
Accelerating Data Loading in Deep Neural Network
Training

Chih-Chieh Yang
Data Centric Systems

IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

chih.chieh.yang@ibm.com

Guojing Cong
Data Centric Systems

IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

gcong@us.ibm.com

Abstract—Data loading can dominate deep neural network
training time on large-scale systems. We present a comprehensive
study on accelerating data loading performance in large-scale
distributed training. We first identify performance and scalability
issues in current data loading implementations. We then propose
optimizations that utilize CPU resources to the data loader
design. We use an analytical model to characterize the impact
of data loading on the overall training time and establish the
performance trend as we scale up distributed training. Our model
suggests that I/O rate limits the scalability of distributed training,
which inspires us to design a locality-aware data loading method.
By utilizing software caches, our method can drastically reduce
the data loading communication volume in comparison with the
original data loading implementation. Finally, we evaluate the
proposed optimizations with various experiments. We achieved
more than 30x speedup in data loading using 256 nodes with
1,024 learners.

Index Terms—machine learning, distributed training, scalabil-
ity, data loading, data locality

I. INTRODUCTION

Deep Neural Network (DNN) models work incredibly well
in real world scenarios, such as image classification, speech
recognition, and autonomous driving. However, DNN training
can take a long time — days, weeks, or even months —
which makes it difficult to optimize and re-train models.
Researchers have devoted much effort into speeding up
DNN training. On the hardware side, vendors incorporated
stronger machine learning capabilities to processor architecture
design, and introduced special-purpose accelerators for machine
learning [1]. On the software side, researchers developed
optimized libraries such as CUDNN [2] and MKL-DNN [3];
created easy-to-use frameworks such as Caffe [4], PyTorch [5]
and Tensorflow [6]; and invented new learning algorithms that
converge faster. They also ran DNN training on large-scale high-
performance computing (HPC) systems, which leads to many
interesting research problems. For example, scaling up while
maintaining convergence rate, finding a good computation-
to-communication ratio, and synchronizing results efficiently.
Finding solutions to these problems has reduced training time
immensely — take Imagenet-1K [7] training with ResNet50 [8]
model for example, the state of the art training time is reduced
from an hour [9] to minutes [10]–[13] within a year.

In large-scale distributed DNN training, we can break down
the training time into three major components: computation

time, communication time and data-loading time. While the
former two draw great attentions from researchers, data-loading
time is often omitted in the literature, since different techniques
exist that circumvent the data-loading problem. For example, it
is possible to cache a dataset entirely in fast local storage such
as SSD or DRAM, instead of loading data from a network-
based file system that has higher I/O overhead. One can also
preprocess a dataset to reduce its size so it fits in a local storage,
if the original dataset is too large. However, such techniques
do not always apply. Fast local storage may not fit the whole
dataset even after preprocessing, and preprocessing may take
a long time and cause loss of pertinent information.

Considering common usage scenarios in HPC, it is important
to design efficient methods to load data from a network-
based file system or a data server, so that the data loading
time does not become a bottleneck in DNN training. In this
work, we propose data loader optimizations and bandwidth
requirement optimizations to significantly improve data loading
time in large-scale distributed DNN training. We evaluated the
proposed methods on PyTorch, and found our methods can
provide more than 30x speedup in data loading using 256
nodes with 1,024 learners. For the Imagenet-1K classification,
our optimizations give 92% improvement in per epoch training
cost over the regular distributed training implementation.

Our contributions are as follows:

• Data loader optimizations that improve data loading cost;
• A locality-aware data loading method which greatly re-

duces bandwidth requirement and improves the scalability;
• An analytical model that models the cost and establishes

the performance trend in different system scales;
• A performance evaluation that showcases the effects of

our proposed optimizations.

The rest of the paper is organized as follows. Section II
describes necessary background information. In Section III,
we present data loading optimizations that better utilize CPU
to reduce overhead. Next, we explain the performance trend
when scaling up with an analytical model in Section IV. In
Section V, we propose a locality-aware data loading method
which greatly reduces the bandwidth requirement of mini-batch
SGD. In Section VI, we show improvements brought by our
optimizations. In Section VII, we summarize related works.

ar
X

iv
:1

91
0.

01
19

6v
1 

 [
cs

.L
G

] 
 2

 O
ct

 2
01

9



This paper has been accepted for publication in HiPC 2019

Finally, we draw the conclusions and describe the future work
in Section VIII.

II. BACKGROUND

A. Mini-batch SGD

Mini-batch stochastic gradient descent (SGD) [14] approxi-
mates the optimal solution of an objective function. It iteratively
feeds a mini-batch (i.e. a set of random samples of a dataset) to
a neural network model for forward propagation, and computes
the loss from the output and the target values. Next, it performs
backpropagation to compute gradients, which are then used to
update the model weights. The frequency of model updates,
depending on the choice of mini-batch sizes, can affect the
convergence rate.

In this context, we use a step to refer to training a single
mini-batch, and an epoch to refer to training the whole dataset
in multiple steps. Depending on the dataset and the model, it
takes various number of epochs for the training to converge.

Mini-batch SGD can be parallelized in a data-parallel
fashion. A typical implementation uses multiple distributed
processes (hereafter referred to as learners), each with a copy
of the model. The learners perform a step of mini-batch SGD
collectively with the following procedure:

1) Each learner acquires the same global mini-batch sequence
(a sequence of sample indices instead of the actual
samples) that all learners will collectively load.

2) Each learner takes an even-sized disjoint slice of the global
mini-batch sequence.

3) Each learner loads samples of its slice from the data
source (e.g. a network file system) to form a local batch.

4) Each learner trains with its local batch independently to
compute local gradients.

5) All learners synchronize (i.e. all-reduce) to produce the
global gradients of the current step.

