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Abstract—Many problems in scientific and engineering appli-
cations contain sparse matrices or graphs as main input objects,
e. g., numerical simulations on meshes. Large inputs are abundant
these days and require parallel processing for memory size and
speed. To optimize the execution of such simulations on cluster
systems, the input problem needs to be distributed suitably onto
the processing units (PUs). More and more frequently, such
clusters contain different CPUs or a combination of CPUs and
GPUs. This heterogeneity makes the load distribution problem
quite challenging. Our study is motivated by the observation that
established partitioning tools do not handle such heterogeneous
distribution problems as well as homogeneous ones.

In this paper, we first formulate the problem of balanced
load distribution for heterogeneous architectures as a multi-
objective, single-constraint optimization problem. We then split
the problem into two phases and propose a greedy approach to
determine optimal block sizes for each PU. These block sizes
are then fed into numerous existing graph partitioners, for us
to examine how well they handle the above problem. One of
the tools we consider is an extension of our own previous work
(von Looz et al., ICPP’18) called Geographer. Our experiments
on well-known benchmark meshes indicate that only two tools
under consideration are able to yield good quality. These two
are ParMetis (both the geometric and the combinatorial variant)
and Geographer. While ParMetis is faster, Geographer yields
better quality on average.

Index Terms—load balancing, graph partitioning, heteroge-
neous systems

I. INTRODUCTION

Applications with sparse matrices or sparse graphs are
ubiquitous in science and engineering. In case of sparse
matrices, applications often model complex problems as dis-
cretizations of partial differential equations, e. g., in molecu-
lar dynamics [26] or climate simulations [11]. This usually
leads to large matrix-vector problems such as sparse linear
systems or eigenproblems with significant demands in terms
of memory and computation. Hence, such simulations are
often executed on parallel systems with distributed memory.
Typical algorithms include Krylov subspace solvers such as
conjugate gradient (CG), which are iterative and perform
sparse matrix-vector product (SpMV) operations in each it-
eration. Due to the correspondence between matrices and
graphs [23], similar computational demands arise in large-

scale graph computations such as the analysis of massive
online social networks [9].1

To obtain short execution times, it is essential to find a good
distribution of the application’s computational tasks onto the
available processing units (PUs). This is all the more important
for heterogeneous systems, i. e., when the PUs differ in terms
of their speed and memory capacity. Such systems become
more and more common since GPUs offer a more energy-
efficient way to solve certain problems in parallel [34].

A good distribution balances the load (in particular the ma-
trix/graph and the main vectors involved in the computations)
between the PUs and leads to a low communication overhead.
Since for many of the problems under consideration, GPUs
are faster than CPUs, they could in principle receive a larger
share of the distributed data. At the same time, however, GPUs
usually have smaller memories – a constraint that must be
obeyed to guarantee a healthy application.

One popular way of finding a good distribution is to
use graphs and/or hypergraphs to model the task interac-
tions and then to employ (hyper)graph/matrix partitioning [6].
Finding an optimal distribution this way is NP-hard [14].
Thus, in practice heuristics are applied [5], [17], [24]. (Hy-
per)Graph/matrix partitioning usually leads to a partition of
the graph/matrix into so-called blocks of vertices/rows, where
each block is handled by one PU. Since classic graph par-
titioning does not take into account how fast the PUs can
communicate with each other, explicit algorithms for mapping
the blocks onto PUs are sometimes employed in addition,
see [2]. This mapping step becomes more important for more
complex/irregular scenarios [15] (e. g., in terms of application
matrices, heterogeneous and/or hierarchical compute systems).

Motivation: From an abstract perspective, the goal is to
(re)distribute the input matrix among the available PUs in a
way such that the application’s execution time is minimized.
This means that (i) no PU receives more data than it can fit
into its memory, (ii) each PU receives a part of the input
that matches its proportionate computational capabilities, and
(iii) the communication costs induced by the distribution are
low. Partitioning tools that offer mapping capabilities are

1In the remainder, we focus in the description of the underlying application
on matrix computations, but graph computations are equally relevant.
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addressing requirement (iii) and often result in distributions
of low communication costs. However, most of these tools
do not provide automatic support for heterogeneous PU char-
acteristics, thus, they do not address requirements (i) and (ii).
Indeed, modern systems with CPUs and GPUs working on the
same problem together lead to conflicting demands in terms
of processing capabilities and available memory. The lack of
explicit support by existing partitioning tools for the above
problem is what motivates our present study.

