data and some predefined scoring
function. This problem is a critical component to structure
learning of Bayesian networks and Markov blankets discovery,
and thus has many practical applications, ranging from fraud
detection to clinical decision support.

In this paper, we introduce a new distributed memory
approach to the exact parent sets assignment problem. To
achieve scalability, we derive theoretical bounds to constraint
the search space when MDL scoring function is used, and we
reorganize the underlying dynamic programming such that the
computational density is increased and fine-grain synchroniza-
tion is eliminated. We then design efficient realization of our
approach in the Apache Spark platform. Through experimental
results, we demonstrate that the method maintains strong
scalability on a 500-core standalone Spark cluster, and it can
be used to efficiently process data sets with 70 variables, far
beyond the reach of the currently available solutions.

1. Introduction

In Machine Learning, the parent set assignment prob-
lem is to find a set of random variables that best explain
a selected variable given input data and some predefined
scoring criterion [1]. It is a precursor to Bayesian networks
structure learning, where it is solved for each variable to
produce a list of potential predecessors of that variable in a
final network, which reduces the number of structures that
have to be considered [2], [3], [4]. It is also closely related to
the feature selection problem, since it directly translates into
Markov blankets discovery [5]. Because of these connec-
tions, the problem has many practical applications spanning
clinical decision support systems, risk assessment, strategic
planning, fraud detection and many others [6], [7], [8], [9].
In all these applications, random variables model attributes
of interest, their realizations are observed from data, and
a model obtained by solving the parent set assignment
provides insights into how different attributes depend on
each other, including conditional dependencies.

While the parent set identification is critical to building
models like Bayesian networks, it is known to be formally
hard for the most commonly used scoring functions. For
instance, it is NP-complete for the Normalized Maximum
Likelihood (NML) criterion [1]. Consequently, the current
approaches, which we briefly review in Section 5, either de-
pend on heuristics or deliver exact solutions but are limited
in how large instances they can solve. In fact, the largest
problems solved by exact algorithms do not contain more
than 40 variables [10]. In contrast, the real-world systems
that strongly depend on the high quality Bayesian networks
often involve hundreds of variables. The available heuristics
that can solve instances of that size, e.g. [3], do not provide
any guarantees on the quality of the solutions they find.
This significantly impacts their usefulness, since the inherent
uncertainty of the model due to the input data and the
scoring function, cannot be separated from the deficiencies
of the learning algorithm [11]. Consequently, there is a
gap between the quality and the size of the models that
depend on the exact parent set identification and that can be
efficiently learned from the data.

Responding to the above challenges, in this paper, we
propose a new distributed memory algorithm for the exact
parent sets identification problem. Our goal is to push the
limit on the scale of instances that can be solved in accept-
able time limits on a modestly sized parallel cluster. To this
end, we make the following specific contributions: 1) we
propose a new strategy to constraint and reorganize dynamic
programming computations in the parent set assignment
problem such that computational grain is improved and fine-
grained synchronization is avoided, 2) we define a simple
mechanism that we use to change the mode of compu-
tations from BFS to DFS such that the main memory is
preserved. To validate our approach, we provide an efficient
implementation on the Apache Spark platform [12], and
demonstrate its strong scalability across different ML test
sets. We then show that on a 500-core cluster with 25 nodes,
our system can process HEPAR II test data [13] in slightly
over 20 hours. With 70 variables and small variability, this
data set is one of the most challenging benchmarks for
Bayesian networks structure learning, and it has no exact
results available to date.

ar
X

iv
:1

70
5.

06
39

0v
2

 [
cs

.A
I]

 2
4

O
ct

 2
01

7

The paper is organized following the common practice.
In Section 2, we provide basic definitions and formally
state the problem. In Section 3, we introduce our proposed
method, and we describe its experimental validation in
Section 4. We summarize related work in Section 5, and
conclude the paper in Section 6.

2. Preliminaries

Consider a set of n random variables X =
{X1, . . . , Xn}, and suppose that we are given a complete
input data table D = {D1, . . . , Dn}, where Di is a vector
of m observations of Xi. Let s(Xi, Pa(Xi)) be a scoring
function that quantifies how well Xi is explained by a set
of variables Pa(Xi) ⊆ X −{Xi} given the data D. We will
call Pa(Xi) a parent set, or simply parents, of Xi. We are
assuming that s is given. For example, it could be one of
the several available functions, such as information theoretic
MDL [14] and AIC [15] or the BD family implementing
Bayesian scoring criteria [16], [17]. In this work, we mostly
focus on the MDL scoring function, but our results can
be generalized to other scoring criteria. Moreover, we do
not consider details of how s is computed, except that it
has to access the data in D, and the cost of computations
is not negligible as it grows with the size of Pa(Xi) and
the number of observations m. The parent set assignment
problem is to find a subset Pa(Xi) ⊆ X − {Xi} such that
s(Xi, Pa(Xi)) is minimized.

Let d(Xi, U), U ⊆ X − {Xi}, be the score of selecting
optimal parent set of Xi from among variables in U , that
is d(Xi, U) = min

Pa(Xi)⊆U
s(Xi, Pa(Xi)). We can efficiently

express d via the following recursion:

d(Xi, U) = min

{
s(Xi, U),

min
Xj∈U

d(Xi, U − {Xj}). (1)

To find an optimal parent set assignment of Xi we could
solve the recursion in Eq. (1) for U = X − {Xi} while
recording the choice of parents we made in the process.
However, in the majority of practical applications, especially
in the context of Bayesian networks structure learning, it
is necessary to consider a slightly broader version of the
problem.