6) Each learner updates the model weights with the same
global gradients.

The above mentioned procedure is synchronous mini-batch
SGD, as the model is globally synchronized in each step. This
data-parallel approach scales well when the mini-batch size
is large enough to have a good compute-to-communication
ratio. However, two issues exist: (1) In general, using a larger
mini-batch makes it harder to generalize; (2) Synchronization
overhead increases with the number of learners. There has
been rigorous research work on the two issues, and the recent
results in [15], [16] show that the distributed SGD can scale
to extreme scale systems.

B. Cost and scalability of distributed training

Considering the cost of a single step in synchronized
mini-batch SGD training, the are three major components:
computation time (forward propagation and backpropagation),
communication time (synchronization of gradients), and data
loading time.

Forward propagation and backpropagation to produce the
local gradients take up most of the computation time in training.
The actual cost depends on the complexity of the model used

and the local batch size. In a small scale, the computation time
usually dominates the overall cost in deep learning. Various
techniques can be applied to reduce this cost, such as using
optimized DNN library like CUDNN [2] for Nvidia GPUs, and
using lower precision floating arithmetic. In the foreseeable
future, new hardware architectural advances will improve the
computation time faster than the other components.

In synchronous mini-batch SGD, the synchronization of
gradients happens per step, since the model weights must
be updated before the next step starts. There have been many
recent research works on improving synchronization algorithms
including [11], [13]. The gradients of different model layers can
also be synchronized separately [17]. The communication and
computation cost are tightly coupled, as there are optimization
techniques such as layer-by-layer synchronizations. In the rest
of this paper, we use training time to refer to the overall cost of
computations and communication, and discuss its relationship
with data loading time.

Data loading in the machine learning context refers to the
actions required to move data samples from a storage location to
form a batch in the memory co-located with the compute units
for training. The I/O cost (typically read-only) of moving data
samples depends on the bandwidth of the storage system. Other
than the I/O cost, to make data usable in training, there is often
some preprocessing or data augmentation needed, depending
on the training requirements. Take an image classification task
for example, one needs to decompress the image files, to
randomly clip and resize the image, and perform other image
transformations. These operations can be time-consuming.

To understand the overall cost in deep learning applications,
let us first consider a single learner case. A learner waits if data
is not prepared in time, as the training progress depends on
input data. If a learner performs data loading and computation
sequentially, there will be gaps between computation tasks
caused by data loading. In comparison, a common practice is
to, in a background process (or a thread), use prefetching to
overlap data loading with training. The data loading overhead
can be partially or completely hidden.

Now, let us consider scaling up distributed training of a
fixed-sized input dataset. Suppose our training is data parallel,
when we get more computing resources, the training time
decreases, as the computation can easily be parallelized. In
contrast, the data loading cost also decreases initially, because
more processes participate in preprocessing the same amount
of data, and more nodes can load data in simultaneously, which
increases the effective bandwidth. However, the bandwidth of
the storage system is eventually upper-bounded.

Figure 1 shows the data loading scalability problem. On
LLNL’s Lassen system, we used distributed processes to train
ResNet50 with Imagenet-1K dataset. There were four learners
per node. The batches were globally and randomly shuffled,
and the local batch size of a learner was fixed at 128. The
global batch size increases with the number of nodes.

We measured the average training time per epoch as shown
in the orange bars; and the average waiting time for data to
be ready for training as shown in the blue bars. The sum of

2



This paper has been accepted for publication in HiPC 2019

Fig. 1. Average epoch time to train ResNet50 with Imagenet-1K dataset in
different scales on LLNL Lassen. The cost stopped decreasing when the data
loading overhead stopped scaling.

the two is the average cost of an epoch. Since data loading
is overlapped with training, the time to wait for data would
appear only when data loading overhead was not completely
hidden. We can see that for 2, 4, and 8 nodes, the waiting for
data was minimal and the performance scaled well. However,
while the training time kept decreasing with more participating
nodes, the data loading cost could no longer be fully hidden.
The waiting time was significant starting from the 16-node
case, and eventually dominated the cost as we added more
nodes. This is because even though the load volume per node
decreased while scaling up, the overall data supplying rate
could not catch up with the consuming rate, as a result, the
data loading time stopped decreasing, and the cost stopped
scaling down.

These observations motivated us to attack the data loading
problem from two different angles: (1) reducing the data loading
cost to result in an overall improvement for all cases, and (2)
reducing the data loading volume, so that the storage system’s
limited capability becomes less of a problem. We address the
former aspect in Section III and the latter in Section V.

III. DATA LOADER OPTIMIZATIONS

To optimize data loading cost, we need to identify the
overhead of data loading in a finer granularity. An illustrative
typical learner execution timeline, similar to visualization of
profiling tools such as nvprof, is shown in Figure 2. Each
timeline represents a computing resource. The colored bars in
a timeline denote tasks being performed and the white space
represents idling.

The main process (the middle timeline) drives the training
progress and interacts with the data loader worker to prescribe
batch-loading requests and retrieve data; it also interacts
with GPU to perform computations. As illustrated, if we
consider only the training time meaningful work, there can be
overhead due to data loading. In the following subsections, we
discuss different optimization strategies that address different
overheads.

A. Multiprocessing

The time to load a batch can be significant, as illustrated in
Figure 2 as the green bars. While we can use a background
worker to prefetch batches to hide some overhead, adding
more workers can overlap the loading of different batches and
improve performance further.

PyTorch data loader implementation can spawn con-
current background worker processes to load multiple
batches in parallel and maximize data loading through-
put. The main process communicate with workers through
multiprocessing.Queue instances. The main process
prefetches data by submitting more batch-loading requests than
its immediate demand. When using more workers, the through-
put increases because workers simultaneously load samples
from the data source, increasing the effective bandwidth. It
also parallelizes the preprocessing of batches.