Outline and Contribution: In Sec. II we formulate the
problem of balanced load distribution for heterogeneous PUs
as multi-objective optimization problem with a memory con-
straint. To be able to use existing partitioners (which are
reviewed in Sec. III), we divide the problem into two stages:
first, we compute the desired block sizes with a greedy method
inO(k log k) time for k PUs, see Sec. IV. There, we also prove
these block sizes to be optimal for this first stage (but not for
the complete optimization problem, of course). The block sizes
are then fed into a wide variety of popular partitioning tools to
address the second objective in a second stage. After excluding
three tools for not supporting our problem adequately, our
experimental study on the remaining three tools with eight
algorithms (Sec. VI) shows: only ParMetis and Geographer
handle the heterogeneous load distribution with good solution
quality. A combination of balanced k-means and combinatorial
refinement, introduced here in Section V, calculates partitions
for meshes with 10% better cut value compared to ParMetis.
In most cases, we “pay” only with a running time increase of
about 50%, and there are several cases where Geographer is
both faster and has better quality. Material omitted from the
main part can be found in the appendix.

II. PROBLEM STATEMENT

As is customary, we exploit the correspondence between a
symmetric n × n matrix A and an undirected graph G with
n vertices [23]. G has an edge {u, v} iff the entry A[u, v] is
different from zero. This allows to see the load distribution
problem for matrices through graph lens. A list of important
symbols and acronyms that are used in the remainder are given
in Table I.

Symbol Description
GP graph partitioning

LDHT load distribution problem for heterogeneous topologies
k number of blocks of a partition
ε partition imbalance threshold

cut(·) number of edges cut in a partition
bi block i of a partition
pi processing unit i of the system (PU)

cs(·) speed of a PU (number of operations per time unit)
mcap(·) memory capacity of a PU

Cs total computational speed of the system
Mcap total memory of the system
tw(·) the target weight of a block

TABLE I: Description of symbols used in the paper.

A. Graph Partitioning (GP)
We assume an application where each matrix element /

graph vertex represents the same computational demand and
memory requirement (thus both are normalized to 1). As
a first step, let us also assume a homogeneous compute
system in which all PUs have the same speed. Moreover, let
them communicate among each other with the same speed,
regardless of the pair of PUs under consideration.

To make the application as fast as possible, we want to
balance the load among PUs and minimize the (expensive)
communication between PUs. In such a setting, the balanced
load distribution problem is usually modeled by graph parti-
tioning (GP). For GP, given an application graph Ga = (V,E),
an integer k and an imbalance threshold ε, we seek a partition
Π into k blocks b0, b1, . . . bk−1 such that a cost function f(Π)
is minimized, while for all blocks |bi| ≤ (1 + ε)n/k holds. In
case of unweighted vertices or unit weights, |bi| denotes the
number of nodes in block bi.

The most common cost function is the edge cut, cut(Π),
i. e., the number (or weight) of edges with endpoints in
different blocks, see [6]. Some authors also considered the
(more accurate) communication volume and/or the number of
boundary vertices, i. e., the number of vertices with at least
one neighbor in a different block [18].

B. Balanced Load Distribution for Heterogeneous PUs
Next, let us model heterogeneous PUs. They can have

different processing speeds and different memory capacities.
In this scenario, each PU should receive an amount of load that
is proportionate to its speed – but never more than its memory
capacity. Formally, the input consists of an application graph
Ga = (V,E), the number k of blocks, and a representation
of the compute system topology. Since most compute systems
are hierarchical in one way or another, we make the common
assumption [31] that this representation takes the form of a tree
T ; its leaves represent the k PUs, the inner nodes correspond
to sets of PUs (i. e., to their descendants in the tree).

Each PU pi has two weights: cs(pi) is its speed (a nor-
malized number of operations per time unit) and mcap(pi)
its memory capacity. The respective values of an inner node
v of T are formed by recursively accumulating the values
of all children of v. Thus, Cs =

∑k−1
i=0 cs(pi) and Mcap =∑k−1

i=0 mcap(pi) are the total computational speed and memory
of the system, respectively.

To be able to assess established tools, we first model the
balanced load distribution problem by computing a partition
Π of V into k blocks b0, b1, . . . , bk−1 again and then mapping
each block bi to PU pi. This means that block bi must take
the speed and the memory capacity of pi into consideration.
For the load distribution problem for heterogeneous topologies
(LDHT), the goal is then to find a partition Π such that:

minimize cut(Π) and (1)

minimize max
tw(bi)

cs(pi)
(2)

s. t. tw(bi) ≤ mcap(pi), (3)
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where tw(bi) is the target weight for block i. In this for-
mulation, Eq. (1) is meant to minimize the communication
between PUs, Eq. (2) is meant to balance the computational
load according to the speeds, while the constraint (3) enforces
that no memory overload occurs. The LDHT problem is NP-
hard since it contains the NP-hard graph partitioning problem
as a special case.

