
ARM Wrestling with Big Data:

A Study of Commodity ARM64 Server

for Big Data Workloads∗

Jayanth Kalyanasundaram and Yogesh Simmhan
Department of Computational and Data Sciences,

Indian Institute of Science, Bangalore 560012, India

Email: jayantkalyanasundaram@gmail.com, simmhan@cds.iisc.ac.in

September 12, 2017

Abstract
ARM processors have dominated the mobile device market in the last

decade due to their favorable computing to energy ratio. In this age of
Cloud data centers and Big Data analytics, the focus is increasingly on
power efficient processing, rather than just high throughput computing.
ARM’s first commodity server-grade processor is the recent AMD A1100 -
series processor, based on a 64-bit ARM Cortex A57 architecture. In this
paper, we study the performance and energy efficiency of a server based
on this ARM64 CPU, relative to a comparable server running an AMD
Opteron 3300 -series x64 CPU, for Big Data workloads. Specifically, we
study these for Intel’s HiBench suite of web, query and machine learning
benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for
data sizes up to 20GB files, 5M web pages and 500M tuples. Our re-
sults show that the ARM64 server’s runtime performance is comparable
to the x64 server for integer-based workloads like Sort and Hive queries,
and only lags behind for floating-point intensive benchmarks like PageR-
ank, when they do not exploit data parallelism adequately. We also see
that the ARM64 server takes 1

3

rd
the energy, and has an Energy Delay

Product (EDP) that is 50− 71% lower than the x64 server. These results
hold promise for ARM64 data centers hosting Big Data workloads to re-
duce their operational costs, while opening up opportunities for further
analysis.

1 Introduction

Mobile and Cloud computing have transformed computing in the 21st century,
with millions of servers currently hosted at public data centers and billions of

∗Accepted for publication in the Proceedings of the 24th IEEE International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2017

1

ar
X

iv
:1

70
1.

05
99

6v
2 

 [
cs

.D
C

] 
 9

 S
ep

 2
01

7



smart phones in the hands of consumers. At the same time, these two classes of
computing devices have been supported by two different categories of processor
architectures. x64 processors (also called x86-64) have traditionally held sway
over Cloud servers, with Intel and AMD offering 64-bit versions of their x86
instruction sets based on a CISC architecture, and with support for hardware
virtualization. ARM’s RISC-based processor architectures, on the other hand,
have dominated mobile platforms, including smart phones, tablets, and em-
bedded Internet of Things (IoT) devices, typically running a 32-bit instruction
set.

The RISC architecture natively offers a lower power envelope relative to
CISC processors while having more limited performance [1]. At the same time,
x64 processors have been increasing the number of cores per processor to over-
come the power-wall that limits their performance growth in single-core clock
speeds. As a result, the performance difference between individual ARM and
x64 cores has been narrowing.

ARM recently introduced their ARMv8-A architecture with a 64-bit instruc-
tion set, ARM64 (also called AArch64), to increase the memory addressing avail-
able to their processors. In 2016, AMD released the first ARM64 System on
Chip (SoC), the A1100 series processor with 8-cores (code named Seattle), using
ARM’s Cortex-A57 micro-architecture [2]. Since energy consumption by servers
forms the major fraction of the operational cost for Cloud data centers, ARM64
with its lower energy footprint and server-grade memory addressing has started
to become a viable platform for scale-out (rather than scale-up) workloads that
are common in Clouds applications, and the growing trend of containerization
as opposed to virtualization.

However, given their recent emergence, there has been no literature offering
an empirical study of the effectiveness of ARM64 processors for Cloud-based ap-
plications, and specifically for Big Data workloads, to confirm these possibilities.
While 32-bit ARM processors have been explored for diverse workloads [3, 4],
there has been no study of servers based on the new ARM64 processor for Big
Data workloads. Indeed, we could not identify any relevant publication using
the AMD A1100 commodity SoC. To our knowledge, the only research study
on the performance of an ARM A57 processor is for an HPC workload using an
AppliedMicro X-Gene server [5].

IaaS Cloud providers are rapidly diversifying into heterogeneous compute of-
ferings such as VMs with GPU accelerators, HPC inter-connects, containerized
deployments, and spot-pricing, besides their on-demand VMs hosted on com-
modity hardware. Given this rapidly evolving eco-system, an energy-efficient
ARM64-based compute offering that is competitively priced and performant,
is highly conceivable [6]. Understanding the value of such a platform for end-
users with data-intensive workloads is, thus, crucial. We address this gap with
an experimental study offering early insights on the computational scaling and
energy efficiency an ARM64 server for Big Data workloads.

Our goal here is not to delve into the internal architecture of the ARM64
processor, which is well-studied elsewhere, but rather consider it’s impact for a
data science end-user, a Big Data platform developer or an Infrastructure as a

2



Service (IaaS) provider. Hence, we are interested in the workload’s compute and
energy performance outcomes to help users choose between comparable ARM64
and x64 servers. We make the following specific contributions in this paper.

1. We introduce the system model for two comparable servers, running ARM64
and x64 CPUs (§ 3), and describe Intel’s HiBench Big Data benchmark
suite [7] used to evaluate these servers for diverse workload sizes (§ 4).

2. We offer a detailed performance evaluation of these two servers, for text
analytics and I/O micro-benchmarks, and web, query, and machine learn-
ing application benchmarks (§ 5). We present an analysis on these results
based on platform and hardware features.

3. We report the power consumption by the servers for these workloads, and
their Energy Delay Product (EDP) that impacts their operational energy
efficiency (§ 6).

2 Related Work

32-bit ARM processors (ARM32 ) were designed for mobile and embedded de-
vices, such as smart phones and Raspberry Pis, and have also been used in net-
work switches in the data center. Their focus has traditionally been on power
efficiency, as opposed to server-grade processors that focus on performance.
There have been several studies of ARM32 processors, and their comparison
with x86 or x64 processors, as we discuss below. But none explore an ARM64
commodity server which will be widely available, nor its effectiveness for Big
Data workloads, which we address in this paper.

[8] uses a low cost testing system to systematically compare several ARM
and x86 devices. It analyzes the system’s power efficiency and CPU performance
for a web server, database server and floating point computation. The results
conclude that ARM is 3− 4× more power efficient on a performance per energy
comparison although its performance deteriorates when we increase the size of
the workload.

