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Workflow Simulation Aware and Multi-Threading Effective Task Scheduling for

Heterogeneous Computing

Vasilios Kelefouras Karim Djemame

Abstract—Efficient application scheduling is critical for
achieving high performance in heterogeneous computing sys-
tems. This problem has proved to be NP-complete, heading
research efforts in obtaining low complexity heuristics that pro-
duce good quality schedules. Although this problem has been
extensively studied in the past, first, all the related algorithms
assume the computation costs of application tasks on processors
are available a priori, ignoring the fact that the time needed to
run/simulate all these tasks is orders of magnitude higher than
finding a good quality schedule, especially in heterogeneous
systems. Second, low complexity heuristics consider application
tasks as single thread implementations only, but in practice
tasks are normally split into multiple threads.

In this paper, we propose two new methods applicable to
several task scheduling algorithms, addressing the above prob-
lems in heterogeneous computing systems. We showcase both
methods by using HEFT well known and popular algorithm,
but this work is applicable to other algorithms too, such as
HCPT, HPS, PETS and CPOP. First, we propose a methodology
to reduce the number of computation costs required by HEFT
(and therefore the number of simulations), without sacrificing
the length of the output schedule. Second, we give heuristics to
find which tasks are going to be executed as Single-Thread and
which as Multi-Thread implementations, as well as the number
of threads used, without requiring all the computation costs.

The experimental results considering both random graphs
and real world applications show that extending HEFT with the
two proposed methods achieves better schedule lengths, while
at the same time requires from 4.5 up to 24 less simulations.

Keywords-static task scheduling; simulation; multithreading;
HEFT; Heterogeneity; multi-core;

I. INTRODUCTION

A well-known strategy for efficient execution of an ap-

plication on a heterogeneous computing environment is to

partition the application into independent tasks and schedule

such tasks over a set of available processors [1]. Normally,

the application is represented as a Directed Acyclic Graph

(DAG), which includes the characteristics of an application

program such as the computation costs of the tasks, the

data transfer time between tasks and task dependencies. The

objective of the Task Scheduling (TS) problem is to map

the tasks on the (co)-processors and order their execution

so that task precedence requirements are satisfied and a

minimum schedule length is obtained (for the reminder of

this paper we will refer to both processors and coprocessors

as processors). TS can be performed at compile-time or at

run-time, referred as static or dynamic scheduling.

Static TS has proven to be NP-complete, even for the ho-

mogeneous case. Therefore, research efforts in this field have

been mainly focused on obtaining low-complexity heuristics

that produce good schedules [2], which is the topic of this

paper. Although this problem has been extensively studied

in the past, first all the related State of the Art (SotA)

algorithms assume the computation costs in the DAG are

available a priori, ignoring the fact that the time needed to

run/simulate all these tasks is orders of magnitude higher

than finding a good quality schedule; this is because the

number of simulations/runs required is very large especially

for heterogeneous systems where different execution time

values occur among different processors. Second, SotA

TS heuristics consider application tasks as single thread

implementations only, but in practice application tasks are

normally split into multiple threads.

In this paper, we propose two new methods addressing

the above problems. The first method reduces the number of

computation costs required by HEFT and therefore, the num-

ber of simulations required/performed, without sacrificing

the length of the output schedule. The second method refers

to heuristics finding which tasks are going to be executed

as Single-Thread (ST) and which as Multi-Thread (MT)

implementations, as well as the number of threads used,

without requiring all the computation costs in the DAG. We

showcase both methods by using HEFT [3] algorithm, but

this work is applicable to several TS algorithms such as

HCPT [4], HPS [5], PETS [1], CPOP [3].

This work has resulted in three contributions, a) a novel

TS methodology reducing the number of simulations per-

formed, b) novel TS heuristics considering tasks as both ST

and MT implementations, c) two TS methods applicable to

several TS algorithms.

The evaluation of the proposed methods includes a large

number of synthetic DAGs as well as five real world

applications. The experimental results show that by using the

proposed methods, HEFT provides better schedule lengths

by facing tasks as both ST and MT implementations, while

at the same time requires from 4.5 up to 24 less simulations.

The reminder of this paper is organized as follows. In

Section II, we introduce the TS problem. In Section III, the

related work is reviewed. The proposed methods are given

in Section IV, while the experimental results are discussed

in Section V. Finally, Section VI is dedicated to conclusions

and future work.



II. TASK SCHEDULING FORMULATION

The problem addressed in this paper is the static schedul-

ing of a single application in a heterogeneous platform with

a set P of m processors, either multi/single-core processors

or co-processors, with p cores per processor at maximum,

that have diverse capabilities. The n×m×p computation cost

matrix W stores the execution costs of the tasks, where n,

is the number of the tasks. Each element wt,j,k ∈ W refers

to the computation cost of task t on processor pj , when t
is split into k threads; if the processor is a co-processor or

a single-core processor, k = 1. We consider every task as

an m-thread implementation, where m = [1, q] and q is the

number of cores. The core utilization factor is defined as,

factort,i,k = wt,i,1/wt,i,k. The wt,j,k values are found by

simulation, emulation or by running the application tasks on

the hardware (HW). For the rest of this paper, we will use

the word simulation. The computation costs of the tasks are

assumed to be monotonic when k = 1, but not when k ≻ 1.

In other words, if (wt1,i,1 ≥ wt1,j,1) for a task t1, then

(wt,i,1 ≥ wt,j,1), for every task t; these assumptions differ

from the uniform parallel machine scheduling problem. The

execution of any task is considered nonpreemptive.