We will say that U ⊆ X −{Xi} is a maximal parent set
of Xi if d(Xi, U) = s(Xi, U). From Eq. (1) we have that
if U is a maximal parent set then no subset of U has score
better than d(Xi, U), i.e. ∀U ′⊂Ud(Xi, U) < d(Xi, U

′).
Hence, by identifying all maximal parent sets of Xi and
memoizing their corresponding scores s, we can efficiently
answer queries about any optimal parent set of Xi. Specif-
ically, to answer query d(Xi, U

′) for any U ′ it is sufficient
to check if U ′ is one of the maximal parent sets of Xi. If it
is, then all we have to do is to return the memoized score
s of that maximal parent set. Otherwise, d(Xi, U

′) must be
equal to the smallest s among all maximal parent sets of Xi

for which U ′ is a superset.
The above property of maximal parent sets has important

practical implications. For example, to compute the score

Q(X) of an optimal Bayesian network over X , and thus find
the network itself, we have to solve recursion of the form
Q(U) = min

Xi∈U
(d(Xi, U − {Xi}) + Q(U − {Xi})). Even

with the efficient algorithms such as [2], [4] this requires
large and hard to predict number of queries for optimal
parent sets, owing to the component d(Xi, U−{Xi}) in the
recursion. Because for a single variable Xi there are 2n−1

optimal parent sets, memoizing them all is impractical and
often infeasible. In contrast, the set of all maximal parent
sets is usually many orders of magnitude smaller, and hence
using it instead, in the way we explained before, is the
desired and viable alternative [2], [4], [3].

From the computational point of view, identifying max-
imal parent sets of Xi is the same as selecting its optimal
parent set from X−{Xi}. The only difference are extra steps
required to test and store subsets that correspond to maximal
parent sets. In practical settings, we wish to enumerate all
maximal parent sets for all variables in X , and this is the
problem we are considering in this paper.

3. Proposed Approach

Given a set of variables X , database of observations D,
and a scoring function s, our goal is to enumerate all
maximal parent sets for all Xi ∈ X . If we consider a single
variable Xi, then we can directly apply recursion in Eq. (1)
and starting from the empty set we can consider parent sets
of growing size. This process can be though of as a top-down
traversal of the dynamic programming lattice with n levels
formed by the partial order “set inclusion” on the power set
of X −{Xi} (see Figure 1a). At the level l = 0 of the lattice
we have empty set. Two nodes in the lattice, U ′ and U , are
connected only if U ′ ⊂ U and |U | = |U ′|+1. Here we use U
to denote both a subset of X −{Xi} and the corresponding
node in the lattice. A node U represents a parent set of Xi.
When it is discovered, we compute s(Xi, U), compare it
with scores d passed by its predecessors to obtain d(Xi, U),
and if U is a maximal parent set we store or report a tuple
(Xi, U, s(Xi, U)).

While the above strategy is clearly guaranteed to enu-
merate all maximal parent sets, it is both computationally
and memory challenging. The computational complexity is
due to the Θ(2n) invocations of s, and memory complex-
ity is driven by how the dynamic programming lattice is
traversed. For example, one way is to assume BFS traver-
sal induced by the precedence constraints in the lattice.
In such case, maximal parent sets are enumerated layer-
by-layer with a synchronization point between any two
consecutive layers. This strategy requires that both layers
are stored in the memory, which implies O

((
n
n
2

))
space

complexity, irrespective of which parallel BFS realization
we assume [18]. Another approach is to use some variant
of DFS. With DFS we can benefit from techniques like hy-
percube pipelining, similar to [19], but this strategy requires
that we store partial results and update them each time a
node is discovered before its all predecessors are processed.
As a result, the space complexity is O(2n) and we have

X2 X3X1 X4

X2 X3 X4

∅

X2,X3

X2,X3,X4

∅

X1 X3 X4

X2,X4 X3,X4 X1,X3

X1 X2 X4

∅ ∅

X1,X4 X3,X4

X1,X3,X4

X1,X2 X1,X4 X2,X4

X1,X2,X4

X1 X2 X3

X1,X2 X1,X3 X2,X3

X1,X2,X3

s(X4,∅)s(X1,∅)

s(X1,{X2,X3,X4})

(a)

X2 X3X1 X4

X2 X3 X4

∅

X2,X3

∅

X1 X3 X4

X2,X4 X3,X4 X1,X3

X1 X2 X4

∅ ∅

X1,X2 X1,X4 X2,X4

X1,X2,X4

X1 X2 X3

X1,X2 X1,X3 X2,X3

(b)

X1,X3,X4 | X2X2,X3,X4 | X1 X1,X2,X4 | X3 X1,X2,X3 | X4

X3,X4 | X1,X2 X2,X4 | X1,X3 X3 | X1,X4 X1,X4 | X2,X3 X1,X3 | X2,X4 X1 | X3,X4

X3 | X1,X2,X4

X={X1,X2,X3,X4} | U=∅

s(X2,{X1}), s(X3,{X1}), s(X4,{X1})

s(X3,{X1,X2}), s(X4,{X1,X2})

(c)

X1,X3,X4 | X2X2,X3,X4 | X1 X1,X2,X4 | X3 X1,X2,X3 | X4

X3,X4 | X1,X2 X2,X4 | X1,X3 X3 | X1,X4 X1,X4 | X2,X3 X1,X3 | X2,X4 X1 | X3,X4

X3 | X1,X2,X4

X={X1,X2,X3,X4} | U=∅

(d)

Figure 1: (a) Example of the dynamic programming lattices for X = {X1, X2, X3, X4}. Processing node U in a lattice for
variable Xi requires computing s(Xi, U) and access to d(Xi, U