Query processing (TPC-C and TPC-H on MySQL) and Big Data (K-Means,
TeraSort and WordCount) benchmarks have been tried on the ARM Cortex-A7
little/ARM Cortex-A15 big cores, to compare against Intel Xeon servers [3].
They evaluate execution time, energy usage and total cost of running the work-
loads on these self-hosted ARM and Xeon nodes. Their results show that ARM
takes more time to perform MapReduce computations compared to others, when
implemented in Java. However, this time is reduced significantly by the C++
implementation of the same. Our study shows similar limitations with floating-
point performance in ARM64 as well.

HPC workloads have been verified for the ARM architecture as well [4].
In [9], the performance and energy of HPC clusters based on Intel Atom, Core
i7 and Xeon E7, AMD G-T40N processors, and ARM Cortex A9 processors
was examined. They perform benchmarks like Phoronix Test Suite, CoreMark,
Fhourstones, and High-Performance Linpack (HPL).

3



Analytical models have also been developed to study the performance and
energy efficiency of ARM processors. [10] proposes a model for energy usage
of server workloads on low-power multi-core systems like ARM, and validates
this for the ARM Cortex-A9 CPU. It uses insights on the ARM architecture
to predict the CPU performance analytically. But its evaluation skews toward
floating-point workloads on ARM32, and only memcached is considered as a Big
Data workload.

Others have offered a concurrency and performance model for ARMv8, with
support for 64-bit instructions, to allow verification and analysis over the pro-
cessor behavior [11]. Their micro-architectural flow model allows users to in-
vestigate concurrency semantics based on an Instruction Set Architecture, but
does not deal with an empirical analysis of an actual physical processor. Our
goal is to understand the actual performance behavior of a commodity 64-bit
ARM server that is likely to be widely used for Big Data workloads and Cloud
data centers. One article uses Hidden Markov Models to predict transactional
web workloads and plan energy-aware scheduling, validated on the AMD A1100
processor [12]. Their contribution itself is orthogonal to the ARM64 CPU.

Recently, Laurenzano, et al. have studied the ARM64 architecture using the
AppliedMicro X-Gene server running the AppliedMicro 883208-X1 CPU [5].
They offer a detailed study of the architecture for different HPC workloads,
examining the performance and energy efficiency of the ARM64 platform against
Intel’s Atom and Xeon architectures. They also offer a model to understand
instruction-level behavior that impacts the relative performances. Our study
for Big Data workloads offer higher-level insights from the perspective of the
application and Hadoop platform rather than instruction-level tuning.

Many benchmarks for evaluation Big Data applications exist [13]. Big
Bench [14] is a popular benchmark suite that uses an retail eCommerce appli-
cation as a case study to evaluate processing of high volume and high velocity
datasets in the Enterprise. Hibench [7] is another Big Data benchmark from In-
tel that includes both micro-benchmarks and common application benchmarks
from web search, NoSQL queries and Machine Learning. We favor this suite
and use it in our evaluation due to the diversity of workloads it targets, for
data volume than velocity. There are also benchmarks that specifically target
fast data applications, such as for Internet of Things, but we defer a study of
ARM64 for such Big Data stream processing platforms to future work [15].

BigDataBench compares different Big Data benchmarks including HiBench [7]
and BigBench [14], and proposes a set of data-intensive applications that is a
union of these various existing ones [16]. They use this to study specific micro-
architectural and cache features of the Intel Xeon E5 processor. Our goal is not
to analyze the specific internal architecture of ARM. But we do compare the
relative performance of the ARM processor on runtime and energy efficiency,
compared to an AMD Opteron-based server, for end-users to benefit.

Others [17] have looked at how the cost efficiency of Hadoop jobs on Big
Data Platform as a Service (PaaS) can be estimated, using Microsoft Azure’s
HDInsight as an example. Our work is comparable, and helps estimate the
performance and energy costs of running Hadoop workloads on ARM64 servers

4



using an IaaS model. This can in turn inform the operational costs for the data
center, and plan Cloud pricing for PaaS using ARM64 servers.

3 Commodity Servers under Test

The technical specifications of the ARM64 and x64 servers we use in our eval-
uation are given in Table 1. We try and ensure that the hardware and software
configurations of both the systems are identical in most respects, other than for
the processor and mother-board distinctions.

The ARM Cortex-A57 is the first 64-bit server-grade processor design to
implement the ARMv8-A architecture, with support for Symmetrical Multipro-
cessing (SMP) and an out-of-order superscalar pipeline 1. AMD’s A1100 pro-
cessor series is the first commercially available commodity chip implementing
ARM Cortex-A57, released in Jan, 2016 2. For our evaluation, we use Soft-
Iron’s Overdrive 3000 server, which is an Enterprise-class developer system that
is based on AMD A1170 processor having 8 cores at 2 GHz, 16 GB RAM, 1 TB
Seagate Barracuda HDD with a 64MB cache, and Gigabit Ethernet. The server
runs an OpenSUSE Linux distribution and uses BTRFS file system. OpenJDK
v7 64-bit ARM edition is natively installed and used by our workloads. The
server is supplied power by an SMPS that is rated at 200 Watts.

The x64 server used in our evaluation is a single node in a cluster. It has a
similar hardware configuration, except using an AMD Opteron 3380 processor
with 8 cores rated at 2.6 GHz. It has 16 GB of RAM, a 256 GB SSD for the OS
partition, an identical Seagate 1 TB HDD for HDFS data storage and workload
applications, and Gigabit Ethernet. We conduct all our experiments using the
1 TB HDD for HDFS to ensure the disk performance is uniform. The x64 server
runs CentOS 7 Linux distribution, EXT4 file system for the SSD, and BTRFS
for the HDD. We use the same OpenJDK v7 compiled for x64.

Both servers run Hadoop v2.7.3 in pseudo-distributed mode. For the x64
system, we use the standard Apache Hadoop x64 Release 3. For the ARM64,
we use the same version of hadoop-arm64 4 which gives binaries compiled for
ARM64.