B. Multithreading

While multiprocessing loads multiple batches in parallel,
there exists untapped parallelism within the loading of a batch.
It is often the case that the preprocessing of individual samples
can all be done independently in parallel. Thus, we can use
multithreading to parallelize sample preprocessing within a
batch, so that the loading time can reduce further. Figure 3
illustrates the effects of multiprocessing and multithreading.
Multiprocessing overlaps batch loading across processes, while
multithreading within a worker shortens loading time per batch
by preprocessing samples in parallel.

While multithreaded data loading exists in other deep
learning frameworks, in Pytorch, we have to modify the data
loader implementation to create a ThreadPoolExecutor
instance along with a data loader worker. Instead of loading
samples and preprocessing them one-after-one sequentially in
a single thread, we use ThreadPoolExecuter.map() to
load samples in a batch concurrently. Note that, due to the
python global interpreter lock (GIL) issue [18], multithreading
works well only if the preprocessing pipeline stages call native
library routines and release GIL correctly. In experiments
of Imagenet-1K training, system calls such as file I/O and
the image transformations do release GIL, and we can see
significant performance improvement with multithreading (see
Section VI-A).

C. Caching

The data access pattern of mini-batch SGD is repetitive and
random. The learners collectively load the same training dataset
with a randomized sequence every epoch. Since the samples
are reused, there is temporal locality that we can utilize to
improve performance.

We can allocate a software cache either in memory or in a
high speed local storage such as an SSD of a compute node
to store samples that have been loaded in earlier epochs. The
cached samples will be used again in subsequent epochs. With
a cache hit, a learner loads a sample with a much shorter
latency. It also reduces the number of accesses to the storage
system, making the I/O bandwidth less likely to be saturated.

3



This paper has been accepted for publication in HiPC 2019

Fig. 2. Illustrative execution timeline of a learner.

Fig. 3. Parallelizing data loading. Multiprocessing allows overlapping of batch
loading while multithreading further reduces batch loading time by utilizing
parallelism within a batch.

While caching in memory grants optimal data access time,
training datasets that are too large to fit in the local DRAM
can be cached in SSDs. For very large datasets that do not
fit in the local cache, caching a partial subset locally can still
improve performance although the improvement can be limited.
For example, considering a compute node that caches 10% of
the training dataset, the cache hit rate is 0.1. In other words,
90% of the samples are still loaded from the storage system.

To avoid being limited by the local cache size, all the
participating compute nodes can share their local caches with
each other to form an aggregated cache that is many times
larger than individual caches, similar to the high-speed parallel
data staging method mentioned in [16]. With the aggregated
cache, compute nodes may cache disjoint partitions of a large
dataset. We refer to this technique as distributed caching.

Distributed caching changes data-loading in mini-batch SGD.
During training, a sample load can be a local cache hit, a remote
cache hit, or a cache miss served by the storage system. The
local cache hit rate is likely to be small, assuming the local
cache only holds a small subset of the whole training dataset.
But the remote cache hit rate can be very high, if the aggregate
cache holds most of the dataset. The cache miss rate can be
zero, if the whole training dataset is collectively cached. The
technique bears a lot of similarities to the hierarchical hardware
caches in modern processor architectures.

With distributed caching, learners can exchange cached
samples to create their local batches (i.e. a slice of a mini-
batch sequence). The exchanges utilize the high-speed network
among compute nodes instead of loading from the storage
system. In this way, the storage system bandwidth is no longer
a bottleneck. However, the bandwidth among compute nodes,

albeit typically larger, can still be a limiting factor, because the
data loaded collectively per epoch is still close to the whole
dataset size. We model the cost of distributed training in the
next section, and in Section V, we propose a new data loading
method that reduces the bandwidth requirement of distributed
mini-batch SGD.

IV. PERFORMANCE MODEL

We present a simple analytical model to help analyze the cost
in different system scales. The model contains the following
parameters (we denote uppercase letters to represent constant
values and lowercase letters to represent variables):
D: the dataset size. To simplify the analysis, we assume that

the data samples are the same size, and D equals the total
number of samples in the dataset.

p: the number of participating compute nodes.
V : the maximum training rate of a compute node.
R: the I/O rate from the storage system. We let this be the

maximum loading rate.
Rc: the I/O rate from the remote caches. We can reasonably

assume Rc is much larger than R due to the high-speed
interconnection that HPC systems typically have.

U : the maximum preprocessing rate of a compute node.
α: the ratio of the cached subset (in the aggregated cache)

to the whole dataset.
From the discussion in Section II-B, we know that when

data loading is overlapped with training, the true overall cost
is the larger of the training cost and the data loading cost. The
training cost and the data loading cost of an epoch can then
be derived from:

Training time =
D

p · V
(1)

Sample I/O time =
D

R
(2)

Sample preprocessing time =
D

p · U
(3)

Data loading time = (2) + (3)

=
D

R
+

D

p · U
(4)

Now, let us revisit Figure 1. There was only data loading
without training in the experiment. In the plot, the data loading
cost was high initially when there were few nodes, but it
decreased when more nodes were added until it hit a plateau.

4



This paper has been accepted for publication in HiPC 2019

In (4), the preprocessing time decreases when p increases.
It eventually becomes insignificant, relative to the constant
sample I/O time. And the data loading costs at least D

R which
is a constant. This explains the plateau.