III. RELATED WORK

In this section, we focus on aspects closely related to the
main motivation of our study. First, we discuss algorithms for
the partitioning problem, then we consider the related multi-
constraint, multi-objective problem. Finally, we mention exist-
ing literature on load balancing for heterogeneous systems.

a) GP algorithms: There is a large amount of literature
on heuristics for the GP problem. Most of them can be
classified as either combinatorial, where the connectivity in-
formation of the (hyper)graph is used to drive the partitioning,
or geometric, where solely the coordinate information is used.
Combinatorial partitioning tools (or simply: (hyper)graph par-
titioning tools) usually produce solutions, with better quality
while geometric ones typically have lower running times.
Arguably, one of the most successful heuristics for accelerating
any partitioning algorithm is the multilevel approach [17].
The multilevel approach consists of three phases: coarsening,
initial partitioning, and uncoarsening. In the coarsening phase,
vertices are successively merged together to form a series of
smaller graphs until a sufficiently small graph is produced.
Then, an initial partition is obtained on that graph and is pro-
jected back to the original input, through uncoarsening. In the
corresponding uncoarsening level, the merged vertices are split
and the partition of the coarser graph is further refined. The
multilevel approach is available in a number of well-known
graph partitioning tools such as Metis, Scotch and KaHip. The
most commonly used methods for graph coarsening are usually
based on vertex-matching schemes [22] (as in Metis) and on
clusterings from on label propagation (as used by xtraPulpand
by some configurations of KaHip). During uncoarsening many
tools use local search refinement techniques such FM/KL
methods [12], [22].

Geometric partitioning tools include implementations of
space-filling curves [33] (SFC), recursive inertial bisec-
tion [28] (RIB) and recursive coordinate bisection [16] (RCB).
RCB is a recursive bisection scheme that attempts to minimize
the boundary between the subdomains by splitting the mesh in
half, orthogonal to its longest dimension. RIB uses the prin-
cipal inertial axis to produce a bisection and does not restrict
the splitting to one dimension. Furthermore, a more recent
geometric partitioning, called MultiJagged [10], computes par-
titions by recursively multi-sectioning the dataset, which can
also be viewed as a generalization of RCB. Implementations
of all the above methods can be found in the Zoltan public
library [3]. We also use Geographer, a scalable algorithm for
geometric partitioning, recently proposed by a subset of the
authors [32]. Geographer applies a balanced version of the
k-means algorithm to obtain blocks with compact shapes.

Finally, parallel partitioning algorithms are crucial for mod-
ern distributed systems, especially since graph sizes are in-
creasing dramatically. In general, geometric partitioning tools
tend to be easier to parallelize than multilevel graph parti-
tioners. However, parallel versions of all the algorithms/tools
presented above are available. Parallel algorithms exist in
ParMetis, ParHip, xtraPulp, PT-Scotch for graph partitioning
and the Zoltan library for the geometric ones. The classic
partitioning algorithms do not explicitly support the LDHT
problem. However, to solve the LDHT problem, we need a
classic partitioning tool that accepts specific weights per block.
In the experiments, we use the above tools (parallel versions),
excluding only those who do not allow specific weights
as input. Some of these tools are equipped with additional
capabilities, such as solutions for the multi-constraint, multi-
objective problem as ParMetis and xtraPulp.

b) Multi-constraint, multi-objective partitioning: Multi-
constraint, multi-objective graph partitioning algorithms are
used to model problems with several balance constraints and/or
several optimization objectives. Example problems arise in
multi-physics or multi-mesh simulations [29]. Then, one as-
signs a weight vector of size m to each vertex and a weight
vector of size l to each edge. The problem then becomes
that of finding a partition that minimizes the edge cut with
respect to all l weights, subject to the constraints that each of
the m weights is balanced across the subdomains. ParMetis
was one of the first tools to include algorithms for the multi-
constraint, multi-objective paradigm. In Ref. [21] the problem
of balancing computation and memory constraints is modeled
as a two-constraint problem by associating a vector of size two
for each vertex, where the elements of the vector represent the
computation and memory requirements associated with that
vertex. Later in Ref. [27] the multi-constraint multi-objective
algorithm of ParMetis was used to devise an architecture-
aware partitioning algorithm. Although solutions for the multi-
constraint, multi-objective problem are relevant, the existing
tools do not explicitly address the LDHT problem; instead,
they treat all weights as constraints (upper bounds). In LDHT,
the goal is to balance one weight without exceeding the
second one. We address this problem by describing a two-
stage approach. First we compute the optimal block weights
to be given to these tools, and thus our partial problem leads
to single-constraint, single-objective graph partitioning.