4 HiBench Big Data Workload

HiBench [7] is a widely-used benchmarking suite from Intel used to evaluate Big
Data workloads. We use HiBench with different configurations to evaluate the
relative merits of the ARM and x64 servers for data intensive applications. Hi-
Bench offers both micro-benchmarks and applications benchmarks from domains
such as querying, machine learning and graph processing. While HiBench in-
cludes workloads that run on platforms like Hadoop, Spark and Storm, we limit

1https://developer.arm.com/products/processors/cortex-a/cortex-a57
2www.amd.com/en-us/products/server/opteron-a-series
3http://hadoop.apache.org/releases.html
4https://github.com/owlab-exp/hadoop-arm64

5



Table 1: Configuration of ARM64 and x64 Nodes

ARM64 † x64 ∗

CPU AMD Opteron
A1170 processor,
8× ARM64 A57
cores, 2.0 GHz

AMD Opteron 3380
processor, 8× x64
cores, 2.6 GHz, Pile
Driver

L2/L3 Cache 4MB/8MB 8MB/8MB
Memory 2 × 8 GB DDR3

RAM, Multi Bit
ECC

2 × 8 GB DDR3
RAM, Multi Bit
ECC

Disk 1TB Seagate
Barracuda
ST1000DM003
HDD, 64MB cache
(OS & HDFS)

1TB Seagate
Barracuda
ST1000DM003
HDD, 64MB cache
(HDFS), 256GB
SSD (OS)

Network 1 Gbps NIC 1 Gbps NIC

Power supply ATX 200W power
supply, No energy
rating

1620W power sup-
ply, Platinum level
> 90% efficiency

Rated TDP 32W 65W

OS OpenSUSE Tum-
bleweed

CentOS 7

Linux Ver. 4.8.6-2-64kb 3.10.0-
123.20.1.el7.x86 64

File System BTRFS on HDD,
8kb block size

EXT4 on SSD,
BTRFS on HDD,
4kb block size

Swap 512 MB 16 GB

Java OpenJDK 64-bit
1.7.0 111 (compiled
for ARM64)

OpenJDK 64-bit
1.7.0 111 (compiled
for x64)

Hadoop Ver. Apache Hadoop
v2.7.3 (pseudo-
distributed) (com-
piled for ARM64)

Apache Hadoop
v2.7.3 (pseudo-
distributed) (com-
piled for x64)

HDFS 1× replication factor, 128MB block size
† https://shop.softiron.co.uk/product/overdrive-3000/

∗ https://www.supermicro.com/Aplus/system/3U/3012/AS-3012MA-H12TRF.cfm

6



our empirical analysis to the popular Apache Hadoop platform, and perform
micro-benchmarks and applications benchmarks on it. As far we can tell, there
are no Intel specific optimizations for the benchmarks, making them equally
suited for the x64 and ARM64 processors from AMD.

Running a workload in HiBench involves two phases: a prepare phase where
HiBench generates the necessary input data to run the benchmark, and an
execution phase where the application logic of the benchmark are run over the
prepared dataset. We focus our analysis on the execution phase where the actual
application logic for the workload is performed.

Next we briefly describe the HiBench workloads we use, and refer readers to
the HiBench [7]5 for more details.

4.1 Micro-Benchmarks

The HiBench micro-benchmarks are based on common applications packaged
with the Hadoop platform.

4.1.1 Sort

This workload sorts a given input file. The Map and Reduce functions in the job
use the default Identity Mapper and Reducer classes. The effort itself is spent
in the shuffle and sort phase, which this benchmark evaluates. The prepare
phase generates files in HDFS that contain key-value string pairs of varying
lengths using the RandomTextWriter class that ships with Apache Hadoop.

4.1.2 TeraSort

TeraSort is similar to sort, but with two distinctions. First, each random row
of input data is exactly 100 bytes in length with the first 10 bytes of the input
used as the sort key. Second, the MapReduce job uses a custom partitioner
to ensure that the output of a reduce task Ri is lesser than the output of the
reduce task Ri+1. The input data is prepared using the TeraGen class shipped
with Hadoop to generate a specified number of rows.

4.1.3 Word Count

Word Count is a popular MapReduce example, and returns the frequency of
distinct words in the given input documents. The Map function emits each word
in the input as the output key along with its local count, and the Reduce function
sums these values based on a groupBy operation performed on each unique word
during shuffle. The input data is created using the RandomTextWriter class.

4.1.4 Enhanced DFSIO (DFSIOe)

This measures the concurrent read and write throughput of HDFS by multiple
Mapper tasks working on independent files. The prepare phase generates control

5Intel HiBench Suite, https://github.com/intel-hadoop/HiBench

7



files of specified sizes. During the benchmark execution, the Hadoop job spawns
one Map task for each input file and performs read/write operations on it. The
Reduce task then calculates the average I/O throughput.

4.2 Web Search Benchmarks

These benchmarks in HiBench are representative of MapReduce applications
used in large-scale web search and indexing.

4.2.1 PageRank

PageRank is a popular graph centrality algorithm used in web search. HiBench
uses a MapReduce implementation of PageRank from PEGASUS [18], which
has two MapReduce jobs: one that updates the rank values for web pages, and
is run repeatedly for a fixed number of iterations ni = 3, and another, a Map-
only job that unrolls and emits the PageRank value for each vertex. This gives
a total of 2× ni + 1 jobs for this workload. The input web data is generated in
the prepare phase using a Zipfian distribution, for the keywords from the Linux
dictionary word list, and for the links.

4.2.2 Nutch Indexing

This benchmark evaluates the indexing part of a web crawl and search pipeline.
It uses the MapReduce implementation of the Indexer from the Apache Nutch
project, which runs as a single job. The Map tasks generate the URL of the
site to be indexed as key and its metadata. The Reduce tasks perform the
actual indexing, which includes checking if the page should be indexed, running
a scoring function to the page or its linked neighbors, and indexing the keywords
and metadata in the page. Its input is similar to PageRank.

4.3 Hive Query Benchmarks

Apache Hive is a columnar data warehouse that is built on top of Hadoop. It
supports SQL-like OLAP queries that are converted to a Directed Acyclic Graph
(DAG) of MapReduce jobs for execution. The query benchmarks are defined on
two external tables in Hive, that contain either rankings with web URLs and
their PageRank, or user visits with the source IP, the URLs visited, Ad Revenue
generated, visited timestamp, etc., generated using a pseudo-random function.

4.3.1 Scan

The scan benchmark is like a select SQL query, and performs a ’SELECT *’ to
returns all rows present in the user visits table that are then copied into a new
table. This translates to 3 MapReduce jobs. It measures the performance of
Hadoop to copy data in HDFS using Hive queries.

8



4.3.2 Join

This performs a database join between the rankings and the user visits tables,
with the web URL field in the former matching the visited URL field in the
latter, for all pages in a time range. It then performs group by and order
by operations on the source IP and ad revenue. These get compiled to 2 − 3
MapReduce jobs by Hive, depending on the input size.

4.3.3 Aggregation

This measures the performance of Hive for SQL-style aggregation queries over
large datasets. It determines the sum of the revenues from user visits from each
source IP based on the user visits table. The output is a new table with the
source IP and its total revenue. It runs as a single MapReduce job.

4.4 Machine Learning Benchmarks

Machine Learning (ML) in an important class of application over Big Data.
These benchmarks evaluate Hadoop’s performance for two classic knowledge
discovery and mining algorithms implemented as part of the Apache Mahout
project 6.