We can also determine the true cost by comparing the training
cost and the data loading cost. To simplify the analysis, we
assume that the preprocessing rate is much higher than training
rate (i.e. U � V ), and p is also large enough so that the
preprocessing cost is relatively insignificant. Thus, we only
concern the relationship between (1) and (2). If the training
time dominates the true cost:

(1) ≥ (2)

D

p · V
≥ D

R

p ≤ R

V
(5)

From (5), we know that for small p, the training time
dominates. As p increases, more computing resources can
be used to reduce the training cost while the sample I/O time
remains constant. The true cost per epoch can thus be expressed
as the following:

True cost =


D

p · V
for p ≤ R

V
D

R
for p >

R

V

(6)

Now, let us consider distributed caching. We assume that
the cost of local cache hits is insignificant. The optimization
does not change the training cost or the preprocessing cost but
only affects the sample I/O cost:

Sample I/O time =
(1− α) ·D

R︸ ︷︷ ︸
Storage system

+
α ·D
Rc︸ ︷︷ ︸

Remote caches

· p− 1

p︸ ︷︷ ︸
Local cache miss

(7)

We can know two things from (7): (a) The local cache miss
rate p−1

p can be very high when p is large so local cache
hits do not help very much although they are fast; (b) Both
α and Rc have to be large for distributed caching to perform
very well. While scaling up, it is easy to have a large α since
scaling up increases the amount of aggregated memory to store
a fixed-sized dataset. Rc � R is also a reasonable assumption
in modern HPC systems. However, Rc does not grow linearly
with p, and eventually the performance scaling is limited by
the bandwidth among compute nodes.

V. LOCALITY-AWARE DATA LOADING

The optimizations described in Section III improve the data
loading rate of learners. However, as illustrated in both in
the experiment (Figure 1) and through performance modeling,
a distributed learning application scales only as far as the
storage system’s capability allows. We need a way to reduce
the bandwidth requirement of distributed DNN training to
overcome the limitation.

In the rest of this section, we describe a data loading method
which adds a locality-aware flavor to distributed caching. It
not only reduces data loading from the storage system, but
also minimizes overall data loading volume to a fraction of
the dataset size.

Instead of exchanging among learners to form designated
mini-batch slices, learners can assemble a mini-batch from
their locally cached samples to greatly reduce data loading. A
key property of SGD makes it possible: for a given global mini-
batch sequence, as long as all the samples in such sequence
are used in the training step, the ordering of the samples
within the global batch does not affect the training results after
synchronization (i.e. all-reduce operation).

A. Methodology

As in distributed caching, learners must populate their local
caches before the locality-aware data loading method can be
applied. This can either be a cache populating phase before
training, or caching the samples loaded from the storage system
on-the-fly during the first epoch. As long as the cached subsets
are disjoint, how samples are cached is not important, since
the mini-batch sequences are randomly shuffled. However, it
may be advantageous to populate the caches in a way that
sample locations (i.e. the nodes samples are cached) can be
easily determined to avoid extra book-keeping. We assume a
cache directory exists for tracking sample locations, and the
directory is duplicated across all learners and stays the same
(i.e. no cache replacement) after populating caches in the first
epoch.

With locality-aware data loading method, in a training step,
a learner goes through a given predefined global mini-batch
sequence and look for samples that are cached locally and
trains with them. Given the number of compute nodes p, if the
whole dataset is evenly split among all caches, and a global
mini-batch sequence is uniform-randomly sampled, a compute
node should find close to 1

p of the global mini-batch in its
local cache. It can then use these samples in the training step
as its local batch. The results of training with this subset of
the global mini-batch sequence are the learner’s contribution in
the training step. In Section V-B, we prove that training with
this method produces equivalent results to the regular method.

When learners look for samples locally cached, they may
find themselves caching varying sized subsets of the global
mini-batch sequence. In other words, the sample distribution
can be imbalanced. Letting learners train with imbalanced local
batches, while giving the same training results and potentially
performing zero remote data loading, can cause some learners
to become stragglers and increase the training time of a step
in synchronous SGD. We need load balancing for optimal
performance, and we discuss this further in Section V-C.

Assuming the caches have been populated with samples, the
procedure of locality-aware data loading is as follows:

1) Get a global mini-batch sequence that is the same across
all learners.

2) Determine the sample distribution of the global mini-batch
among the distributed learners.

5



This paper has been accepted for publication in HiPC 2019

Fig. 4. Conventional method: learners load even-sized slices.

Fig. 5. Locality-aware method: sample distribution in learner caches.

3) Determine data loading for either samples missing from
the aggregated cache or load balancing.

First, all learners get the same global mini-batch sequence.
Next, each learner independently goes through the global
sequence and determines the sample distributions by looking
up the cache directory. Then, the learners need to agree on
how to load samples locally so that they collectively assemble
the global mini-batch. Samples not in the caches are loaded
from the storage system. As for load-balancing, the learners
can exchange data to achieve load balance, or they can load
from the storage system. If learners exchange samples for load
balancing, it creates point-to-point communication traffic. We
provide both theory and simulation results in Section V-C to
show that this traffic is a small fraction of the data movement
that the regular loading method requires.

Figure 4 and 5 illustrate the differences between using the
regular mini-batch SGD and the locality-aware method. We
assume 3 learners — Red, Green, and Blue — collectively
load a global mini-batch of 12 samples. In the regular method
(Figure 4), the global mini-batch sequence is split into multiple
slices, and each learner loads a slice of 4 samples to train
with before synchronization. In the locality-aware method, the
learners look for the locally cached samples that belongs to
the mini-batch. In Figure 5, Red has 2 samples, Green has
6 samples, and and Blue has 4 samples in their local caches.
A way to balance the load is to let Red load 2 samples from
Green before training. The total volume loaded for this global
mini-batch is 2÷12 ≈ 17% of the regular method.