The application is represented by a Directed Acyclic

Graph (DAG), G=(V,E), where V is the set of u nodes and

each node ui ∈ V represents an application task. E is the set

of e communication edges between tasks; each e(i, j) ∈ E
represents the task-dependence constraint such that task ni

should complete its execution before task nj can be started

[2]. Each edge e(i, j) ∈ E is associated with a no negative

weight value di,j that represents the amount of data to be

transmitted from task ti to task tj .

The communication cost of an edge (ti, tj) equals to

the amount of data transmitted from task ti to task tj
(di,j), divided by the data transfer rate of the network

which is assumed fixed and constant [6]. Since the data

transfer rate of the intra-processor bus is much higher than

the data transfer rate of the interprocessor network, the

communication cost between two tasks scheduled on the

same processor is taken as zero. These model simplifications

are common in this scheduling problem [2] [3] [6].

Next, we present some common attributes used in TS

problem, which we will refer to in the following sections.

Definition 1: pred(ti) denotes the set of immediate pre-

decessors of task ti in a given DAG. A task with no

predecessors is called an entry task, tentry .

Definition 2: makespan or schedule length denotes the

finish time of the last task in the DAG and is defined

(makespan = max{AFT (nexit)}), where AFT (nexit)
denotes the Actual Finish Time of the exit node.

Definition 3: EST (ti, pj) denotes the Earliest Start Time

(EST) of node/task ti on processor pj and is defined as

EST (ti, pj) = max

{

TAvail(pj), Tpred(ti, pj)

}

Tpred(ti, pj) = max
tm∈pred(ti)

{AFT (tm) + c(m,i)}
(1)

where TAvail(pj) is the earliest time at which processor pj
is ready and Tpred(ti, pj) is the time at which all data needed

by task ti arrive at the processor pj . The communication

cost cm,i is zero if the predecessor node tm is assigned to

processor pj . For the entry task, EST (tentry, pj) = 0.

Definition 4: EFT (ti, pj) denotes the Earliest Finish

Time of a node ti on a processor pj and is defined as

EFT (ti, pj) = EST (ti, pj) + wt,j,k (2)
which is the earliest start time of a node ti on a processor

pj plus the computation cost of ti on processor pj .

Algorithm 1 HEFT Algorithm

1: Set the computation costs of tasks and communication costs
of edges with mean values

2: Compute ranku for all tasks by traversing graph upward,
starting from the exit task

3: Sort tasks in a scheduling list by decreasing order of ranku
values

4: while there are unscheduled tasks in the list do
5: Select the first task, ti, from the list for scheduling
6: for each processor pk in the processor-set do
7: Compute EFT (ti, pk) value using the insertion-based

scheduling policy
8: end for
9: Assign task ti to the processor pk that minimizes EFT of

task ti
10: end while

Algorithm 2 HEFT with TSRS or METS

1: Sort in an increasing order all the groups of processors accord-
ing to their computation capability (CC). Set the computation
costs of tasks according to pref only (wt,pref ,1) and the
communication costs of edges with mean values.

2: Compute ranku for all tasks by traversing graph upward,
starting from the exit task

3: Sort tasks in a scheduling list by decreasing order of ranku
values

4: while there are unscheduled tasks in the list do
5: Select the first task, ti, from the list for scheduling
6: [wt,i,1(), SL()]=TSRS(t); / [wt,i,k(), SL()]=METS(t);
7: for each processor pk in SL (simulation list) do
8: Compute EFT (ti, pk) value with/without the insertion-

based scheduling policy
9: end for

10: Assign task ti to the processor pk that minimizes EFT of
task ti

11: end while

III. RELATED WORK

To the best of our knowledge, all the related algorithms

assume the computation costs of application tasks on pro-

cessors are available a priori and there is no related work

reducing the number of simulations. Moreover, there are no

low complexity heuristics considering tasks as both ST and

MT implementations. The second is close to the problem of

scheduling moldable tasks with the restriction that tasks can

only use the cores of one processor [7], but these approaches

are not very relevant.

The DAG values can be found using a number of tools.

The Pegasus Workflow Management System [8] is a

framework for mapping complex scientific workflows onto



distributed resources. SKOPE [9] is a framework that

produces a descriptive model about the semantic behaviour

of a workload. StarPU [10] is a task programming library

for hybrid architectures. In [11], a theoretical insight on the

performance of HeteroPrio is provided.

The static task scheduling algorithms are classified in

two main categories. The first one includes algorithms that

are based on heuristics, such as list scheduling [2] [3],

clustering [12], node duplication, or more sophisticated

algorithms [13], while the second includes stochastic search

algorithms, where the problem is modelled as an optimiza-

tion problem using either ILP, CP models. The heuristic

methods provide a good solution in low time while the

search algorithms provide a (near)-optimum solution but in

a prohibitively large simulation time especially for complex

applications. Clustering heuristics are mainly proposed for

homogeneous systems [12]. The duplication heuristics pro-

duce higher quality solutions than list scheduling heuristics,

but result in higher time complexity as well as to more pro-

cessor power and availability [2]. List scheduling heuristics,

produce the most efficient schedules, without compromising

the quality of the solution and with a lower complexity.

Some of the most important list scheduling heuristics for

heterogeneous systems are: PEFT [2], HEFT [3], HCPT [4],

HPS [5],PETS [1], Lookahead [14], LDCP [6].

HEFT algorithm is shown in Algorithm 1 and has two

phases: a task prioritizing and a processor selection phase.

In the first phase, task priorities are defined by using ranku
which represents the length of the longest path from task

ti to the exit node, including the computation cost of ti
and is given by ranku(ti) = wi + maxtj∈succ(ti){c(i,j) +
ranku(tj)}. For the exit task, ranku(texit) = wexit. The

task list is ordered by decreasing value of ranku. The task

with the highest rank is scheduled first. In the processor

selection phase, the task with the higher ranku value is

assigned to the processor pj giving the EFT.