4.4.1 Näıve Bayes Classifier Training

This benchmarks the time to train a Näıve Bayes classifier for text documents.
The training involves seq2sparse which pre-processes the input documents to
generate the term frequency-inverse document frequency (tf-idf) vector for each
document, and trainnb which trains the Bayes classifier based on these vector-
ized documents. The prepare phase generates documents with a zipfian distri-
bution from a dictionary of words in Linux.

4.4.2 K-Means Clustering

K-Means clustering identifies k clusters of closely related items within a multi-
dimensional structured dataset. The prepare phase generates samples of item
vectors based on a Normal distribution, which are present around k centers that
are generated from a uniform distribution, and computes the initial k clusters. In
the execution phase, the MapReduce job updates the k initial cluster centroids
and recalculates the clusters iteratively till convergence, or a maximum number
of iterations ni = 5. A final Map-only job assigns each input item to a cluster.
So a minimum of 2 MapReduce jobs and maximum of 6 jobs execute.

9



Table 2: Data Size Range for Benchmark Workloads

Type Name Data size ranges

Micro Sort 105 − 2× 1010 bytes
Micro TeraSort 105−5×108 rows, 100 bytes

each
Micro Word Count 105 − 2× 1010 bytes
Micro DFSIOe Read 16− 512 files, 10 MB &

500 MB eachMicro DFSIOe Write
Web Search PageRank 104 − 5× 106 web pages
Web Search Nutch Indexing 2.5×104−5×105 web pages

Query Scan 104 − 5× 108 user visit
rows & 1.2×103−6×107

ranking rows
Query Join
Query Aggregation

ML Näıve Bayes 2.5×104−2×105 web pages
ML K-Means 104 − 108 samples

5 Performance Results and Analysis

We evaluate the ARM64 and x64 servers using the HiBench suite, and report
their computational performance in this section. An energy analysis is presented
in the next section, § 6. Further, we also offer an analysis of these results to
reason about their behavior, and draw insights on the Hadoop configuration to
leverage the behavior of the ARM64 server.

5.1 Hadoop Configuration

We deploy Apache Hadoop v2.7.3 in a single-node pseudo-distributed setup
on the ARM64 and x64 servers. HDFS has a replication factor of 1. The
resource configuration for the YARN scheduler and MapReduce v2 are based
on Enterprise best practices [19]. Specifically, we reserve 1 GB for the OS and
give YARN access to 15 GB of RAM in the nodes. Map/Reduce containers are
assigned 1920 MB/3840 MB of RAM and 1/1 CPU cores, respectively. Since
the AppMaster for a Hadoop job occupies one container, this allows us to run
7 Map tasks or 3 Reduce tasks concurrently on a node. We retain the default
ratio of 2.1 : 1 between the virtual memory and the physical memory for the
tasks.

We found that this configuration was adequate to maximize the data set
sizes supported the various benchmarks. However, for the DFSIOe benchmarks
which are Map-heavy jobs, the physical memory limit for Map containers is
increased to 3840 MB of RAM. All the benchmarks are run with an allowed
parallelism of 8 for Map tasks and 4 for Reduce tasks, but accounting for the
AppMaster container, the effective maximum concurrent Map/Reduce tasks is
only 7/3.

6http://mahout.apache.org/

10



105 106 107 108 109 1010 1011

Bytes of Data [Log]

101

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(a) Runtime of Sort

105 106 107 108 109

Rows of Data [Log]

101

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(b) Runtime of TeraSort

105 106 107 108 109 1010 1011

Bytes of Data [Log]

101

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(c) Runtime of Word Count

10MB 100MB 500MB
DFSIO Read

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t 

(M
B

/s
e
c)

10MB 100MB 500MB
DFSIO Write

x64

ARM64

(d) Throughput of DFSIOe Reads (left) and
Writes (right)

Figure 1: Runtime for Sort and Count Micro-Benchmarks, and Throughput for
Read and Write from DFSIOe Micro-Benchmarks

5.2 Workload Setup

We use the publicly available HiBench v5.0 benchmark suite for our experiments.
Table 2 gives the range of data set sizes used for each benchmark workload, and
we exponentially increment the data sizes within this range so that a wide
range of values are evaluated. These parameters are defined in the HiBench
configuration, and used by its prepare phase to generate required data sizes
that are used by the benchmarks.

We use default HiBench values for most benchmark-specific configuration
parameters. For Terasort, we do not compress the Map output to shuffle to
avoid the computing overhead for compression since we have a single-node
setup without network data transfer. In addition, we use 10 MB, 100 MB
and 500 MB files for reads and writes in DFSIOe which are representative
of the small, medium and large scales of single-files typically seen in big data
workloads.

In the Hive query benchmarks, we maintain a 100:12 ratio between the rows

11



in user visits and rows in web page URLs table, that matches the ratios for
the default data sizes in HiBench. We retain as default the number of classes
for the Bayes training data as 100. The input samples generated for K-Means
Clustering were defaulted to a 20-dimensional vector. The number of clusters k
is set to 10 for all sample sizes [7].

5.3 Micro-Benchmarks

Figs. 1a, 1b and 1c show the times taken (Y Axis, in seconds) for running
the sorting and counting micro-benchmarks for different dataset sizes (X Axis).
Both axes are in log scale.

For Sort and TeraSort, we see from Figs. 1a and 1b that until a data size of
1 GB (109 bytes or 107 rows), the runtimes are almost flat, and these indicate the
data size range where the static overhead of the Hadoop framework out-strips
any parallel scaling. Beyond this, we see that time taken increases proportional
to the data size for both ARM64 and x64 servers.

Between the two servers, we see that ARM is marginally faster for smaller
data sizes where the systems are not resource-bound, and beyond that, both the
servers perform comparably. This trend is sustained for Word Count in Fig. 1c,
with the ARM64 server taking lesser time to complete the count for data sizes
below 108 bytes while x64 is up to 6% faster for sizes ≥ 5 GB. Word Count is
much more CPU bound than the sorting benchmarks, with both servers using
an average 80% CPU for the largest sizes, and performing negligible disk I/O.

DFSIOe performs reads and writes on small, medium and large file sizes, for
different numbers of files. Fig. 1d shows the box plots of average throughput
measured by HiBench from the concurrent Map tasks that perform these reads
and writes over independent files in HDFS. We see that the ARM64 server has
a faster cumulative read throughput than the x64, performing almost twice as
fast for small and medium file sizes, but marginally slower for 500 MB files.
While the throughput of ARM64 is less affected by the file size for reads, x64’s
throughput is proportional to the data size, both for reads and writes. ARM64’s
write rate is proportional to the file size, but marginally slower than x64. Given
that the disk specifications and file system are the same for both servers, this
behavior may reflect the impact of block sizes or I/O libraries in the OS.