B. Proof of equivalence

Here we give a formal proof that the locality-aware data
loading method produces the same results as the regular loading
method. Consider the following optimization problem solved
by mini-batch SGD:

min
w∈X

F (w)

where F : Rm → R is continuously differentiable but not
necessarily convex over X , and X ⊂ Rm is a nonempty open
subset. The objective F can be seen as the empirical risk
F (w) = n−1

∑n
i=1 gi(w, xi). Here xi, 1 ≤ i ≤ n, are data

samples.
The regular data loader and locality-aware dataloader im-

plement two sampling schemes for P learners. We call the
regular one Reg, and the locality-aware one Loc.

Theorem 1. Assuming the same sequence of random numbers
are generated for Reg and Loc, then distributed minibatch
SGD produces the same w with both sampling schemes after
the same number of training steps.

Proof. By induction. Denote xkt as the k-th (1 ≤ k ≤ B) sam-
ple in the t-th mini-batch, where B is the size of the global mini-
batch. Since the mini-batch is evenly distributed to each learner
in a block fashion, at the j-th (1 ≤ j ≤ P ) learner Lj , the
local mini-batch includes {x(B/P )∗(j−1)+1

t , · · · , x(B/P )∗(j)
t }.

Assume after t = s, s ≥ 1, w is the same under Reg and Loc.
Then at step s+1, Reg produces a global mini-batch sequence
{x1s+1, x

2
s+1, · · · , xBs+1}.

With Reg the global mini-batch sequences are block-
distributed, and at learner Lj , the local batch is:

{x(B/P )∗(j−1)+1
s+1 , x

(B/P )∗(j−1)+2
s+1 , · · · , x(B/P )∗(j)

s+1 }

So the local gradient is:

∇F (w : {x(B/P )∗(j−1)+1
s+1 , x

(B/P )∗(j−1)+2
s+1 , · · · , x(B/P )∗(j)

s+1 })

=
∑
jj

∇F (w : x
(B/P )∗(j−1)+jj
s+1 )

And the global gradient after reduction is:

∇Reg =
∑
j

∑
jj

∇F (w : x
(B/P )∗(j−1)+jj
s+1 )

Since Loc uses the same random number sequence,
it produces the same global mini-batch sequence
{x1s+1, x

2
s+1, · · · , xBs+1} as Reg. However, due to locality

optimization, the sequence is not distributed to the learners
in a block fashion. In fact, the local batch may actually have
different sizes. From the convergence perspective, locality-
aware optimization in effect permutes the sampling sequence
{x1s+1, x

2
s+1, · · · , xBs+1} into {xg1s+1, x

g2
s+1, · · · , x

gB
s+1}, and

distributes it unevenly in a block fashion to the learners.
Suppose learner Lj gets samples gjb to gje . Then the local
gradient is:

∇F (w : {xgjbs+1, x
gjb+1

s+1 , · · · , xgjes+1}) =
∑

gjb≤jj≤gje

∇F (w : xjjs+1)

And the global gradient after reduction:

∇Loc =
∑
j

∑
gjb≤jj≤gje

∇F (w : xjjs+1)

By the commutative law of addition,∇Loc = ∇Reg. Therefore,
ws+1 of the two methods are the same. Obviously, the base
w1 is the same for both sampling schemes. This completes our
proof.

Theorem 1 shows that our locality-aware data loading scheme
produces the same gradients as the original approach for each
step in distributed SGD. In current practice, batch normalization
is frequently used to improve training accuracy and time. In
theory, batch normalization should be applied to the whole mini-
batch. In this case, Theorem 1 still holds. If batch normalization
is applied to each local part of the mini-batch, the mean and the
variance are obviously different from the original data loading
scheme. However, from the training perspective, the impact of

6



This paper has been accepted for publication in HiPC 2019

Fig. 6. Simulated imbalance of the global mini-batch sample distribution in
distributed caching. p is the number of compute nodes.

our locality-aware scheme on batch normalization is similar to
that of using a different random permutation sequence. It should
have minimal impact on training results. This is confirmed by
our experimental results.

C. Load Imbalance

Here, we discuss the load imbalance of the locality-aware
data loading method. We first analyze the data imbalance among
the caches for the learners. The distribution of data samples in a
global mini-batch to caches is a random process. To characterize
the amount of data samples of a global mini-batch in the cache
of a certain learner, we consider the process of uniformly-at-
random placing b balls in p bins. Let M be the random variable
that counts the maximum number of balls in any bin. Then
Pr[M > Kα] = o(1) for α > 1 and Kα = b

p + α
√
2 bp log p,

with p log p � b ≤ p · polylog(p) (see Theorem 1 of [19]).
The imbalance in the amount of data samples for a mini-batch
in theory is unlikely to be large.

We ran simulations to show the traffic volume needed to
balance the batch samples. Different local batch sizes and
different number of compute nodes are used. The simulation
started with a fixed sized dataset evenly partitioned and
distributed to p compute nodes. Then, mini-batch sequences
were generated, and the sample distributions were determined.
The imbalance traffic volume percentage is calculated by
summing the deficits of every learner and then divided by
the mini-batch size. We collect the imbalance numbers of
many steps and render the box plot as shown in Figure 6.

We can make two observations from the figure. First, the
imbalance depends on the local batch size. For example, the
green boxes are the results of the same local batch size 64.
And they have very close median values across different
configurations. The same applies to the other local batch sizes.
Second, the imbalance is in general a small percentage for
moderate to large local batch sizes. The median values of the
imbalance percentage for the local batch size 32, 64, and 128
are approximately 6.9%, 4.8%, and 3.4%, respectively.