IV. PROPOSED TS METHODOLOGY AND HEURISTICS

In this section we introduce two novel TS methods. These

are TSRS and METS and they are given in Subsection IV-A

and Subsection IV-B, respectively.

A. Task Scheduling methodology Reducing the number of

task Simulations (TSRS)
This methodology consists of two stages, i.e., initialization

stage and main stage. In Algorithm 2, we show HEFT with

TSRS or METS. The main stage of TSRS extends/modifies

the processor selection phase, lines 6-8 in Algorithm 1. The

algorithms differ differ only in lines 1,6,7 of Algorithm 2.

TSRS and METS return a list containing all the candidate

processors (SL) and their computation values.

Initialization step: In this step (line 1 in Algorithm 2),

processors are divided into groups. A group of processors

contains identical processors only and the number of the

groups equals to the number of different processors. All the

groups are sorted in an increasing Computation Capability

(CC) order; regarding multi-core processors, the CC refers to

the one core only (ST implementations). In the case that the

CC of two different processors is approximately the same,

we can consider both in the same processor group. For ex-

ample, consider a cluster with 2 type1 coprocessors, 2 type2

multi-core processors and 2 type3 multi-core processors,

where (wt1,type2,1 ≥ wt1,type3,1 ≥ wt1,type1,1) for task t1;

then, we assume that (wt,type2,1 ≥ wt,type3,1 ≥ wt,type1,1)

for every task t and proc order = (ptype2, ptype3, ptype1);
the previous inequalities do not hold for MT implementa-

tions and may wt,type2,6 ≤ wt,type3,4 ≤ wt,type1,1. This

assumption is common in heterogeneous systems. The above

procedure where all the groups of processors are sorted

according to their CC is not necessary for all the processors;

however, in case we cannot classify a processor into a group,

all the tasks are simulated on that processor, increasing the

number of simulations performed in total.

The application DAG is created by using the computation

costs of the tasks on the one core of pref only (reference

processor), i.e., wt,pref ,1. In terms of output schedule length,

it is more efficient to select a Highest Computational Capa-

bility Processor (HCCP) as pref (a last group processor).

However, in METS (Subsection IV-B), pref cannot be a

HCCP in all cases, because it has to be the multi-core

processor containing the maximum number of cores (cannot

be a coprocessor). Thus, given that TSRS is applied as both

standalone method and together with METS, we will not

consider pref as a fixed value.

By using the computation costs on pref only, the ranku
values are no longer computed using the average costs but

using the computation costs of pref , slightly affecting the

task priority list; the priority list is not strongly affected

because the computation costs are monotonic. In [15], the

rank function of HEFT algorithm is investigated by using

the mean, median, worst and best computation costs; it is

shown that for random computation costs (not monotonic as

in our case) first, different ways of computing ranku affects

HEFT performance and second, the mean computation costs

is not the best choice. In Subsection V-B1, we show that

HEFT’s schedule length is not degraded by TSRS and in

addition to [15], we showcase that the mean computation

costs do not provide better solutions than the pref ones.

Main Step: In this paper, we provide the TSRS without

the insertion based scheduling policy as it is more comlex

and the page size is limited. However, in Section 4 we have

evaluated TSRS with and without the insertion policy.

The main step of TSRS (line 6 in Algorithm 2) reduces

the number of candidate processors in the processor selection

phase. The procedure follows. The EFT is given by Eq. 2

and consists of two parts, EST and wi,j,k. The second

part of Eq. 2 (wi,j,k) is an unknown value, as task t is

not simulated on every processor group but on pref only,

while the first part of Eq. 2 is known, as it refers to the

processor availability time as well as to the finish time of



the previously scheduled tasks. Given that first, the processor

groups are sorted in an increasing CC order and second,

the first part of Eq. 2 is known, we are able to reduce the

number of candidate processors for task t, without excluding

any processor with minimum EFT value. As an example,

assume that the EFT values of t on 4 different single core

processors are those in Eq. 3 and also pref is p3.
EFT (t, p1) = wt,1,1 + 10

EFT (t, p2) = wt,2,1 + 9

EFT (t, p3) = 2 + 9

EFT (t, p4) = wt,4,1 + 13

(3)

Given that (wt,1,1 ≥ wt,2,1 ≥ wt,3,1 = 2 ≥ wt,4,1), there

is no need to simulate t on p1 and p2 as these two processors

always give a larger EFT value than p3 and therefore they

will never be allocated for t by HEFT algorithm.

Algorithm 3 TSRS without using the insertion based

scheduling policy

1: [wt,i,1(), SL()] = TSRS (t) {
2:

3: for (i = 1, P roc.groups) do
4: compute EFT (t, j) for every pj in group i, by using

wt,i,1 = wt,pref ,1

5: Put the min EFT (t, j) value from every processor group i
in S(i)

6: end for
7:

8: /*Reduce the search space*/
9: Put all processor groups in the simulation list (SL)

10: for (i = Proc.groups, 2,−1) do
11: for (j = i− 1, 1,−1) do
12: if (S(i) ≤ S(j)) then
13: remove processor group j from SL
14: end if
15: end for
16: end for
17: /*this step is optional*/
18: if (pref /∈ HCCP group) then
19: for (i = 1, P roc.groups− 1) do
20: if (S(i) ≤ min EFT on pHCCP ) then
21: remove pHCCP group from SL
22: end if
23: end for
24: end if
25:

26: Get the wt,i,1 values that i ∈ SL (if any) /*simulation*/
27: Return wt,i,1(), SL() }

The proposed method is given in Algorithm 3. First, we

compute the EFT values for all the processors by using

wt,pref ,1 instead of wt,j,1 and put the minimum EFT value

of every processor group i in S(i) (lines 3-6). All the

processors inside a group have identical computation costs.