′) for each predecessor U ′ of U . (b) Example constrained
lattices, and (c) their corresponding “folded” representation. A node U in the compacted lattice requires that s is evaluated for
several variables that share candidate parents U . This improves efficiency of computing s, decreases memory requirements
and increases computational density. (d) Precedence constraints after eliminating fine-grain synchronization within every
layer of the lattice in (c). Nodes processed by the same task if the DFS mode is initiated at layer l = 1 are outlined. Note
that following how input variables are ordered, the nodes in the larger tasks are more likely to be pruned.

to maintain potentially irregular memory updates to detect
new maximal parent sets. Finally, while all variables in X
can be processed independently, the resulting embarrassing
parallelism is highly limited. This is because the computa-
tional cost for a single variable is exponential in n, which
effectively constraints the total number of variables we may
hope to process. For example, if we assume n = 48 then the
estimated memory requirements to process a single lattice,
with O(2n) nodes and 16 B per node, is 4 PB with a modest
48-way parallelism.

3.1. Constraining the Search Space

To achieve a scalable strategy, we start from constraining
the search space. This is necessary since the exponential
cost of considering all optimal parent sets is prohibitive for
realistic problem instances, irrespective of how efficient is
our parallel exploration algorithm.

For every variable Xi it is reasonable to expect that
its optimal parent set will not contain all other variables.
In other words, there is a limit on the depth to which
we should be exploring the dynamic programming lattice
of Xi. To maintain exactness guarantees, we have to ensure

that the bound on the depth of exploration is no smaller
than the unknown size of the optimal parent set. Here we
provide such a bound for the information-theoretic MDL
scoring function. We note that similar bounds can be derived
for other functions, and in fact a significant work in this
direction has been done, for example in [20].

The MDL score is defined as:

s(Xi, U) = m · H(Xi|U) +NC(Xi, U), (2)

where

NC(Xi, U) =
1

2
· log2(m) · qi · (ri − 1) (3)

is a network complexity term, H(Xi|U) is the estimated
conditional entropy of Xi given U , and ri > 1 is the number
of states of Xi, and qi =

∏
j,Xj∈U

rj is the number of states

that variables in U can assume (qi = 1 if U = ∅). The
parameters ri and qi as well as the conditional entropy are
directly assessed from D. In short, the MDL score of a pair
(Xi, U) is the number of bits required to encode information
about Xi and its parents U if we were to use Huffmann
coding of D.

To derive the bound we exploit the following observa-
tion. When U is empty, we have the maximal conditional
entropy H(Xi|∅) = H(Xi) and the minimal network com-
plexityNC(Xi, ∅) = 0.5·log2(m)·(ri−1). By increasing the
size of U we can decrease conditional entropy of Xi, which
has the theoretical limit of 0, at the expense of increasing
network complexity. This follows from the basic properties
of entropy and the definition of the network complexity
term. Once the network complexity NC(Xi, U) is greater or
equal to s(Xi, ∅) = m ·H(Xi) +NC(Xi, ∅), irrespective of
which variables we add to U , the score s(Xi, U) will always
increase. This is the point at which network complexity
outweighs any gains from the decreasing entropy of Xi.
Consequently, if U satisfies

Condition 1: NC(Xi, U) ≥ s(Xi, ∅),

then any superset of U can be excluded from further con-
sideration, since it will not admit new optimal or maximal
parent sets for Xi. The efficiency of Condition 1 depends
on the input data D. Nevertheless, it works extremely well
in practice. For example, in our experiments, reported in
Section 4, we found that for real-world data with n = 70
we never considered nodes with more than nine variables.

We can further extend our pruning strategy by using
the following observation [21]. The lowest entropy we can
achieve for Xi is H(Xi,X −{Xi}). Now consider the score
d(Xi, U). Here we have that if

Condition 2: d(Xi, U) ≤ m·H(Xi,X−{Xi})+NC(Xi, U)

holds, then no superset of U can improve the score d(Xi, U).
This is because any superset of U has higher network
complexity, and hence ∀U ′⊃Um · H(Xi,X − {Xi}) +
NC(Xi, U) ≤ H(Xi,X − {Xi}) + NC(Xi, U

′). As pre-
viously, if U satisfies the condition we can exclude it from
further considerations, since it will not admit new optimal
or maximal parent sets. The example effect of applying our
pruning conditions is shown in Figure 1b.

Although both conditions achieve the same goal of
pruning the search space, they differ in which information
they require. To test Condition 1, we use only network
complexity, which can be computed for any pair Xi and
U independently of other U ′ ⊂ U , i.e. independently of
predecessors of U in the dynamic programming lattice. On
the other hand, Condition 2 provides a tighter bound but
depends on the score d(Xi, U), which, as we explained
earlier, requires access to the maximal parent sets of Xi.

3.2. Parallel Exploration

Because of the memory and computational complexity,
which remains challenging even when our pruning condi-
tions are applied, we focus our parallel strategy on the
distributed memory systems, with the Apache Spark plat-
form [12] serving as an execution vehicle.

Recall that our goal is to traverse in the top-down fashion
the dynamic programming lattices for all Xi. A node U in
a lattice corresponds to a computational task that evaluates

s(Xi, U), tests if U is a maximal parent set, and checks if su-
persets of U can admit new maximal parent sets. These tests
are the source of precedence constraints between the tasks.
The main idea of our parallel approach is as follows. We on-
the-fly generate and “fold” the dynamic programming lat-
tices for different Xi into a single lattice with lower memory
requirement and denser computational load. We explore the
resulting lattice in parallel, initially in the BFS mode, and
switch to DFS when memory becomes a bottleneck. To store
and access maximal parent sets discovered in the process, we
maintain a global state, which is synchronized via reduction
between the layers. Finally, we reorder computations within
each layer to eliminate fine-grain synchronization between
the tasks, that otherwise would be necessary to effectuate
our pruning conditions. Below, we explain each element of
our approach.