5.4 Web Search Benchmarks

Figs. 2 show the time in seconds taken to perform the PageRank and Nutch
Indexing benchmarks, as the number of web pages processed increases on the X
axes. Other than the initial small data sizes, the x64 server performs consistently
faster than the ARM64 server for both these benchmarks, and this improvement
is wider as the data sizes increase. While their runtimes are comparable for 105

pages, this diverges, with the ARM server being slower by 43% and 32% for
5× 106 and 5× 105 pages for the applications.

We drill down into the performance of the Map and Reduce tasks to under-
stand this performance variation. Fig. 3a shows a timeline plot for the duration

12



104 105 106 107

Number of Web Pages [Log]

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(a) PageRank

104 105 106

Number of Web Pages [Log]

102

103

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(b) Nutch Indexing

Figure 2: Runtime for Web Search Benchmarks

of the experiment (X axis, seconds) for running PageRank on 5×105 web pages.
The primary Y axis shows the average CPU usage% (green line) and the sec-
ondary Y axis shows the number of Map (blue) and Reduce (red) tasks active
at that time. We see that six MapReduce jobs are executed in waves (spikes
in number of tasks), corresponding to pairs of Stage 1 and Stage 2 jobs over
3 iterations in the PEGASUS code for PageRank. We also see that while
the relative time taken by Map tasks are comparable for ARM64 and x64, the
time taken by the Reduce tasks is tangibly longer for ARM64. This is because
the Map tasks perform only integer operations such as string parsing while the
Reduce tasks perform floating-point (FP) operations to calculate the rank for
each webpage. The ARM Cortex A57 architecture’s floating-point performance
has previously been shown to be slower than an Intel x64 architecture [20], and
hence this explains its slower performance for PageRank.

A similar timeline plot for Nutch, Fig 3b, shows that the maximum-possible
7 Map tasks run concurrently for the job. Here, ARM’s mappers are marginally
faster than x64’s. Within the Reduce logic, the two main operations performed
are scoring and indexing, before emitting the index. Scoring is similar to PageR-
ank and is an FP operation, while the indexing and writing are integer and disk
operations. Due to the use of just three Reduce task, the progress of Nutch
on the ARM64 server is limited by its FP performance for scoring and the
indexing’s performance on three cores.

5.5 Floating Point Micro-benchmark

To confirm the hypothesis that slower FP operations on the ARM64 processor
are contributing to the slower performance for the web benchmarks, we addi-
tionally perform the High Performance LinPack (HPL) benchmark 7 to evaluate
the maximum FP performance on the two processors. We use the BLAS-like
Library Instantiation Software (BLIS) framework implementation which pro-

7http://www.netlib.org/benchmark/hpl/

13



0

20

40

60

80

100
C

P
U

 %

x64

0 100 200 300 400 500 600 700 800 900
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

(a) PageRank

0

20

40

60

80

100

C
P
U

 %

x64

0 200 400 600 800 1000 1200 1400
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

(b) Nutch Indexing

Figure 3: Timeline plot of active tasks and CPU% for Web Search Benchmarks
for 5× 105 pages

14



1 2 3 4 5 6 7 8
Number of Processes

1024

2048

4096

8192

16384

32768
N

4.7 7.4 9.8 11.7 13.6 15.0 14.6 16.9

4.8 8.2 11.2 14.5 15.8 19.1 19.8 23.0

4.9 8.9 12.7 16.3 18.0 22.7 22.3 28.1

5.0 9.4 13.7 17.7 20.2 24.5 25.0 30.4

0.0 0.0 0.0 18.3 21.8 26.4 28.7 33.7

0.0 0.0 0.0 0.0 0.0 0.0 30.7 35.1

0

6

12

18

24

30

36

42

48

54

G
fl
o
p
s

(a) ARM64

1 2 3 4 5 6 7 8
Number of Processes

1024

2048

4096

8192

16384

32768

N

10.2 10.4 17.3 20.3 16.9 17.8 17.4 9.2

12.5 13.1 26.3 29.9 25.9 25.4 28.4 27.1

14.0 14.7 33.0 38.9 30.8 33.8 35.2 37.4

14.7 15.7 37.1 46.0 34.4 39.0 41.3 45.7

0.0 0.0 0.0 49.8 34.6 41.2 45.5 49.4

0.0 0.0 0.0 0.0 0.0 0.0 48.1 52.0

0

6

12

18

24

30

36

42

48

54

G
fl
o
p
s

(b) x64

Figure 4: HPL performance using BLIS, with Block size = 64

vides architecture-specific optimizations for the ARMv8A and AMD Piledriver
micro-architectures used by the two processors, respectively. In Fig. 4, we show
the heatmap of the performances in GigaFlops in for different matrix sizes (Y
Axis) and number of processes (X Axis), for a fixed block size of 64.

We see that x64 achieves a peak FP performance 52.3 GFlops in comparison
to ARM’s 35.1 GFlops. In both cases, this peak value is seen for the most
number of processes (p = 8) and matrix sizes (n = 32, 768) used. We note
that for a block size of 128 (not shown for brevity), ARM64 managed a peak
performance of 42.6 GFlops for the same p and n, while x64 retains the earlier
peak rate but for p = 4 and n = 16, 384. Even with a block size of 64, we see
the x64 has twin peaks at p = 4 and p = 8, while it under-performs for other
values of p. ARM, on the other hand, shows a linear growth in performance as
wither n or p increases.

The x64 Piledriver architecture consists of 4 modules with each having 2
Integer cores and 1 “Flex FP” unit shared by those cores [21]. Hence when 4
or 8 processes are run, it allows the system to make best use of all 4 FPU’s in
the system. In case of the ARM there are 8 FPU’s, one per core, and there is
a progressive increase in performance as the number of processes reach 8.

We also notice that the x64 performs 2–3× faster on a single process. Some
of this difference can be attributed to the clock speeds of 2.0 GHz and 2.6 GHz
for x64 and AMD64, respectively. In fact, when we pin the clock speed of the
x64 server to 2 GHz in a separate HPL benchmark, we see this difference reduce
to 1.5-2× (plots not shown for brevity). Hence, a single FPU in the x64 is still
faster than the ARM64, notwithstanding the clock speeds.

This offers two key takeaways when configuring Big Data platforms like
Hadoop for the ARM64 and x64 servers. One, that applications that are FP
intensive are in general likely to be slower on ARM64 than x64. Two, that
ARM64 can offer linear scaling of FP performance from 1 − 8 cores, while the
x64 AMD Piledriver has sweet spots when using 4 or 8 cores.