In lines 8-16, we compare S(i) with S(j), where always

holds (i ≻ j) (and therefore always wt,i,1 ≤ wt,j,1). If the

EFT (t, i) value referring to processor group i is smaller or

equal to any other EFT (t, j) value to a slower group j, then

j is not a candidate group and it is removed from the sim-

ulation list (SL). Let us follow the above example of Eq. 3

for lines 8-16 (Algorithm 3), where wt,pref ,1 = 2 and thus

EFT (t, p1) = 12, EFT (t, p2) = 11, EFT (t, p3) = 11,

EFT (t, p4) = 15). First, the EFT (t, p4) value is com-

pared to EFT (t, p3),EFT (t, p2) and EFT (t, p1) but the

if-condition in line 12 is never true. Then, the EFT (t, p3)
value is compared to EFT (t, p2) and EFT (t, p1) and

because EFT (t, p2) and EFT (t, p1) give larger or equal

values, they are both excluded from SL etc. Thus, the

processor groups with j = 1 and j = 2 are removed from the

list. The number of candidate processors is reduced without

excluding any processors with minimum EFT value.

In case that (pref ∈ HCCP group), the lines 18-

24 in Algorithm 3 are not needed. On the other hand,

when pref is not a HCCP, the method given in lines 8-

16 (Algorithm 3) is not able to reduce the number of

simulations on the HCCP group. To do so, we have to define

a lower bound value regarding how fast the HCCP is. We

can define a very low unreachable lower bound value on the

HCCP, e.g., task t will never run 50 times faster than pref
(wt,pref ,1/50 ≤ wt,pHCCP ,1 ≤ wt,pref ,1) for every task t.
This procedure is given in lines 18-24 in Algorithm 3; if

S(i) (where i ≺ Proc.groups - Proc.groups is the last

group, HCCP group) is lower or equal to the minimum

EFT (t,HCCP ) value that the HCCP group can get, then

the HCCP group is removed from SL. Let us follow the

previous example (Eq. 3), where the method given in lines 8-

16 (Algorithm 3) has already excluded p1 and p2 from SL. If

we apply the method given in lines 18-24 (Algorithm 3) with

(min EFT on pHCCP = 2/50 + 13), then the minimum

value that p4 can get is always larger than EFT (t, p3) and

thus p4 is also excluded from SL.

However, the procedure in lines 18-24 slightly degrades

HEFT’s output schedule length because we do not know how

larger the wt,i,1 values can be in comparison with wt,pref ,1.

Let us give an example, consider we have to compute the

EFT values of t on 4 different single core processors and

p3 is the pref . Moreover, consider that Eq. 2 gives the

following: EFT (t, p1) = wt,1,1 + 9

EFT (t, p2) = wt,2,1 + 9

EFT (t, p3) = 2 + 15

EFT (t, p4) = wt,4,1 + 13

(4)

The lines 8-16 in Algorithm 3 exclude p1 and

p3 from SL. The lines 18-24 (Algorithm 3), with

(min EFT on pHCCP = 2/50 + 13), exclude p4 from

SL, meaning that t is assigned on p2, which is not always

the processor with the minimum EFT (it depends on the

wt,2,1 value). We know that (wt,2,1 ≥ 2), but we don’t know

how large wt,2,1 is; thus, if (wt,2,1 + 9 ≻ (2/50 + 13)) and

therefore (wt,2,1 ≻ 2/50 + 4), then t may run faster on p4
than on p2, and in that case, it shouldn’t have been removed

from the list. In that case, the more the processor groups, the

more the makespan degradation. However, the above refer to

special cases only and therefore the makespan degradation

is very low. This step (lines 17-24) is optional.



At last, t is simulated on all the processors in SL (line

26) and the computation costs are returned (line 27).

TSRS is applicable to most of the TS heuristics using the

minimum EFT value as the heuristic cost function, such as

HCPT [4], HPS [5], PETS [1], CPOP [3] [16] list scheduling

algorithms, [12] [17] clustering algorithms, and others.

B. Multi-Threading Effective Task Scheduling heuristics

(METS)
In this paper, METS is applied together with TSRS, in

order to achieve both less simulations and better sched-

ule lengths, however, standalone METS provides better

makespan values. So, before METS is introduced, we present

the modified version of TSRS used by METS.

The modified version of TSRS being used by METS is

given in Algorithm 4. Algorithm 4 is similar to Algorithm 3,

but has been extended to support MT implementations

too. The EFT (t, j) values for the ST implementations are

computed as in Algorithm 3, while the EFT (t, j) values

for the MT implementations are computed by using median

core utilization factor values (between realistic minimum

and maximum values), i.e., (fact. = 1.5, 2, 2.8, 3, 3.5) for

(2, 3, 4, 5, 6) threads, respectively (line 5 in Algorithm 4);

the median factor values are used to find which MT imple-

mentation (from 2 up to f threads) is better. We store both

the best ST and MT EFT (t, j) value for each processor

group into S(i) and M(i), respectively. It is important to

note that a) the best MT EFT value is not always the one

using the maximum number of cores/threads and b) the MT

EFT value is not always smaller than the ST EFT, e.g.,

consider the case where the five out of six cores are not

available in the near future. Lines 10-17 in Algorithm 4, are

similar to lines 8-16 in Algorithm 3, but in Algorithm 4 a

processor group is removed from SL if both the best ST and

MT values are larger than those of another group. The same

holds for the second loop kernel in Algorithm 4 too; when

the minimum EFT value is given by a MT implementation,

in Line 27 we use the highest EFT value that M(i) can get.