Both the theory and simulation results show that the load
imbalance of the locality aware data-loading is small. Still,
imbalance in the amount of data present in the cache of each

Algorithm 1 Balance (p, L)
1: Make a surplus heap Hs of all surpluses in L in decreasing order
2: Make a deficit heap Hd of all deficits in L in decreasing order
3: S ← {}
4: while Hs is not empty do
5: hs ← find-max(Hs)
6: hd ← find-max(Hd)
7: m← min(hs.imbalance, hd.imblance)
8: hs.imbalance ← hs.imbalance −m
9: hd.imbalance ← hd.imbalance −m

10: S.append(hs.ID, hd.ID, m)
11: if hs.imbalance = 0 then
12: heap-remove(hs)
13: else
14: heap-decrease-key(hs)
15: end if
16: if hd.imbalance = 0 then
17: heap-remove(hd)
18: else
19: heap-decrease-key(hd)
20: end if
21: hs ← heap-find-max(Hs)
22: hd ← heap-find-max(Hd)
23: end while
24: return S

learner creates imbalance in computation time for forward and
backward propagation in training. To achieve perfect loading
balancing, learners with data surplus need to send some data
samples to learners with deficit. These data transfers incur
communication among the learners, and we want to minimize
the number of transfers (since the total amount of data measured
in bytes being transferred in any scheme is the same). This
optimization problem is equivalent to an existing problem and
turns out to be NP -complete (see [20]).

We propose an approximation algorithm. Its formal descrip-
tion is given in Algorithm 1. In the algorithm, we build two
heaps, one for learners with surplus Hs, and the other for
learners with deficit Hd. Each heap element contains two
items, imbalance for the current imbalance in workload, and
ID for the learner. The algorithm greedily finds the current
largest imbalanced heap elements hs in Hs and hd in Hd, and
records sending min(hs.imbalance, hd.imbalance) amount of
data samples from the learner with the surplus to the learner
with the deficit in the schedule list S. The algorithm then
updates the heaps, and continue.

Since with each heap-find-max operation on Hs the imbal-
ance of at least one learner is removed, and the heap operation
takes at most log p time, it is easy to see that Algorithm 1 runs
in O(p log p) time.

Theorem 2. Algorithm 1 is a 2-approximation algorithm.

Proof. In the worst case, the number of messages sent by
Algorithm 1 is at most p− 1 as each heap-find-max operation
on Hs fixes one imbalanced learner, and the minimum of
messages sent is p/2, the approximation ratio is p−1

p/2 ≈ 2.

We extend the performance model described in Section IV
to incorporate locality-aware data loading method. The training
time and preprocessing time are the same as previously
described. We focus on the sample I/O time here, since it

7



This paper has been accepted for publication in HiPC 2019

dominates the cost when p is large. Two new parameters are
needed:
Rb: the I/O rate of data movements for load balancing. If we

choose to load the samples from remote caches, we can
let Rb = Rc.

β: the load balancing traffic volume ratio to the a given
dataset size.

The sample I/O time using the locality-aware data loading
method is:

Sample I/O time =
(1− α) ·D

R︸ ︷︷ ︸
Storage system

+
α ·D
Rb

· β︸ ︷︷ ︸
Load balancing cost

(8)

From the previous analyses, we know that β is a small
number (i.e. 0 ≤ β � 1) because load imbalance is unlikely to
be large. We can see that (8) differs from (7) only in the second
term. When p is large, p−1

p ≈ 1 � β, thus, compared with
distributed caching, the locality-aware data-loading method
greatly reduces the I/O cost.

VI. EXPERIMENTS

We conducted experiments on Lawrence Livermore National
Lab’s Lassen system using up to 256 nodes (1,024 GPUs).
A compute node has two IBM POWER9 processors (44
cores in total), 256 GB system memory, 4 Nvidia V100
(Volta) GPUs, 16 GB memory per GPU, and Inifiniband
EDR interconnect among compute nodes. Compute nodes have
access to IBM Spectrum Scale (GPFS), a high-performance
parallel file system.

We studied a PyTorch implementation of Imagenet-1K clas-
sification using Resnet50 adopted from PyTorch examples [21].
The dataset, Imagenet-1K, contains around 1.28 million JPEG
images, each is several hundred KBs. The total dataset size is
about 150 GB. The distributed implementation spawns multiple
learner processes, each associated with a GPU. The learners
execute in a data-parallel fashion and synchronize with each
other using NCCL library, which provides an optimized all-
reduce operation for the synchronizations in training.

We also include the data loading performance results of
the UCF101 dataset [22]. The dataset was originally videos
and was converted into two image datasets: RGB and optical
flow (referred to as FLOW) with approximately 2.5 million
and 5 million images of average sizes 24.2 KB and 4.6 KB
respectively. We conducted data loading only (including I/O
and video transformations) experiments with the optimized
data loader to see how it performs for datasets other than
Imagenet-1K.

To understand how our approach performs in loading very-
large datasets, we used another 892 GB dataset generated from
molecular dynamics (MD) simulations conducted using Multi-
scale Machine-Learned Modeling Infrastructure (MuMMI) [23].
The dataset contains ~7M files that are derived MD trajectory
frames. Each file contains a single frame of a constant size,
131 KB. The frames are stored in numpy array format and can
be used in ML training directly after data loading. In other
words, no sample pre-processing is required.

A. Effects of Optimizations

We examined the Imagenet-1K sample loading rate running a
single data loading only learner (i.e. no training) with different
numbers of workers and threads per worker to find a good
combination. The case with zero thread (i.e. multithreading off)
is the default PyTorch data loader. As shown in Figure 7, in
general, the loading rate increases both with more threads and
more workers. Our multithreading optimization granted better
performance with relatively fewer workers, which is preferable
because the overhead of spawning more workers increases
quickly. The maximum loading rate measured is around 800
samples per second.