3.2.1. Folding Lattices. If we consider the dynamic pro-
gramming lattice for variable Xi, then until our pruning
conditions become effective we have to manage

(
n−1
l

)
tasks

at the level l of the lattice. Consequently, the memory
required to represent the entire layer l is bounded by
B1 = c1 · n ·

(
n−1
l

)
, assuming cost c1 to store a task.

This easily becomes problematic for larger problems as soon
as l > 2. The problem persists even when pruning takes
place, since initially only some of the tasks are removed
from consideration. However, we can “fold” the dynamic
programming lattices such that the tasks sharing the same
set U across different lattices are represented by a single task
(see Figure 1c). Let the memory taken by such combined
task be c2. The memory requirement of the new lattice is

B2 = c2 ·
(
n
l

)
. This gives us

B1

B2
=

c1
c2
· (n− l) reduction in

memory complexity. To store a task we can use a bitmap,
where i-th bit indicates whether element i is in a set. In such
case, c2 = 2 · c1, since in the compacted lattice we require
one bitmap to represent all Xi for a task, and one bitmap
to represent the actual U (v.s. storing only U in the original
lattice). By using bitmaps we additionally reduce memory
overhead, and we can realize basic operations, like testing
set inclusion, with only few hardware instructions. The
memory reduction becomes less significant as l increases.
However, this is acceptable, since we expect that thanks
to the pruning conditions the search process will terminate
early, which we confirm via experimental results.

The main advantage of our “folding” step is significantly
increased computational density. To process a single task in
the “folded” lattice, we have to perform multiple evaluations
of s with the same parent set U . Without explaining details
of how s is computed from D, we note that by having
the same parents in the consecutive invocations of s, we
can precompute statistics about D induced by U , and reuse
them from one invocation to another. Consequently, the cost
of processing a task in the “folded” lattice is higher than
the cost of processing an individual corresponding task in
the original lattice, but it is lower than the total cost of
processing all corresponding tasks from the original lattices,
i.e. if X is a set of random variables sharing U we have

that T (s(X,U)) <
∑

Xi∈X T (s(Xi, U)), where T is the
processing cost.

By “folding” the lattices, we limit parallelism in the
first two stages of the lattice. However, this has a negligible
effect on the scalability, since even for large n the cost of
processing these layers is minimal compared to the total
processing time. Alternatively, we may decide to “fold”
the lattices only after the desired level of parallelism is
achieved. Finally, the computational cost of individual tasks
becomes non-uniform, but this is addressed by the dynamic
scheduling at the run-time.

3.2.2. Limiting Synchronization. Consider the task for
node U at the layer l, and suppose that Condition 1 or
Condition 2 holds for U . In such case, no task that corre-
sponds to a superset of U should be generated and included
in the layer l + 1, as it will not contribute new maximal
parent sets. In other words, at given layer we should see
only those tasks whose predecessors all did not satisfy the
pruning conditions. However, to enforce this requirement
we would need either complex synchronization between all
tasks within the same layer, or a reduction operation on all
possible tasks for the next layer, which effectively would
defy the purpose of pruning.

To address this problem, we can change the way in
which tasks for the next layer are enumerated, such that
synchronization is bypassed at the small cost of consid-
ering a few unnecessary tasks in the next layer. We first
order variables in X by the decreasing number of states
they have in D, i.e. for any Xi and Xj , if i < j then
ri ≥ rj , and we maintain this ordering for every node U .
If two variables have the same number of states, we use
H(Xi,X − {Xi}) < H(Xj ,X − {Xj}) as a secondary
condition. Then, when deciding whether a task should be
considered in the next layer, instead of checking if any of
its predecessors satisfied pruning condition, which would
require synchronization, we check only one selected prede-
cessor. Specifically, let Xj ∈ U be the maximal element
in U . To enumerate descendants of U , we consider only
U ′ = U ∪ {Xk} for all k > j. Thus, node U becomes a
predecessor to n − j nodes (see Figure 1d). At the same
time, from Eq. (3) and Conditions 1 and 2, it follows that
smaller the j the higher the probability that U will satisfy
pruning conditions. To see why, observe that the network
complexity term grows as the product of the number of
states that variables in U can assume. Because variables
are ordered by the decreasing number of their states and the
increasing entropy, we have that if |U | = |U ′′| and j < j′′,
where Xj is the maximal element in U and Xj′′ is the
maximal element in U ′′, then NC(Xi, U) ≥ NC(Xi, U

′′).
Consequently, nodes that are predecessors to the largest
number of nodes in the next layer are most likely to meet the
pruning conditions. While this approach does not guarantee
that all tasks that should be pruned will not be generated,
it works very well in practice. In fact, in our experiments
we found that we remove no less than 97% of all tasks that
should be pruned. The remaining 3% constitute an extra
work of processing nodes that do not contribute maximal

parent sets. Note that these nodes once processed never
create successors and thus the extra work overhead does
not propagate.