15



104 105 106 107 108 109

Number of User Visits [Log]

101

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(a) Scan

104 105 106 107 108 109

Number of User Visits [Log]

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(b) Join

104 105 106 107 108 109

Number of User Visits [Log]

101

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(c) Aggregation

Figure 5: Runtime for Hive Query Benchmarks

5.6 Hive Query Benchmarks

The scan and join queries on Hive perform faster on the ARM64 server than the
x64 for tables with fewer rows, but the advantage narrows (but is still present)
for larger sized tables. This is shown in Figs. 5a and 5b. E.g., for the largest
table size, scan takes 2, 502 secs on ARM64 and 2, 733 secs on x64, while join
takes 3, 073 secs and 3, 329 secs on the two servers, respectively. On the other
hand, for the aggregation query, ARM64 starts off faster but is overtaken by the
x64 server for larger table sizes, as we see in Fig. 5c. Here, the corresponding
times for ARM64 and x64 times for the largest data size are 4, 449 secs and
4, 064 secs. Two factors contribute to this.

First, all Hive queries are compiled into an execution plan of MapReduce
job(s), which takes some initialization time 8. This time is consistently faster
on the ARM64 server than x64 by about 10 secs. E.g., ARM64 takes ∼ 44 secs
to plan a join query while x64 takes ∼ 54 secs. These absolute values are
significant for smaller data sizes.

8Apache Hive EXPLAIN Syntax, https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+Explain

16

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explain
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explain


104 105 106

Number of Web Pages [Log]

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(a) Näıve Bayes Classifier Training

104 105 106 107 108

Number of Samples [Log]

102

103

104

R
u
n
ti

m
e
 (

se
cs

) 
[L

o
g
]

x64

ARM64

(b) K-Means Clustering

Figure 6: Runtime for Machine Learning Benchmarks

Second, the performance of the aggregate query is slower on ARM64 for
larger dataset sizes due to its use of the sum() FP function in both Map and
Reduce logic, though the bulk of rows for this operation is performed is in the
Reduce task. Consequently, the poor FP performance of the ARM64 server is
to blame, but the execution planning time works in ARM’s favor to mitigate
this impact.

5.7 Machine Learning Benchmarks

5.7.1 Näıve Bayes Classifier Training

The runtime for Bayes classifier training is shown in Fig. 6a for different training
data sizes. We observe that as the number of input web pages grows from 25×103

to 2×105, the x64 server outperforms the ARM in all cases, with the x64 taking
∼ 19% lesser time for the largest data sizes. Looking at a timeline plot of the
active Map and Reduce tasks, and the CPU% in Fig.7a, we see that second
MapReduce job dominates the total time (the first being a Map-only job). In
particular, the Reduce task for ARM is much slower than the x64 server. In
both cases 3 Reduce tasks run concurrently and consume about 20% of CPU.
Here, the logic that is the bottleneck is the CollocReducer class, which pre-
dominantly performs Vector integer operations, that appear slower on ARM64.

5.7.2 K-Means Clustering

The ARM64 server performs K-Means Clustering faster than the x64 server, by
around 20−26 secs for smaller workloads of sizes 104−106 (Fig. 6b). However,
this advantage does not hold for larger data sizes and both servers’ performances
are on par with each other. Interestingly, K-Means makes use of heavy FP op-
erations in both Map and Reduce tasks, e.g., to identify distance of points from
cluster centroids and to test if the algorithm has converged. The timeline plots
for the clustering (Fig 7b) show that at almost every timepoint, the maximum

17



of 7 possible tasks are active, Map or Reduce. In fact, Reduce tasks completely
overlap with the Map tasks, and when they do, the number of active Map tasks
drops. Consequently, the full CPU parallelism is exploited by both servers and
ARM performs almost as fast as x64.

5.8 Reducer Parallelism Tuning

We see that for several applications that are floating-point heavy in the Reduce
tasks, the number of Reduce tasks are lesser than the number of cores since the
higher memory allocation for Reduce containers limits the number of concurrent
Reduce tasks to 3. Consequently, only 3 of the 8 FPUs available in the ARM
cores are utilized by Reduce tasks, and only 3 of the 4 shared FPUs are used
on the Opteron.

To confirm this hypothesis, we reduce the memory allocated to the Reduce
containers to 1920 MB to allow up to 7 concurrent Reducers to run. We rerun
PageRank, Nutch, and Aggregation applications that showed poorer perfor-
mance on ARM using this configuration for one large dataset.

For PageRank with an input data having 5× 105 pages, we see the runtime
for the ARM server drops from 830.9 secs earlier to 650.7 secs with the low-
memory, but more number of Reduce tasks (Fig. 8a). The x64 server also saw
a modest drop from 650.8 secs to 600.7 secs. Earlier, the 3 Reduce tasks active

for PageRank could use 3
8

th
of the FPUs in ARM and 3

4

th
for x64, while in the

new setup, the 7 Reduce tasks use 7
8

th
of the ARM FPUs and all 4 of the x64’s

FPUs. So the relative improvement for ARM is much more than x64, and the
performance difference narrows down to under 8%. Some of the improvement
is due to additional CPU cores as well, as seen by the higher CPU%.

When we increase the number of Reducers for the Nutch benchmark, we see
from Fig. 8b that the runtime drops by a third, with up to 6 active Reduce tasks,
relative to the 3 Reducer setup in Fig. 3b, and the ARM64 server almost matches
x64 on the runtime. Similar improvements were observed for Aggregation, but
its discussion omitted due to space constraints.

6 Energy Efficiency Analysis

Neither server exposes on-board energy counters or power profiling using DCMI.
So we sample the instantaneous energy consumed by the servers (in Watts) when
running the above benchmarks, every 20 secs using a load measurement device
9, which is placed between the power socket and each server.