Next, we compared the results of the regular PyTorch data
loader with those of our locality-aware data loader. In each
compute node, we created 4 learners to associate with 4 GPUs
individually, and we let each learner spawn 10 background
workers for it grants maximum sample loading rate in the
previous experiment. The cache size of each learner is upper
bounded at 25 GB but in most cases they use less than that
for that we populate at most 1

p of the dataset per learner in the
first epoch without cache replacement afterwards. The regular
data loader read samples of a designated slice from a randomly
permuted global mini-batch sequence in every step, while the
locality-aware data loader went through a global mini-batch
sequence, determined its contribution, and trained with mostly
locally cached samples. We let the locality-aware data loader
train with balanced local batches (using Algorithm 1) to avoid
negative effects of stragglers.

We ran a set of experiments in different scales. We removed
the per-step synchronizations and kept only one in the end
of each epoch. We experimented both with multithreading
(4 threads each worker) and without multithreading to see
if parallelized preprocessing helps the overall performance.
We report the average time spent per-epoch excluding the first
epoch, in which the caches were populated in the locality-aware
method.

The results of loading Imagenet-1K in Figure 8 show that for
the regular data loader, the cost did not decrease while scaling
up. The slightly higher cost at 64-node was very likely caused
by interference from other jobs. Regardless, since locality-
aware data loaders fetched drastically fewer samples, data
loading scales well with the number of learners.

In most configurations, for the same data loader and the
same scale, a multithreaded trial finished sooner than a
single-threaded one. We see a general improvement due to
multithreading in all different numbers of compute nodes. For
the regular data loader, multithreaded runs are 24%–71% faster;
For the locality-aware data loader, multithreaded runs are 105%–
113% faster.

However, multithreading alone did not help in scaling up
to more nodes when using the regular data loader. In contrast,
the locality-aware data loading method clearly improved the
scalability. Once the effective I/O bandwidth stopped scaling
for the regular data loader — as can be seen from the fact
that the time did not reduce further even though more nodes

8



This paper has been accepted for publication in HiPC 2019

Fig. 7. The Imagenet-1K sample loading rate of a single learner
using different workers/threads combinations.

Fig. 8. Cost to collectively load the Imagenet-1K dataset in
different scales.

Fig. 9. Cost to collectively load the UCF101-RGB dataset in
different scales.

Fig. 10. Cost to collectively load the UCF101-FLOW dataset
in different scales.

Fig. 11. Cost to collectively load the MuMMI dataset in different scales.

participated — the locality-aware data loader outperformed
significantly, due to its lowered bandwidth requirement from
reusing cached samples. At 256 nodes (1,024 learners), the
locality-aware data loader achieved close to 34x speedup over
the regular data loader at the same node count.

Figure 9 and 10 show the results of loading the two sets
from UCF101. The performance trend looks slightly different
from Imagenet-1K results for the regular data loader. Without
multithreading, the regular data loader spent more time per
epoch to load both UCF101-RGB and UCF101-FLOW, albeit

the volume to load per learner decreased as more compute
nodes participated in loading. This trend also appeared in in
loading UCF101-FLOW with multithreading. Since our jobs did
not have exclusive access to the cluster during the experiment,
we attribute the performance degradation to the interference
of other jobs executing simultaneously that loaded from the
GPFS. This phenomenon showcases again that at a very large
scale, the conventional way of data loading does not scale.

In contrast to the regular data loader, our locality-aware
data loader granted much better performance results for the
data loading tasks of UCF101 in different scales. For UCF101-
RGB, our optimized data loader is 2.8x–55.5x faster and for
UCF101-FLOW, it is 2.2x–60.6x faster.

For the largest dataset MuMMI, we can observe even more
encouraging results using the locality-aware loading method as
shown in Figure 11. Our optimized data loader provides 18x,
35x, 70x, and 120x speedup over the regular data loader at 16,
32, 64 and 128 nodes correspondingly. We can see that the
multithreading optimization does not affect the performance in
a significant way, since the samples are numpy arrays and no
pre-processing is needed after loading to the DRAM.

B. Imagenet-1K ResNet50 Training

We ran the Imagenet-1K classification using ResNet50 model
to measure the performance results and the validation accuracy

9



This paper has been accepted for publication in HiPC 2019

TABLE I
IMAGENET-1K RESNET50 VALIDATION ACCURACY COMPARISON BETWEEN

THE REGULAR DATA LOADER AND THE LOCALITY-AWARE DATA LOADER.

Number of
nodes

Mini-batch
size

Regular loader
(%)

Locality-aware
loader(%)

16 8,192 76.67 76.81
32 16,384 75.33 75.12
64 32,768 68.69 69.54

Fig. 12. Average epoch time of Imagenet-1K ResNet50 training in different
number of nodes.

after 90 epochs in three different scales to compare the two data
loader implementations. We enabled multithreading (4 threads
per worker) in all runs. As we scaled up the distributed training,
we also increased the global mini-batch size. We tried to
reproduce the validation accuracy in [9] for 8K mini-batch using
the same fine-tuning techniques including batch normalization.
For larger batch sizes, some of the known highest accuracy
numbers achieved involve LARS [10] and elaborate learning
rate tuning, since our goal is not to achieve the highest accuracy,
but to show comparable accuracy results, we did not implement
those. In Table I, we present the results. Using the locality-
aware data loader resulted in comparable validation accuracy
with that of the regular PyTorch data loader, as the differences
are below 1%.

Figure 12 shows the average time per-epoch of the runs.
With training on GPUs, the data loading overhead should be
hidden except for when p is large. For 16 nodes, the GPU
training time dominated the cost, and the time per-epoch was
comparable between the two different loaders. For 32 and 64
nodes, the time per-epoch using the regular data loader was
lower-bounded by the constant data loading cost, which was
limited by the I/O rate. In contrast, using the locality-aware data
loader helped the per-epoch training time to decrease further
when more nodes participated. We observe 1.9x speedup over
regular data loader at 64 nodes (256 learners). The results
prove that our locality-aware data loading method works well
in practice.