To decide whether node U at layer l is a maximal
parent set for Xi, we require optimal parent set scores,
d(Xi, U

′), for all subsets U ′ ⊂ U from the layer l − 1. As
we explained earlier, instead of maintaining a complete list
of all optimal parent sets, to retrieve d(Xi, U) we depend
only on the previously enumerated maximal parent sets. For
each variable Xi, we store a list L(Xi) of its maximal parent
sets represented by tuples (U, s(Xi, U)), and sorted by the
score s(Xi, U). Then to extract all optimal parent set scores
for Xi and U we require O(|L(Xi)|) scan of L(Xi). This
is affordable, since even complete L(Xi) is very small for
a typical input data (see Table 1 in Section 4). Each task
at layer l may contribute a new maximal parent set that
must be available to all tasks for Xi in the subsequent
layers. Consequently, we maintain all L(Xi) as a global
state that is updated via all-to-all reduction, with list merging
as an operator, after given layer is entirely processed. This
step can be efficiently executed considering a small size of
L(Xi).

3.2.3. Changing Exploration Mode. While our pruning
conditions significantly constrain the search space, for large
problems the number of the tasks generated in the later
stages of the execution may still exceed the available main
memory. This in turn would lead to the undesired out-of-
core execution. After processing all tasks at layer l, we can
estimate the number of tasks that layer l + 2 will have in
the worst case. If that number exceeds the total available
memory, it is reasonable to conclude that we have sufficient
parallelism, and instead of creating new tasks we can change
the mode of execution into a memory preserving DFS.
Specifically, for each node U at layer l + 1, instead of
considering all supersets of U independently, we can process
them sequentially following the DFS order (see Figure 1d).
However, in such case we cannot assume that the global list
of all maximal parent sets is consistent between different
tasks. As a result, some tasks could end up generating
incorrect maximal parent sets or could perform extra work
because without the access to the complete list of maximal
parent sets Condition 2 could unnecessarily fail. To mitigate
this situation, we flag all maximal parent sets generated
in the DFS mode that potentially could not be maximal
in the global sense, i.e. when maximal parent sets from
other tasks are taken into the account. These are maximal
parent sets U whose at least one strict subset U ′ ⊂ U
has been processed in a different task. Once all tasks are
processed, we perform reduction to obtain the final global
state for all L(Xi). Then, we proceed with checking if the
flagged maximal parent sets remain maximal in the merged
L(Xi). Let zf (Xi) be the total number of maximal parent
sets flagged when running in the DFS mode. The cost of
verifying these maximal parent sets is O(zf (Xi) · |L(xi)|).
This is because, in the worst case, for every flagged maximal
parent set U , we have to check if none of the remaining
elements in L(Xi) is a subset of U with a better score.

However, it turns out that in the practical settings zf (Xi)
is a very small number, and in fact frequently we have that
zf (Xi) = 0. To understand why, consider the following. The
memory requirements due to BFS grow exponentially with
the depth of the dynamic programming lattice. At the same
time, because the network complexity term, NC, grows
exponentially as well, the probability of enumerating new
maximal parent sets decreases as we progress to the higher
layers of the lattice. In our experiments, for all tested data
sets we did not enumerate new maximal parent sets beyond
layer l = 6. At the same time, if the available main memory
is limited, and we are forced to switch to the DFS mode
early, then we can expect that the majority of the maximal
parent sets tested by a single task will not be depending on
the maximal parent sets discovered in other tasks. This is
a direct consequence of the precedence constraints within
the lattice.

When switching to the DFS mode, we can expect an
increased computational imbalance between the tasks. How-
ever, the largest tasks which could be the source of the most
significant imbalance are the ones which are the most likely
to be pruned. At the same time, the number of the DFS tasks
will remain sufficient to provide room for load balancing at
the run-time, which we confirm by experiments.

3.3. Apache Spark Implementation

We implemented our parallel approach using the Apache
Spark platform. The reason we use Spark is purely prag-
matic: the platform supports locality-aware dynamic task
scheduling, which we directly benefit from, since our com-
putational tasks can be heterogeneous owing to the lattice
“folding” and the potential use of the DFS mode. Addi-
tionally, Spark API makes expressing iterative BSP-style
programs extremely productive. While it is clear that using
one of the traditional HPC models, e.g. MPI or UPC, we
could probably achieve faster implementation, we believe
that the scalability would remain comparable.

The high level exploration components of our method
are implemented in Python, and the computationally in-
tensive parts, specifically evaluations of function s, are
offloaded to the efficient, SIMD-parallel C++ kernel derived
from our SABNA package [4], [22]. Apache Spark is usually
regarded as a platform for the data intensive computing. In
our case, the input data is typically very small (i.e. at the or-
der of MB), however, it quickly generates massive new data
representing individual tasks of the dynamic programming
lattice. Below we provide details of the implementation
assuming that reader is familiar with the basics of the
Apache Spark interface [23].

We follow the standard BSP model realized via it-
erative transformations on a sequence of Spark Resilient
Distributed Datasets (RDDs), where RDDi represents
layer i of the compacted dynamic programming lattice.
To represent a node in the lattice, RDD stores a tu-
ple (X,U), where both X and U are expressed via
bitmaps, and X keeps variables that share U . To ob-
tain RDDi, we initialize and parallelize RDD0 on Spark

driver, since this is very inexpensive operation. Then, we
iteratively apply the following transformations: RDDi =
RDDi−1.repartition(p).mapPartitions(M), where p is a
small multiple, usually four (as suggested in several Apache
Spark best practices), of the total number of cores that Spark
executors can use, and M is the mapping function that:
1) evaluates function s for all variables in X , and identifies
potential maximal parent sets, 2) checks the conditions to
constraint the search space, and 3) accordingly yields nodes
for the next layer to explore. The repartitioning transfor-
mation is to ensure good load balancing between executors
since the number of tasks grows from one RDD to the next.
Here we depend on the default Spark scheduler. We use
mapPartitions, instead of a more natural map, to enable
indexing of the data D when map M is initialized. By in-
dexing D we significantly accelerate computations of s, and
by doing so only once per partition we avoid unnecessary
overheads. At the end of every iteration we materialize RDD
by invoking Spark’s count action. Based on the resulting
size of RDD, we assess the memory requirement for the
subsequent iterations, and decide whether we should be
switching to the DFS mode. Finally, at any point of the
execution we make sure that the last two RDDs are cached
and remain in the main memory to avoid expensive RDD
recomputing or restoring from the secondary storage.