c) Load balancing for heterogeneous systems: Related
work on load balancing for heterogeneous clusters focuses
mainly on solving the mapping problem (or process/task
placement), for which the communication costs between PUs
are added in the classic model of graph partitioning. The
majority of those algorithms do not consider heterogeneous
clusters in terms of different speed or memory capabilities
(rather only in terms of communication costs) and thus do
not solve the LDHT problem. More details can be found in a
survey [19] on algorithms and software for mapping. A recent
work that focuses on partitioning meshes for heterogeneous
systems appeared in [8].
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IV. DETERMINING OPTIMAL BLOCK SIZES

Let us assume we are faced with a load distribution problem
and use one of the established tools that accept (nearly)
arbitrary target block sizes/weights tw(b0), . . . , tw(bk−1) for
the blocks of the application graph’s vertex set. Here, we
discuss how to calculate these tw(·) values for the LDHT
problem, which is more difficult than standard GP. For GP,
one typically passes only Ga, k, and ε to the respective tool,
which then computes a partition with block sizes ≤ (1+ε)dnk e.

For LDHT, the calculation of the tw(·) values is not
supported inside the respective partitioning tools, though, and
needs to happen beforehand. We thus strive for a two-phase
process in which we compute the optimal block sizes first.
These sizes are then passed on to the partitioner. Of course,
a unified process with just one phase would be preferable
(regarding quality), because a two-phase process neglects the
objective function edge cut in the first phase completely. But
it would certainly overburden the users of the load distribution
tools to make the necessary deep changes inside the tools
(which would need to be on the algorithmic level). Thus, the
cut is optimized by the tools in a second black-box phase and
we focus now on the calculation of the tw(·) values for the
LDHT Problem (unweighted Ga, heterogenous topology).

We denote the optimal target block size without any con-
straints for a block bi by tw(bi)

∗. In the trivial case where
all PUs have sufficient memory, this optimal solution (to a
much simpler problem) is for every block to have a weight
proportional to the corresponding PU’s speed:

tw(bi)
∗ = n · cs(pi)

Cs
. (4)

Of course, in reality each PU has a certain memory capacity
that must not be exceeded. If the “previously optimal size”
(without constraint) does not fit into the memory of a PU,
then one should load it as much as possible to obtain the
“new optimum” (with memory constraint). Note that a PU
with insufficient memory (in comparison to its speed) has
an implication on the load of other PUs as well, since the
remaining total load differs from what we assumed in Eq. (4).

For the calculation of the tw(·), we propose a greedy
method, see Algorithm 1. We sort the PUs in decreasing
order by the criterion cs(pi)/mcap(pi) (Line 1). This way, we
want to ensure that the fastest PUs get as much load as they
can handle. Lines 2 and 3 initialize the joint computational
load posed by Ga and the normalized joint speed of the PUs
encoded in the topology tree T , respectively. The main loop
iterates over the PUs in sorted order. In Line 5, in analogy with
Eq. (4), we compute the desirable target weight, desW(bi), of
block bi for PU pi. If desW(bi) is larger than the memory
capacity of PU pi, then pi is assigned this memory capacity
and is called saturated (Line 8). Otherwise, pi’s memory
capacity exceeds its desirable target load, so that pi is assigned
exactly this target load, and is called non-saturated (Line 10).
Finally, in Lines 11 and 12, we subtract the load assigned in
this iteration from jLoad and the current PU’s speed from
jSpeed, respectively.

Algorithm 1: Calculate target block sizes for the
LDHT Problem.
Data: Applic. graph Ga, k, topology info as tree T
Result: Target block sizes tw(b0), . . . , tw(bk−1)

1 Sort PUs such that cs(p0)/mcap(p0) ≥
cs(p1)/mcap(p1) ≥ · · · ≥ cs(pk−1)/mcap(pk−1)

2 jLoad ← |V | . computational load of the graph
3 jSpeed ← Cs . normalized speed of all PUs from T
4 for i← 0, 1, . . . , k − 1 do
5 desW(bi)← cs(pi) · jLoad / jSpeed
6 . desirable weight proportionate to speed
7 if desW(bi) > mcap(pi) then
8 tw(bi)← mcap(pi) . load = mem capacity
9 else

10 tw(bi)← desW(bi) . more mem than load

11 jLoad ← jLoad − tw(bi)
12 jSpeed ← jSpeed− cs(pi)

13 return tw(b0), tw(b1), . . . , tw(bk−1)

Proceeding greedily in this sorted order ensures that we first
fill the “fast enough” PUs and they receive as much as they can
handle. Moreover, we prove in the following that one actually
obtains the optimal solution of Eq. (2) under the memory
constraints. The algorithm’s running time of O(k log k) is
no contradiction to the NP-hardness of LDHT – due to the
separation into two disjoint phases, we do not solve the LDHT
problem in an optimal way.