VII. RELATED WORK

Several papers [10]–[13] addressed the topic of optimizing
Imagenet classification with ResNet50 on distributed systems.
They mostly aimed to get a similar validation accuracy (75%

after 90 epochs) to Goyal’s work [9] while improving the
total training time. Various novel methods that improve GPU
computation time and synchronization time were proposed, but
they often omit the data loading problem.

There have been mentions of the data loading problem
and attempts to solve it on very large-scale deployments.
In DeepIO [24], data servers store subsets of the training
dataset in an in-memory cache and prioritize reuse of data
from the in-memory cache. While this reduces the accesses to
the storage system, the mechanism can change the mini-batch
sequences and impact the model accuracy. In comparison, our
method does not change the predefined mini-batch sequences.
In [16], distributed caching successfully scaled the application
to 4,560 nodes. It relies on the high-speed interconnect among
compute nodes to reduce the data loading from the storage
system and lower the I/O cost, but the total volume of data
movement among compute nodes remains high. Our locality
aware method complements distributed caching by reducing the
data movement to a small fraction, which can make applications
scale to even larger systems.

VIII. CONCLUSION

Efficient data loading is fundamental for distributed DNN
training to scale to large-scale HPC systems. We investigated
the issues of the existing data loader design and proposed
performance optimizations. We also identified that, by both
performance modeling and empirical results, the inability to
load data faster limits the scalability of distributed mini-batch
SGD. Our locality-aware data loading method utilizes caches
to potentially eliminate the data loading from the storage
system after the first epoch, and also reduces the total data
loading volume to a tiny fraction of the input dataset size.
Thus, the method lowers the bandwidth requirement effectively
and makes distributed DNN training much more scalable. Our
experiments show that with the proposed optimizations, we
can speed up the data loading of 1,024 learners to 34x, 55x
and 60x for Imagenet-1K, UCF101-RGB and UCF101-FLOW,
respectively. We can also get 120x speedup for loading a
892 GB MuMMI dataset using 512 learners. Applying the
optimizations to the practical Imagenet-1K classification task
also shows that simply using our data loader granted ≈
2x speedup with 1,024 learners while gaining comparable
validation accuracy results.

Our prototype implementation is based on PyTorch. We plan
to develop a general software package of the optimized data
loader that can be used with any machine learning frameworks.
We also plan to study the feasibility of applying our methods
to other machine learning optimization methods. We also want
to explore using SSD which provides ample space and fast
access, and is ideal for a hierarchical caching design.

ACKNOWLEDGMENT

This work was supported under CORAL NRE Contract
B604142.

10



This paper has been accepted for publication in HiPC 2019

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on. IEEE, 2017, pp. 1–12.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[3] Intel, “MKL-DNN,” https://github.com/intel/mkl-dnn, 2019.
[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[5] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[6] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[7] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[9] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[10] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” Proceedings of the 47th International Conference
on Parallel Processing - ICPP 2018, 2018. [Online]. Available:
http://dx.doi.org/10.1145/3225058.3225069

[11] X. Jia et al., “Highly scalable deep learning training system with mixed-
precision: Training imagenet in four minutes,” 2018.

[12] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image classification
at supercomputer scale,” 2018.

[13] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, and Y. Kageyama,
“Imagenet/resnet-50 training in 224 seconds,” 2018.

[14] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” Journal of Machine
Learning Research, vol. 13, no. Jan, pp. 165–202, 2012.

[15] T. Kurth et al., “Deep learning at 15pf,” Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis on - SC ’17, 2017. [Online]. Available:
http://dx.doi.org/10.1145/3126908.3126916

[16] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe et al., “Exascale deep learning
for climate analytics,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis.
IEEE Press, 2018, p. 51.

[17] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.

[18] Python Wiki contributors, “Global interpreter lock,” 2019, [Online;
accessed 01-March-2019]. [Online]. Available: https://wiki.python.org/
moin/GlobalInterpreterLock

[19] M. Raab and A. Steger, “Balls into bins—a simple and tight analysis,” in
International Workshop on Randomization and Approximation Techniques
in Computer Science. Springer, 1998, pp. 159–170.

[20] X. Chen, L. Liu, Z. Liu, and T. Jiang, “On the minimum common integer
partition problem,” ACM Transactions on Algorithms (TALG), vol. 5,
no. 1, p. 12, 2008.

[21] Facebook, “pytorch/examples,” https://github.com/pytorch/examples,
2019.

[22] K. Soomro, A. Roshan Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” in CRCV-TR-12-01,
2012.

[23] F. Di Natale et al., “A massively parallel infrastructure for adaptive
multiscale simulations: Modeling RAS initiation pathway for cancer,” in
Supercomputing: The International Conference for High Performance
Computing, Networking, Storage, and Analysis (To Appear). ACM,
2019.

[24] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-aware i/o pipelining for large-scale deep learning on
hpc systems,” in 2018 IEEE 26th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 145–156.

11

https://github.com/intel/mkl-dnn
https://www.tensorflow.org/
http://dx.doi.org/10.1145/3225058.3225069
http://dx.doi.org/10.1145/3126908.3126916
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/pytorch/examples

	I Introduction
	II Background
	II-A Mini-batch SGD
	II-B Cost and scalability of distributed training

	III Data loader optimizations
	III-A Multiprocessing
	III-B Multithreading
	III-C Caching

	IV Performance Model
	V Locality-aware Data Loading
	V-A Methodology
	V-B Proof of equivalence
	V-C Load Imbalance

	VI Experiments
	VI-A Effects of Optimizations
	VI-B Imagenet-1K ResNet50 Training

	VII Related Work
	VIII Conclusion
	References