Also, the power supply units (PSU) to the two servers are not similar. The
Overdrive 3000 ARM64 server is a 1U blade with an independent PSU rated at
200 Watts (W ). The Opteron 3380 x64 server is a thin blade in a single 12-node
3U Enterprise chassis, with a pair of redundant Platinum efficiency PSUs rated

9Joule Jotter: Collecting power utilization datasets from Households and Buildings, http:
//homepage.tudelft.nl/w5p50/jj/

18

http://homepage.tudelft.nl/w5p50/jj/
http://homepage.tudelft.nl/w5p50/jj/


0

20

40

60

80

100
C

P
U

 %
x64

0 200 400 600 800 1000 1200 1400 1600
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

(a) Näıve Bayes Training on 105 pages

0

20

40

60

80

100

C
P
U

 %

x64

0 500 1000 1500 2000 2500
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

(b) K-Means Clustering on 5 × 107 pages

Figure 7: Timeline plot of active tasks and CPU% for ML

19



0

20

40

60

80

100
C

P
U

 %

x64

0 100 200 300 400 500 600 700 800 900
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

CPU %

Map Tasks

Reduce Tasks

(a) PageRank

0

20

40

60

80

100

C
P
U

 %

x64

CPU %

Map Tasks

Reduce Tasks

0 200 400 600 800 1000 1200 1400
Timeline (Secs)

0

20

40

60

80

100

C
P
U

 %

ARM64

CPU %

Map Tasks

Reduce Tasks

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

0

1

2

3

4

5

6

7

A
ct

iv
e
 T

a
sk

 C
o
u
n
t

(b) Nutch Indexing

Figure 8: Timeline plot of active tasks and CPU% for Web Search Benchmarks
for 5× 105 pages, with higher Reducer parallelism

20



Sort(
2 ×10

10 )

Terasort(
5 ×10

8 )

WordCount(2
×10

10 )

PageRank(5
×10

6 )

Nutch
(5

×10
5 )

Scan(5
×10

8 )

Join(5
×10

8 )

Aggr.(5
×10

8 )

Bayes(2
×10

5 )

K-m
eans(1

×10
8 )

0

50

100

150

200

P
o
w

e
r 

in
 W

a
tt

s

x64
ARM64

Figure 9: Average power consumed (W ) for all benchmarks for their largest
workload size (labeled in X Axis)

at 1620W that is shared by all 12 blades. To ensure fair comparison with the
ARM server, we power off 11 of the 12 blades, and also power off the redundant
PSU.

We measure the base power consumed by the servers, when they are freshly
booted and idle, over a 2 hour period. This average idle power (base load) is
45.30W for the ARM64 server and 134.14W for the x64 server.

Fig. 9 shows the box plot for the average power consumed over the 20 sec
samples measured when each benchmark was running for the largest dataset size.
We omit DFSIOe since we only use it to measure the HDFS throughput. We can
see that the median power consumption for all benchmarks falls within a narrow
band for each server. This ranges from 50–60 W for ARM64 and 170–193 W for
x64. This shows that the base load dominates and the incremental load for the
benchmarks themselves is only ∼ 33% more than the base in ARM and ∼ 44%
more than the base in x64. We also notice that high CPU usage applications
such as Word Count and K-means have a higher incremental power consumption
compared to lower CPU usage applications such as Nutch indexing and Bayes
which indicates a correlation between CPU usage and power consumption

The Energy Delay Product (EDP) is a common metric to evaluate the ef-
fective energy consumption for applications and benchmarks [22], and offers a
measure of the operational cost for purchasing power from the utility [6]. We
calculate this for our experiments by multiplying the average power load sam-
pled with the runtime duration of the benchmark. Since the sampling interval
is a fixed 20 secs, this is a reasonable estimate of EDP. Fig. 10 shows this for
the largest workload sizes for each benchmark, in Watt − hours(Wh). Here,
the difference between the ARM64 and the x64 servers is stark. ARM has a
50−71% lower EDP than x64, thus verifying that the ARM64 has a much more
favorable mix of both performance and energy efficiency.

Lastly, we examine the incremental power consumed by a benchmark as the
workload size increases. Here, we subtract the base load from the average of the
power loads sampled for a benchmark on a dataset, and plot the incremental

21



0

50

100

150

200

250

Sort
(2x10e10)

Terasort
(5x10e8)

WordCount
(2x10e10)

Pagerank
(5x10e6)

Nutch
(5x10e5)

Scan
(5x10e8)

Join
(5x10e8)

Aggreg.
(5x10e8)

Bayes
(2x10e5)

K-means
(1x10e8)

En
er

gy
 D

el
ay

 P
ro

d
u

ct
 (

W
at

t-
h

o
u

rs
)

x64

ARM64

Figure 10: Energy Delay Product (EDP, in Wh) for all benchmarks for their
largest workload size (labeled in X Axis)

104 105 106

Number of Web Pages

0

10

20

30

40

50

60

A
v
e
ra

g
e
 P

o
w

e
r 

C
o
n
su

m
e
d
 (

in
 W

a
tt

s)

x64

ARM64

(a) Nutch Indexing

104 105 106 107 108

Number of Samples

0

10

20

30

40

50

60

A
v
e
ra

g
e
 P

o
w

e
r 

C
o
n
su

m
e
d
 (

in
 W

a
tt

s)

x64

ARM64

(b) K-means

Figure 11: Average incremental power consumption above base load, for differ-
ent data sizes

average power consumed. For brevity, we only show plots for Nutch and K-
Means in Figs. 11a and 11b, which behave differently. We see that Nutch has
a slight negative slope for incremental power load as the data size increases in
log scale on X Axis, while K-Means shows a clear positive slope with the data
size. This trend is seen for both ARM64 and x64 servers. This again correlates
strongly with the average CPU% for these benchmarks and workloads. Nutch’s
CPU% falls from an average 45− 50% for the smallest size to 20− 25% for the
largest, for both servers, with median values flat at 20%. This is due to just
a single Reducer task (1 core) being active for an increasingly longer time, as
discussed before. K-Means, on the other hand, sees its CPU% quickly grow from
an average 36% to 76% between its smallest and largest sizes for both servers,
with a similar increase in the median values as well. Thus, even with Big Data

22



workloads, the energy costs are dominated by the processor utilization.

7 Conclusion

In this paper, we have presented results from evaluating an ARM64 server based
on the recent AMD Opteron A1100 SoC for Big Data workloads, and compared
it with a similarly configured AMD Opteron 3380 x64 server. The results in-
dicate that the ARM server shows comparable performance to the x64 server
for integer-based workloads, and for smaller-sized floating-point workloads. For
larger FP applications, its slower FPU impacts the performance. But here too,
with tuning Hadoop to expose data parallelism, the ARM64 server can ap-
proach the performance of the x64 server, which is limited by having a faster
FPU shared by pairs of cores. An energy analysis shows the ARM64 server to
have a 3× smaller base power load than the x64 server, and a similar reduction
in incremental load even when running the Big Data applications. We also see
that the EDP is better for ARM64 by up to 71% compared to the x64 server.