Standalone METS is more efficient in terms of makespan as

the median core utilization factor values degrade the quality

of the output schedule.

The key points of METS are the following:

1) ST implementations are more efficient for tasks with

high Communication to Computation Ratio (CCR)

2) MT implementations are more efficient when the task

parallelism is low

3) When the task parallelism is high, ST/MT implemen-

tations are more efficient when the range of wt,i,j val-

ues among different tasks t, is low/high, respectively.

4) We get factort,i,f1 value and we predict factort,j,f2,

where f1 ≻ f2

Regarding the first key point, ST implementations are

more efficient for high CCR values. The data transfer cost

is minimized when the tasks are executed on the same

Algorithm 4 TSRS (Algorithm 3) when it is called by

METS (without insertion based scheduling policy)

1: [SL(), S(), M()] = TSRS (t) {
2:

3: for (i = 1, P roc.groups) do
4: compute ST EFT (t, j) for every pj in group i, by using

wt,i,1 = wt,pref ,1

5: compute MT EFT (t, j) for every pj in group i and for
all thread combinations, by using wt,i,1 = wt,pref ,1 and
wt,i,f = wt,pref ,1 × fact.(f)

6: Put the min ST and MT EFT (t, j) values from every
processor group i in S(i) and M(i), respectively

7: end for
8:

9: /*Reduce the search space*/
10: Put all the processor groups in the simulation list (SL)
11: for (i = Proc.groups, 2,−1) do
12: for (j = i− 1, 1,−1) do
13: if (min(S(i),M(i)) ≤ min(S(j),M(j))) then
14: remove processor group j from SL
15: end if
16: end for
17: end for
18:

19: if (pref /∈ HCCP group) then
20: for (i = 1, P roc.groups− 1) do
21: if (S(i) ≤M(i)) then
22: if (S(i) ≤ min EFT on pHCCP ) then
23: remove pHCCP group from SL
24: end if
25: else
26: Put in maxMT the EFT (t, i) by using the worst

speedup value; if fact.(f) = 1 then maxMT = S(i)
27: if (maxMT ≤ min EFT on pHCCP ) then
28: remove pHCCP group from SL
29: end if
30: end if
31: end for
32: end if
33: Return SL(), S(), M() }

processor as the data remain in the processor’s disk/memory.

The more tasks each processor can handle in parallel (i.e.,

the more the cores each processor contains), the less the

communication cost, as the intra-processor transfer cost

is very low. The if-condition in line 11 (Algorithm 5)

implements the above idea. By using a ST implementation

for a parent task that gives too much data to its children,

we reduce the probability of its children tasks to get data

from another processor(s). On the other hand, by using a ST

implementation for a child task which gets too much data

from its parents, we increase the probability of the other

children (with the same parents) to be assigned to the same

processor and therefore minimize the transfer cost.

As far as the second key point is concerned, when the

number of the ready tasks is smaller than the number of

the processors, there is no reason to save any cores, and

thus the implementation giving the minimum EFT value is

selected, no matter the number of cores used (the imple-



mentation giving the minimum EFT is not always MT).

The if-condition in line 14 (Algorithm 5) implements the

above idea. In Algorithm 5, ST&MT means that we seek

for the solution giving the minimum EFT value no matter

the number of threads/cores used (either ST or MT). This

heuristic does not hold for high CCR values for the reason

explained in the previous paragraph and therefore, the ’else

if’ condition in line 14.

Let us explain the second key point further, consider there

are four identical multi-core processors and only 4 ready

tasks. In that case, it is not efficient to save any cores and

therefore MT implementations for all the tasks is the best

solution no matter the number of threads used. However,

if there are 5 ready tasks, it might not be efficient to use

MT implementations for all the tasks, because other thread

combinations have to be investigated too. This is why we

have used the ’Threshold’ value in line 8 (Algorithm 5),

indicating the number of ready tasks should exist in order to

use ST&MT implementations; in this case, the ’Threshold’

value in line 8 is (Threshold = 4). Keep in mind that

MT refers to the best MT solution, no matter how many

threads are used. Now consider the case that there are 5

ready tasks and a HW environment with three identical

multi-core processors and one GPU (let us assume that the

tasks run two times faster on the GPU). One could think

that it is not efficient to use MT implementations for all

the multi-core processors because one ready task will have

to wait until another finishes its execution. However, if the

tasks are executed 2 times faster on the GPU than on the

processor, the GPU will have executed 2 tasks until the three

processors finish their execution. Thus, the GPU ’counts’

for 2 processors and there is no reason to save any cores.

In this case, (Threshold = 5) and not (Threshold = 4).

The ’Threshold’ value depends on a) the number of the

processors, b) the number of the cores each processor

has, c) how faster/slower is one processor to another. The

’Threshold’ value is application independent and depends

solely on the HW infrastructure. Thus, it can be found ’off-

line’. In Section 4, (Procs ≤ Threshold ≺ 2 × Procs),

where Procs is the number of the processors.

Regarding the third key point above, i.e., when the number

of ready tasks is larger than the ’Threshold’ value, the

MT implementations are efficient only in the case that the

range of the wt,i,j values for different tasks t is high and

in particular for the tasks having larger wt,i,j values than

the others. This is because the core utilization factor value

is always lower than the number of cores and therefore

the time needed for a task to be executed as an f-thread

implementation is always larger than executing f different

tasks. Let us give an example, consider 8 identical tasks

ready for execution and two identical 4-core processors.