The mapping function M makes use of the information
about maximal parent sets from previous iterations, i.e.
L(Xi) for all Xi. To maintain this global state we use a
combination of Spark accumulator and broadcast variables,
since the memory cost of representing maximal parent sets
is very small. In a given iteration, newly discovered maximal
parent sets are added by each executor to a customized
Spark accumulator to form an update to the global list of
all maximal parent sets. As this could lead to potential
duplicate entries in L(Xi) when a task fails or speculative
execution is enabled, we make sure that only unique entries
are considered. After the count action at the end of the
iteration is performed, the accumulator is reduced an the
global list managed by the Spark driver is updated and
broadcast back to the executors. Together with the count and
repartition step, these operations represent communication
and synchronization stages in the BSP model.

In the DFS mode, instead of generating RDD for the
next layer, which would exceed the available main memory,
we apply another transformation to the current RDD, where
we explore each partition as described in Section 3.2.3. As
we explained earlier, this increases the computational cost of
every task and makes tasks more heterogeneous. However, at
this stage the number of RDD partitions and the distribution
of their computational load is such that the Spark run-time
can easily maintain load balance.

4. Experimental Results

To understand performance characteristics of our ap-
proach, we performed a set of experiments on a standalone
Apache Spark cluster with 25 nodes and GbE interconnect.

TABLE 1: Data sets used in experiments.

Name n m ri
min/max

z |L(Xi)|
min/max

AL-4K 37 4,000 2/4 2,654 1/281
AL-10K 37 10,000 2/4 5,636 1/648
HF-10K 56 10,000 2/11 3,941 4/353
USCD 56 10,000 2/18 44,804 3/3857
HEPAR II 70 4,000 2/4 1,714 1/381

Each node in the cluster is equipped with 20-core dual-
socket Intel Xeon E5v3 2.3 GHz processor, 64 GB of RAM
and a standard SATA hard drive. The shared file system
is run under GPFS, however, this is of minor importance
considering that the input data is very small, even for the
largest considered problems, and it is accessed only once at
the very beginning of the computations. In all tests, Spark
driver runs with the default parameters, and since it is a
very light-weight process, it is collocated with one of the
executors. We allocate one Spark executor per node using
the default configuration for the number of cores, i.e. each
executor uses all available cores in a node. All executors
are configured to use 58GB out of the available 64GB, with
the remaining memory available to the operating system
and Python interpreter. We note that we tested different
configurations of executor-to-core ratios, across different
data sets, without noticeable difference in performance.

We used several popular benchmark data sets from the
UCI Machine Learning Repository [24], including Alarm
(AL), Hail Finder (HF), the US Census Data (UCSD) and
HEPAR II. These are commonly considered too challeng-
ing to be solved exactly using sequential techniques, and
are among the most demanding tests for the parent set
assignment. The properties of all data sets are provided in
Table 1, including: ri – the number of states (arity) that
the variables in the set can assume, z – the total number
of generated maximal parent sets, and the properties of the
output collection of the maximal parent sets L(Xi).

4.1. Scalability Tests

In the first set of experiments, we analyzed scalability of
the platform depending on the number of input variables n
and the number of observations m. We executed our Spark
software on the varying number of nodes and we recorded
wall time, as well as: lmax – the deepest processed layer
in the dynamic programming lattice, lz – the last layer at
which we found new maximal parent sets, and the amount
of extra work we had to perform due to removed synchro-
nization (Section 3.2.2). The results of this experiment are
summarized in Tables 2-3 and Figure 2. Here we report only
relative speedup computed with respect to the time obtained
on two nodes, since, except of AL-4K, we were not able to
process the test data sets using sequential software.

We start the analysis by first looking at the execution
time and the speedup of our method. From Table 2 and
Figure 2 we can see that, with the exception of AL-4K, the
software achieves very good scalability on up to 24 nodes

TABLE 2: Execution time in minutes.

Compute Nodes
Name 2 4 8 12 16 20 24

AL-4K 27.1 14.3 7 4.8 4.8 3.1 2.9
AL-10K 241.4 123.4 61 41.5 31.3 25.11 20.9
HF-10K 425.4 214 107.5 71.8 54.2 43.4 36.6
USCD 995.7 496.5 249.2 167.6 127.1 101.8 85.4

TABLE 3: Effect of reorganizing the search space.

Name lmax lz Nodes processed Extra work

AL-4K 9 4 4.6× 107 1.68%
AL-10K 10 5 1.6× 108 1.72%
HF-10K 7 4 3.1× 107 3.2%
USCD 8 6 2.1× 108 1.23%

(480 cores). In all test cases, the required main memory
never exceeds 84 GB, which enables us to run completely
in the BFS mode. The slightly weaker scalability for AL-
4K can be attributed to the overall size of the problem.
With small n and relatively small number of observations
the problem can be solved in a few minutes on 12 nodes.
Beyond that point, the overhead of synchronization between
layers becomes significant compared to the optimized com-
pute time on the collapsed dynamic programming lattice. As
the number of observations for this data set increases (data
set AL-10K), computational time increases and expectedly
scalability improves.