At the high level, our experiments offers promise on leveraging ARM64
servers for Big Data applications within data centers. While our observations on
ARM64’s energy efficiency may appear intuitive, our work is the first to validate
this empirically for Big Data workloads, and on commercially available ARM64
commodity servers. Somewhat less intuitive is our observation that the com-
putational performance does not suffer significantly as a consequence. These
are useful insights for data science application developers, Big Data platform
architects, and IaaS and PaaS Cloud providers considering ARM in their data
centers.

This study also opens up several interesting questions that require a de-
tailed analysis, and motivate future work. We need to understand the disk
performance, by examining the block sizes and other file-system factors, to help
explain the ARM server’s better I/O performance for smaller data sizes. It is
necessary to look at hardware counters to ascertain what key architectural dif-
ferences such as vector instructions play a role in the performance distinctions,
beyond the observations on the FPUs and clock speeds – neither processor of-
fer an easy way to access their on-chip counters, which limited our current
analysis. In their absence, we can also complement the workloads with more
computational micro-benchmarks such as the HPL we attempted. It would also
be compelling to compare ARM64 against a contemporary Intel Xeon server,
pervasive in data centers, than just the AMD Opteron server that was readily
available to us with a comparable configuration. It will also be interesting to
examine the impact of containerization and virtualization on these two server
platforms as they offer pathways for deployment in private and public Clouds.
Lastly, exploring other Big Data workloads for stream processing and graph
analytics is also planned.

23



Acknowledgments

We thank Sarthak Sharma from the DREAM:Lab for setting up the initial Soft-
iron server and benchmarking environment. We also thank Dr.T.V.Prabhakar
and his staff at DESE, IISc for access to high-precision energy measurement
instruments.

References
[1] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the risc vs. cisc

debate on contemporary arm and x86 architectures,” in IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2013.

[2] L. Gwennap, “Thunderx rattles server market,” Microprocessor Report, vol. 29, no. 6,
2014.

[3] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, “A performance study
of big data on small nodes,” Proceedings of the VLDB Endowment, vol. 8, no. 7, pp.
762–773, 2015.

[4] N. Rajovic, P. Carpenter, I. Gelado, N. Puzovic, and A. Ramirez, “Are mobile processors
ready for hpc?” in IEEE/ACM Supercomputing Conference, 2013.

[5] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne, A. Jundt, W. A. Ward Jr,
R. Campbell, and L. Carrington, “Characterization and bottleneck analysis of a 64-
bit armv8 platform,” in IEEE International Symposium on Performance Analysis of
Systems and Software, 2016.

[6] I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole, “Energy-efficient
application-aware online provisioning for virtualized clouds and data centers,” in IEEE
International Green Computing Conference, 2010, pp. 31–45.

[7] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark suite:
Characterization of the mapreduce-based data analysis,” in IEEE ICDE Workshops,
March 2010.

[8] R. V. Aroca and L. M. G. Gonalves, “Towards green data centers: A comparison of x86
and arm architectures power efficiency,” JPDC, vol. 72, no. 12, pp. 1770–1780, 2012.

[9] M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry, “Performance evaluation and energy
efficiency of high-density hpc platforms based on intel, amd and arm processors,” in
European Conference on Energy Efficiency in Large Scale Distributed Systems. Springer,
2013.

[10] B. M. Tudor and Y. M. Teo, “On understanding the energy consumption of arm-based
multicore servers,” ACM SIGMETRICS Performance Evaluation Review, vol. 41, no. 1,
pp. 267–278, 2013.

[11] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and
P. Sewell, “Modelling the armv8 architecture, operationally: concurrency and isa,” in
ACM SIGPLAN Notices, vol. 51, no. 1, 2016.

[12] A. Ahmed, D. J. Brown, and A. Gegov, “Dynamic resource allocation through workload
prediction for energy efficient computing,” in Advances in Computational Intelligence
Systems. Springer, 2017.

[13] W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li, and C. Xu, “A
characterization of big data benchmarks,” in IEEE International Conference on Big
Data (BigData), 2013.

[14] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen, “Big-
bench: towards an industry standard benchmark for big data analytics,” in ACM SIG-
MOD international conference on Management of data (SIGMOD), 2013.

24



[15] A. Shukla and Y. Simmhan, “Benchmarking distributed stream processing platforms for
iot applications,” in TPC Technology Conference on Performance Evaluation & Bench-
marking (TPCTC), 2016.

[16] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang
et al., “Bigdatabench: A big data benchmark suite from internet services,” in IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2014.

[17] A. Call, N. Poggi, and D. Carrera, “Aloja-hdi: A characterization of cost-effectiveness
of paas hadoop on the azure cloud,” in Workshop on Big Data Benchmarking (WBDB),
2015.

[18] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining
system implementation and observations,” in IEEE International Conference on Data
Mining (ICDM), 2009.

[19] R. Bakhshi, “How to plan and configure yarn and mapreduce 2 in hdp
2.0,” http://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/, Hor-
tonworks, Tech. Rep., September 2013.

[20] M. A. Laurenzano, A. Tiwari, A. Jundt, J. Peraza, W. A. Ward Jr, R. Campbell, and
L. Carrington, “Characterizing the performance-energy tradeoff of small arm cores in
hpc computation,” in European Conference on Parallel Processing (EuroPar), 2014.

[21] A. Shilov, “AMD Calls New FPU ”Flex FP”, Defends Dual FMAC Approach,” XBit
Labs, Tech. Rep., 2010.

[22] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Vandyke, and C. Vaughan,
“Energy delay product,” Energy-Efficient High Performance Computing, pp. 51–55,
2013.

25

http://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/

	1 Introduction
	2 Related Work
	3 Commodity Servers under Test
	4 HiBench Big Data Workload
	4.1 Micro-Benchmarks
	4.1.1 Sort
	4.1.2 TeraSort
	4.1.3 Word Count
	4.1.4 Enhanced DFSIO (DFSIOe)

	4.2 Web Search Benchmarks
	4.2.1 PageRank
	4.2.2 Nutch Indexing

	4.3 Hive Query Benchmarks
	4.3.1 Scan
	4.3.2 Join
	4.3.3 Aggregation

	4.4 Machine Learning Benchmarks
	4.4.1 Naïve Bayes Classifier Training
	4.4.2 K-Means Clustering


	5 Performance Results and Analysis
	5.1 Hadoop Configuration
	5.2 Workload Setup
	5.3 Micro-Benchmarks
	5.4 Web Search Benchmarks
	5.5 Floating Point Micro-benchmark
	5.6 Hive Query Benchmarks
	5.7 Machine Learning Benchmarks
	5.7.1 Naïve Bayes Classifier Training
	5.7.2 K-Means Clustering

	5.8 Reducer Parallelism Tuning

	6 Energy Efficiency Analysis
	7 Conclusion