Also consider that the eight tasks need (10, 6, 4, 3) secs to

be executed, using (1, 2, 3, 4) threads, respectively. If all

the tasks are considered as ST, then 10 secs are required

for them to be executed. On the other hand, by using 4-

thread or 2-thread implementations only, 12 secs are needed.

However, if half of the tasks need (15, 9, 6, 4.5) and the other

half (10, 6, 4, 3) seconds to be executed by using (1, 2, 3, 4)
threads, respectively, then using only ST implementations is

not the best option. If we run the heavy tasks as 4-thread

implementations and the light ones as ST ones, then the

overall execution time is 14.5 secs, while by using ST only, it

is 15 secs. The if-condition in line 21 (Algorithm 5) satisfies

that only the tasks with high wt,i,j values are considered

as MT. If a task’s rank value is larger than 1.3 times the

minimum rank value of C (the tasks that are going to be

executed in the near future), it is further processed as an

ST&MT implementation, otherwise it is assigned as a ST.

In contrast to line 16, where an ST&MT implementation

is always selected regardless of whether t is effectively split

into multiple threads or not, in line 22, the number of tasks

waiting for execution is higher than the number of processors

and thus we have to consider the scenario that t may give

a low core-utilization factor. Thus, we get wt,pref ,f value,

where f is the maximum number of threads in SL, and

compute the utilization factor. If the factor is large enough,

we use a ST&MT implementation, otherwise, we give a

second chance for t to be executed with fewer threads, i.e.,

⌈f/2⌉ (line 29). The good utilization factor values used are

(1.6,2.35,3.4,3.9,4.7) for (2,3,4,5,6) threads, respectively.

Regarding the fourth key point above, we assume that

factort,i,f = factort,j,f , where i, j are multi-core pro-

cessors. Moreover, we measure factort,i,f1 and predict

factort,j,f2, where f1 ≻ f2; factort,j,f2 = (f2 ×
factort,i,f1)/f1. This procedure is applied in lines 26 and

33 (Algorithm 5) in order to update the EFT values on the

other processors according to factort,pref ,f value.

METS is given in Algorithm 5. All the coefficients are

found experimentally. First, TSRS finds the candidate pro-

cessors for task t (line 3). If there is no multi-core candidate

processor, the procedure is trivial. Otherwise, the multiple if-

conditions take place finding whether the selected processor

will use a ST or a ST&MT implementation. In the case

that a ST is selected, we simulate t as ST only. Otherwise,

if a ST&MT is selected, we simulate t on the remaining

processors but t is simulated either as ST or MT, not both.

The heuristics presented in Subsection IV-B, can be

applied together with TSRS to the algorithms that TSRS

is applicable to. Moreover, METS can be applied as a

standalone method. In this case, METS is applicable to more

algorithms such as PEFT [2] and lookahead [14].

V. EXPERIMENTAL RESULTS

This section shows the application of TSRS and METS to

HEFT algorithm. The comparison metric used for evaluating

the schedule’s length is speedup (Eq. 5). The speedup value

for a given graph is computed by dividing the sequential

execution time (i.e., cumulative computation costs of the

tasks in the graph) by the parallel execution time. The



Algorithm 5 METS with TSRS

1: [wt,i,thr(), SL()] = METS (t) {
2:

3: [SL(),S(),M()]=TSRS(t);
4: if (SL contains no multi-core processor) then
5: Get the wt,i,1 values that i ∈ SL (if any) - thr = 1
6: else
7: A ← next 6 ready tasks
8: B ← next ’Threshold’ tasks
9: C ← ready tasks that (Ranku ≻ 0.7×Ranku(t)) /*tasks

to be executed in the near future only*/
10:

11: if (at least half of the tasks in A contain an edge (either
parent or child edge), where cn,m/wt,pref ,1 ≥ 1.5) then

12: /*processors are faced as ST only*/
13: [wt,i,1(), SL()] = kernel (ST,t);
14: else if (at least one task in B is not ready) then
15: /* Task parallelism is low. Use the implementation giving

the min EFT, no matter the # of the threads*/
16: [wt,i,thr(), SL()]= kernel (ST&MT,t);
17: else
18: /* task parallelism is high */
19:

20: /*if the range of wt,pref ,1 values among diff. tasks is
high*/

21: if (Ranku(t) ≻ (1.3×min(Ranku(C)) ) then
22: Get wt,pref ,f , where f is the max number of threads

in SL
23: factort,pref ,f = wt,pref ,1/wt,pref ,f

24: if (factort,pref ,f ≻ good.factor(f)) then
25: /*Use the implementation giving the min EFT, no

matter the # of the threads*/
26: Use factort,pref ,f to update EFT to other procs

27: [wt,i,thr(), SL()] = kernel (ST&MT,t);
28: else
29: Get wt,pref ,⌈f/2⌉

30: factort,pref ,⌈f/2⌉ = wt,pref ,1/wt,pref ,⌈f/2⌉

31: if ( (factort,pref ,⌈f/2⌉ ≻ good.factor(⌈f/2⌉))
AND ((⌈f/2⌉) ≻ 1) ) then

32: /*Use the implementation giving the min EFT,
no matter the # of the threads*/

33: Use factort,pref ,⌈f/2⌉ value to update EFT to
other processors

34: [wt,i,thr(), SL()] = kernel (ST&MT,t);
35: else
36: /*processors are faced as ST only*/
37: [wt,i,1(), SL()] = kernel (ST,t);
38: end if
39: end if
40: else
41: /*processors are faced as ST only*/
42: [wt,i,1(), SL()] = kernel (ST,t);
43: end if
44: end if
45: end if
46: Return wt,i,thr(), SL() }
47:

48: [wt,i,thr(), SL()] = kernel (T,t) {
49: if (T == ST ) then
50: [SL(),S(),M()] = TSRS(t) - by using S() only, not M()
51: Get the wt,i,1 values that i ∈ SL (if any) - thr = 1
52: else
53: [SL(),S(),M()] = TSRS(t)
54: Get the wt,i,thr values (if any) where i ∈ SL and thr is

the number of threads of the min(S(i),M(i))
55: end if
56: Return wt,i,thr(), SL() }

sequential execution time is computed by assigning all tasks

to the HCCP; if the HCCP is a multi-core processor, then the

numerator of Eq. 5 refers to max-thread implementations.