Because of the relatively small size, we were able to
process AL-4K using a sequential code in 2,435 minutes.
The sequential code is written entirely in C++, is optimized
for memory usage and provides the same lattice constraining
techniques as the parallel version. It also uses the same
computational kernel to compute s. While this result sug-
gests outstanding super-linear performance of our parallel
code, we should keep in mind that the comparison is not
completely fair, since the sequential version has significant
overheads due to memory management (to avoid enumerat-
ing unnecessary tasks). Nevertheless, the result shows that
even “small” problems can take more than a day to process

 2

 4

 6

 8

 10

 12

 4 8 12 16 20 24

Re
la

tiv
e

Sp
ee

du
p

Compute Nodes

Linear
AL-4K

AL-10K
HF-10K

USCD

Figure 2: Relative speedup computed with respect to the
execution time on two nodes.

sequentially, and this time can be easily reduced to minutes
by using a cluster with a few nodes.

Next we consider the effectiveness of our approach in
terms of removing synchronization and constraining the
search space. Table 3 shows that in the worst case we
have to perform only 3.2% of extra work compared to the
completely synchronized version in which no unnecessary
tasks are generated. At the same time, the total number
of processed nodes is a small fraction of what we would
have to process without constraining the search space. For
example, for the USCD benchmark the total number of tasks
up to layer lmax = 8 is 1,689,096,333 when no pruning
is applied, and it is reduced to approximately 12% of that
when the pruning is enabled. Even then however, the total
number of tasks to process is of the order of 108, which
demonstrates complexity of the problem and the need for
parallel approach. The same pattern holds true for other
tested data sets.

The last layer at which we enumerate new maximal par-
ent sets, lz , is always much smaller than lmax. This suggests
that there is a room to tighten the pruning conditions. At
the same time, it confirms that switching to the DFS at
the higher levels of the dynamic programming lattice will
not trigger any significant work due to how we manage the
global state with all maximal parent sets. Finally, by looking
at the results for AL-4 and AL-10 data sets, we can see
that both lmax and lz are increasing when the number of
observations increases. This is because with the growing m
the network complexity term increases logarithmically for
any variable Xi, but s(Xi, ∅) grows linearly. Consequently,
the effectiveness of the pruning conditions decreases. Nev-
ertheless, the overall performance of the method remains
reasonable.

4.2. HEPAR II Test

In our second experiment, we focused on the HEPAR II
test data. This benchmark comes from one of the early clini-
cal decision support systems for multiple-disorder diagnosis
of liver that involved a complex Bayesian network [13]. As
we already mentioned, the parent set assignment problem
plays a critical role in the exact Bayesian networks learning,
and hence directly translates into our ability to build high
quality models for critical applications. This makes the
benchmark interesting from the practical point of view. The
benchmark is also challenging as it contains 70 variables,
and all variables assume only few states, making it hard to
identify variables that should be pruned.

To process HEPAR II we used all 25 nodes of our
cluster. The experiment took 20 hours and 17 minutes to
complete, with lmax = 8 and lz = 4. To the best of our
knowledge, this is the first time exact results for HEPAR II
are reported. The peak memory consumption was 327 GB,
and the execution involved the total of 10,770,519,474 tasks.
Because the total memory available in our cluster is 1.6 TB,
we again were able to process this benchmark completely
in the BFS mode. However, to see how turning into the
DFS mode affects the performance, we limited the available

memory to 4 GB per node or 100 GB total memory. In
this case, at layer l = 7 we had to switch to the DFS
mode to process the remaining 9,427,586,763 tasks. This
had the minor impact on the performance, and we were
able to complete the entire execution in 20 hours and 28
minutes. Here we should keep in mind that because lz = 4
there were no new maximal parent sets discovered when
running in the DFS mode. However, we believe that even
with new parent sets discovered the performance would not
be drastically changed.

5. Related Work

Because of its importance, the parent assignment prob-
lem has been considered as a standalone question [1], [3]
and in the relation to the structure learning of Bayesian
networks [2], [4]. In [1], Koivisto provides several hardness
results that suggest that the parent assignment for a single
variable most likely has no polynomial-time solution. This
motivates our parallel approach as there is a practical need
to push the size of the problems that can be solved exactly
in realistic time limits. In [2], [4], multiple authors discuss
the application of maximal parent sets in exact Bayesian
networks structure learning. However, in each case maximal
parent sets are assumed to be given and no details of how
that is achieved are provided. In this paper, we provide the
actual scalable algorithm for maximal parent sets enumer-
ation, which in fact can be combined with any Bayesian
network structure learning strategy. There is a significant
body of work on solving maximal parent sets enumer-
ation while discovering Bayesian network structure [25],
[26], [27], including parallel algorithms [19], [28]. How-
ever, when both problems are coupled many optimizations
specific to the parent sets enumeration become infeasible.
As a result, these combined approaches do not scale and
are limited to the instances with 30 to 40 variables, even
when using thousands of cores and provably optimal MPI-
based realizations [19], [28]. Finally, recently Scanagatta et
al. [3] proposed a greedy heuristic that depends on a fast
approximation of the actual scoring function to constraint
the number of explored parent sets. While this approach
can be used to solve problems larger than what we report,
it does not provide any quality guarantees. In contrast, our
method is guaranteed to provide the exact solution.

6. Conclusion

The exact parent set identification is a challenging prob-
lem with important applications in the exact structure learn-
ing of Bayesian networks. In this paper, we proposed a new
scalable distributed memory approach to the problem, and
we used it to efficiently process HEPAR II data set. This
experiment clearly demonstrated that our method can handle
even the most challenging data sets and using only limited
hardware resources. This in turn opens new possibilities for
exact learning of large Bayesian networks, as with some
effort our method can be combined with the already existing

solvers, e.g. [4]. Our approach is scalable and we believe can
be generalized to other popular scoring functions including
AIC and BDeu. Since the efficiency of constraining the
search space for these functions is currently unclear, the
ability of our solution to adopt to heavy workloads provides
a significant advantage.