Speedup =
minpj∈P {

∑
ti∈V w(i,j,k)}

makespan
(5)

The simulation gain is given by (Simulation gain =

number of simulations in total / number of simulations

performed), where the numerator is given by ((
∑P

i=1 ci +
co)× tasks), where P is the number of multi-core processor

groups, ci is the number of group i cores and co is the

number of coprocessor groups.

A. Hardware (HW) Infrastructure

The HW infrastructure used in this paper, consists of

9 different groups of processors (6 multi-core processor

and 3 coprocessor groups), 3 common processors in each

group (27 processors in total) and 6 cores per processor at

maximum. The groups of processors are sorted in increasing

computational capability (CC), i.e., (wt,9,1 ≤ wt,8,1 ≤ ... ≤
wt,1,1). The HW infrastructure is described by D.procs(9),
C.procs(3), cores(6) arrays, giving the number of different

processors, common processors and cores, respectively. We

assume that each task runs faster on the coprocessors than

the one core of every processor and thus the coprocessors re-

fer to processors with number 7, 8 and 9. So, for instance, the

HW infrastructure described by {D.P (0, 1, 1, 1, 1, 1, 1, 0, 0),
C.P (0, 1, 1, 1, 3, 3, 1, 0, 0) and cores(0, 2, 4, 4, 6, 6)}, refers

to one 2-core processor of type2, one 4-core processor of

type3, one 4-core processor of type4, three 6-core processors

of type5, three 6-core processors of type6 and one copro-

cessor of type7.

B. Random graphs and computation/communication costs

We have evaluated our work to 14580 random generated

application graphs. For this purpose, we used the synthetic

DAG generation program Daggen [18] with five different

parameters defining the DAG shape:

• n: number of DAG nodes (i.e., application tasks), n =
[50, 100, 200, 300]

• fat: this parameter affects the height and the width of

the DAG, fat = [0.2, 0.5, 0.8]
• density: determines the number of edges between two

levels of the DAG, density = [0.2, 0.5, 0.8]
• regularity: the regularity determines the uniformity of

the number of tasks in each level, regularity =
[0.2, 0.5, 0.8]

• jump: indicates that an edge can go from level l to level

l + jump, jump = [1, 2, 4]

We used this synthetic DAG generator to create the DAG

structure, which includes the specific number of nodes and

their dependencies. To obtain the computation and commu-

nication costs, the following parameters are used:

• CCR: Communication-to-Computation Ratio: ratio of

the sum of the edge weights to the sum of the node

weights in a DAG, CCR = [0.1, 0.2, 0.5, 1, 2, 5, 10]



• βw (Range percentage of computation costs among

different tasks for pref ): βw is given by the following

formula where w is the average computation cost of

the DAG and is selected randomly, βw = [0.5, 1, 1.5]
w × (1− βw

2
) ≤ wt,pref ,1 ≤ w × (1 + βw

2
) (6)

• βc (Range percentage of communication costs among

the edges of the DAG): βc is given by the following

formula where c is the average communication c value

of the DAG and c = w ∗ CCR. βc = [0.5, 1, 1.5]
c× (1− βc

2
) ≤ ci,j ≤ c× (1 + βc

2
) (7)

The computation costs for the other processors are gen-

erated according to the computation costs on pref . The

computation costs of the remaining processors are random

values within the following range: wt,pref ,1 × R(i, 1) ≤
wt,i,1 ≤ wt,pref ,1 ×R(i, 2), where R=[2,2.5; 1.8,2; 1.4,1.5;

1.2,1.3; 1.05,1.15; 1,1; 0.12,0.2; 0.08,0.18; 0.05,0.15]; we

have used both wider and narrower values than R and

the results are similar. Regarding multi-thread computa-

tion costs, we have used random realistic speedup range

values, i.e., wt,i,j = wt,i,1 × speedup(j), where the

speedup value is a random value within the following

range (1.1, 1.9),(1.2, 2.8),(1.3, 3.7),(1.4, 4.5),(1.5, 5.4), for

(2, 3, 4, 5, 6) threads, respectively. The speedup values are

monotonic, i.e., (wt,i,j1 ≤ wt,i,j2), where j1 ≻ j2.
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Figure 1. Evaluation of TSRS (972 different DAGs)

1) Evaluating TSRS: In this Subsection, TSRS is eval-

uated. The results are illustrated by using boxplots in

Matlab. The (’Sim’,’ins.’) in the x-axis of Fig. 1 indi-

cate simulation gain and insertion policy, respectively. In

Fig. 1, 972 different DAGs have been used (all different

fat, regularity, density and jump combinations) with n =
100,CCR = [0.1, 0.5, 2, 10], βw = βc = [0.5, 1, 1.5] as

well as several processor configurations. The ’4P’ indicates

4 different single-core processors. In this subsection, all

the processors are either single-cores or co-processors. The

TSRS makespan is approximately the same as that of the

standalone HEFT, in all cases. Furthermore, both HEFT and

TSRS perform better by using the insertion scheduling pol-

icy but the gains are small. By using the insertion scheduling

policy lower simulation gain values occur because in that

case the number of computation costs needed is higher.
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Figure 2. METS with TSRS (n = 100,CCR = 0.5,βw = βc = 0.5)

2) Evaluating METS with TSRS: In this Subsection,

METS with TSRS is evaluated (Fig. 2, Fig. 3) - pref = 6
in all cases. Given that HEFT algorithm doesn’t include

multi-threading, we have implemented HEFT to use a) ST

implementations only (SHEFT) and b) maximum thread

implementations only (MHEFT). In this Subsection we have

evaluated METS without using the insertion scheduling

policy because the makespan improvement is not significant

comparing to the simulation loss. Therefore, by using the

insertion scheduling policy, METS achieves slightly better

makespan values than those shown in Fig. 2-Fig. 4; stan-

dalone METS gives better makespan values, as in Algo-

rithm 4 the M(i) values are computed by using median core

utilization factor values and not the real ones. SHEFT and

MHEFT use the insertion scheduling policy.

In Fig. 2, a total of 81 different DAGs is considered com-

bining fat, regularity, density and jump. The first 27 DAGs

refer to skinny DAGs, the next 27 to medium fat and the last

27 DAGs refer to fat DAGs. As it can be observed, skinny

DAGs give low speedup but high simulation gain values,

while fat DAGs give high speedup but lower simulation gain

values. SHEFT is more efficient than MHEFT when the task

parallelism is high, as by providing more cores, more tasks

are executed in parallel. On the other hand, when the task

parallelism is low, MHEFT gives always higher speedup

values, as it is preferable to use less processors but with

high CC. It is important to note that our method follows the

trend of the best of the two.

In Fig. 3, METS with TSRS is evaluated for all the

combinations among DAGs’ fat, regularity, density and jump

as well as n = [100, 200], βw = βc = [0.5, 1, 1.5],



CCR = [0.1, 0.2, 0.5, 1, 2, 5, 10] (3402 different DAGs in

total) and four different processor configurations. When

only multi-core processors are used, the heuristics given

in Subsection IV-B perform very well and give significant

speedup values. On the other hand, when fast coprocessors

are used apart from multi-core processors, the heuristics

given in Subsection IV-B perform better than both SHEFT

and MHEFT but the gain is low. The reason lies in the

fact that HEFT is a greedy algorithm as it always chooses

the processor giving the minimum EFT value; therefore,

the coprocessors never become idle and push aside the

multi-core processors; thus, most of the tasks are executed

on the coprocessors. This is why all three methods give

close makespan values. ’TSRS∗’ refers to the TSRS when

the last loop kernel in Algorithm 3 is used (at least one

coprocessor exists). The last loop kernel in TSRS reduces

the number of simulations on the HCCP group. In the left

bottom figure, the makespan degradation in ’TSRS∗’ is

larger because the HCCP group contains 2 processors and

therefore excluding the group from SL means that none of

the two coprocessors is used. As far as the simulation gain

is concerned, it is lower when coprocessors exist because

most of the tasks are simulated on the coprocessors while

pref = 6; in this case a larger number of extra simulations

occurs. On the other hand, when no coprocessor exists, pref
is a HCCP and therefore it is the most preferable processor,

meaning that the number of extra simulations is reduced.

C. Real World Applications

TSRS and METS have been evaluated to Montage, Cy-

berShake, Epigenomics, LIGO and SIPHT real world ap-

plications [19] [20]. We have used small, medium and large

graphs for each one of the 5 applications (from 50 up to 200

tasks, Fig. 4) as well as real communication and computation

costs for wt,pref ,1, taken from [19] [20]. The computation

costs for the other processors have been selected as random

values within a range as in Subsection V-B. SHEFT performs

better than MHEFT when the number of processors is

low (as in Fig. 4), as in that case SHEFT uses 20 cores

while MHEFT uses 4 processors. However, by increasing

the number of the processors MHEFT outperforms SHEFT

(our method follows the trend of the best of the two).

Moreover, when no coprocessor is used, METS performs

better for the reason explained in the previous subsection.

Last, Epigenomics and SIPHT are less scalable.

VI. CONCLUSIONS AND FUTURE WORK

TSRS modifies HEFT’s processor selection phase in order

to discard all the processors which cannot minimize the

heuristic cost function, regardless of their computation costs;

this way, the DAG computation costs required by HEFT

become limited. Although TSRS, never excludes a processor

minimizing the heuristic cost function (here EFT), it slightly

affects the task priority list. However, the results show that

for monotonic computation costs the output makespan is not
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Figure 3. Evaluation of METS with TSRS (3402 different DAGs)
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degraded; as in [15], we show that the mean Ranku compu-

tation costs is not the best choice. The insertion scheduling

policy is not preferred as the makespan improvement is not

significant comparing to the simulation loss.

METS refers to heuristics finding which tasks are going

to be split into multiple threads as well as the number of

threads used, without requiring all the computation costs in

the DAG. We evaluated METS with TSRS without using the

insertion scheduling policy, as the makespan improvement is

not significant comparing to the simulation loss. Standalone

METS gives better makespan values.

In our future work, we intend to extend METS with

heuristics finding whether a multi-core processor or a co-

processor is more efficient for the current task (we believe

this will give better makespan values when fast coprocessors

are used). Our future work also includes the application and

evaluation of both TSRS and METS to other TS algorithms

such as HCPT, HPS, PETS, CPOP and others. Furthermore,

we aim to develop a tool that takes OmpSs (Barcelona

Supercomputing Center programming model) C-code as

input and by using both TSRS and METS, it outputs a good

quality schedule in low time. We use OmpSs as it extends

OpenMP with new directives to support GPUs and FPGAs.
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