Acknowledgments

Authors wish to acknowledge hardware and technical
support provided by the Center for Computational Research
at the University at Buffalo.

References

[1] M. Koivisto, “Parent assignment is hard for the MDL, AIC, and
NML costs,” in International Conference on Computational Learning
Theory, 2006, pp. 289–303.

[2] C. Yuan, B. Malone, and X. Wu, “Learning optimal Bayesian net-
works using A* search,” in International Joint Conference on Artifi-
cial Intelligence, 2011, pp. 2186–2191.

[3] M. Scanagatta, C. de Campos, G. Corani, and M. Zaffalon, “Learning
Bayesian networks with thousands of variables,” in Neural Informa-
tion Processing Systems, 2015, pp. 1864–1872.

[4] S. Karan and J. Zola, “Exact structure learning of Bayesian networks
by optimal path extension,” in IEEE International Conference on Big
Data, 2016, pp. 48–55.

[5] I. Tsamardinos, C. Aliferis, A. Statnikov, and E. Statnikov, “Algo-
rithms for large scale Markov blanket discovery.” in FLAIRS Confer-
ence, vol. 2, 2003, pp. 376–380.

[6] G. Kong, D.-L. Xu, and J.-B. Yang, “Clinical Decision Support
Systems: A review on knowledge representation and inference under
uncertainties,” International Journal of Computational Intelligence
Systems, vol. 1, no. 2, pp. 159–167, 2008.

[7] N. Fenton and M. Neil, “Comparing risks of alternative medical diag-
nosis using Bayesian arguments,” Journal of Biomedical Informatics,
vol. 43, no. 4, pp. 485–495, 2010.

[8] L. Mukhanov, “Using Bayesian belief networks for credit card fraud
detection,” in International Conference on Artificial Intelligence and
Applications, 2008, pp. 221–225.

[9] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian
networks to analyze expression data,” Journal of Computational
Biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[10] X. Fan and Y. Changhe, “An improved lower bound for Bayesian
Network structure learning,” in Association for the Advancement of
Artificial Intelligence, 2015.

[11] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009.

[12] M. Zaharia, M. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Sto-
ica, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, and S. Venkataraman, “Apache Spark: a unified engine for
big data processing,” Communication of the ACM, vol. 59, no. 11,
pp. 56–65, 2016.

[13] A. Onisko, M. Druzdezel, and H. Wasyluk, Extension of the HEPAR
II Model to Multiple-Disorder Diagnosis, 2000.

[14] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, pp. 461–464, 1978.

[15] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Second International Symposium on Infor-
mation Theory, 1973, pp. 267–281.

[16] G. Cooper and E. Herskovits, “A Bayesian method for the induction
of probabilistic networks from data,” Machine Learning, vol. 9, pp.
309–347, 1992.

[17] D. Heckerman, “A tutorial on learning with Bayesian networks,”
1995. [Online]. Available: http://tinyurl.com/j939ua3

[18] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers),” in ACM Symposium on Parallelism in Algorithms and
Architectures, 2010, pp. 303–314.

[19] O. Nikolova, J. Zola, and S. Aluru, “Parallel globally optimal structure
learning of Bayesian networks,” Journal of Parallel and Distributed
Computing, vol. 73, pp. 1039–1048, 2013.

[20] C. de Campos and Q. Ji, “Efficient structure learning of Bayesian
networks using constraints,” Journal of Machine Learning Research,
pp. 663–689, 2011.

[21] J. Tian, “A branch-and-bound algorithm for MDL learning Bayesian
networks,” in Conference on Uncertainty in Artificial Intelligence,
2000, pp. 580–588.

[22] “SABNA – Scalable Accelerated Bayesian Network Analytics,” https:
//gitlab.com/SCoRe-Group/SABNA.

[23] “Spark programming guide,”
https://spark.apache.org/docs/latest/programming-guide.html.

[24] “UC Irvine Machine Learning Repository,”
https://archive.ics.uci.edu/ml/.

[25] S. Ott, S. Imoto, and S. Miyano, “Finding optimal models for small
gene networks,” in Pacific Symposium on Biocomputing, 2004, pp.
557–567.

[26] M. Koivisto and K. Sood, “Exact Bayesian structure discovery in
Bayesian networks,” Journal of Machine Learning Research, vol. 5,
pp. 549–573, 2004.

[27] A. Singh and A. Moore, “Finding optimal Bayesian networks by
dynamic programming,” Carnegie Mellon University, Tech. Rep.,
2005.

[28] Y. Tamada, S. Imoto, and S. Miyano, “Parallel algorithm for learning
optimal Bayesian network structure,” Journal of Machine Learning
Research, vol. 12, pp. 2437–2459, 2011.

http://tinyurl.com/j939ua3
https://gitlab.com/SCoRe-Group/SABNA
https://gitlab.com/SCoRe-Group/SABNA
https://spark.apache.org/docs/latest/programming-guide.html
https://archive.ics.uci.edu/ml/

	1 Introduction
	2 Preliminaries
	3 Proposed Approach
	3.1 Constraining the Search Space
	3.2 Parallel Exploration
	3.2.1 Folding Lattices
	3.2.2 Limiting Synchronization
	3.2.3 Changing Exploration Mode

	3.3 Apache Spark Implementation

	4 Experimental Results
	4.1 Scalability Tests
	4.2 HEPAR II Test

	5 Related Work
	6 Conclusion
	References