It is absolutely natural to assume that non-saturated PUs
exist – otherwise no valid solution exists. For the optimality
proof, we first show that all saturated PUs appear consecutively
at the top of the sorted sequence produced in Line 1 (the proof
can be found in Appendix A).

Lemma 1. No saturated PU appears after a non-saturated
PU in the sorted sequence produced in Line 1.

Theorem 1. Algorithm 1 computes the optimal solution for
the objective function (2) under the memory constraint (3). It
runs in O(k log k) time.

In the inductive optimality proof (Appendix B) we exploit
the fact that a change from a saturated PU to a non-saturated
one in the course of Algorithm 1 happens only once – and one
never changes back. This is a consequence from Lemma 1.

V. EXTENSIONS TO GEOGRAPHER

In this section we describe a new version of Geographer,
called Geographer-R, in which we combine the geometric
partitioning with combinatorial techniques. More precisely, we
employ a multilevel approach and use a parallel variant of
the FM algorithm for local refinement. Contrary to the classic
multilevel approach, we obtain a partition before even starting
to coarsen the graph. This is done to obtain a good initial data
distribution to PUs and we use Geographer to do so. Each PU
receives one block for the remainder of the procedure, and is
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responsible for coarsening its local subgraph using heavy-edge
matching techniques.

For the uncoarsening, we create the communication graph
Gc (a. k. a. quotient graph: each vertex of Gc corresponds to
a block of Ga, weighted edges in Gc model the communi-
cation volume exchanged between the blocks of Ga) first.
Inspired by Ref. [20], we compute a maximum edge coloring
algorithm to determine the communication rounds and the
communicating PU pairs in each round. As a reminder, the
classic FM algorithm sorts vertices by gain and moves the
vertex with the highest gain if it does not violate the balance
constraint. In our case, we do not consider all vertices but
only a smaller number of those in each block, located in
the extended neighborhood of the boundary nodes. Those
vertices are identified by performing a number of BFS rounds
starting from the boundary nodes. Then, after exchanging
candidate nodes among communicating PUs, in each round
we apply pairwise FM refinements between the corresponding
PU pairs in parallel. Each PU in the pair performs the local
refinement independently and the best of the two solutions is
kept. Uncoarsening and local refinement are repeated until we
obtain a solution for the original graph.

We also extended the balanced k-means algorithm [32] from
Geographer to better address hierarchical compute systems.
The hierarchy is provided as an implicit tree by a list of
numbers k1, k2, . . . kh for h hierarchy levels – where ki
denotes the tree fan-out on that level. Thus, the total number of
blocks is k =

∏
ki. To account for this hierarchy, we partition

on level i each block into ki+1 blocks, respectively. Proceeding
in this hierarchical fashion usually leads to solutions with
slightly larger edge cut – direct k-way approaches often yield
better quality than their recursive counterparts in this respect.
The benefit is appreciated, however, from a mapping quality
perspective: blocks that share a border (and thus communicate
across this border) will likely be mapped to nearby PUs. As
a fast post-processing step, we do a global repartitioning step
that “smooths” the border and improves the cut.

Our experiments for the scenario that we emphasize on in
this paper indicate that the quality in terms of edge cut is
very close, usually within ±1%, see Fig. 1. Although the
communication volume can be reduced more in numerous
cases, we decided to provide only the results for the original
algorithm in detail to avoid cluttering the plots.

VI. EXPERIMENTAL EVALUATION

In this section, we describe our experiments to evaluate the
effectiveness of different partitioners under the load distri-
bution model of Sections II and IV, for various (simulated)
heterogeneous systems. Regarding the requirements of the
application, we only treat the LDHT scenario, where the
computational and memory requirements of the application
are equal, corresponding to two unit weights for all vertices of
the application graph. For the purpose of our experiments, we
simulate modern systems with different levels of heterogeneity.
To this end, we consider three different topologies; TOPO1
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Fig. 1: Comparison regarding relative quality (top: edge cut,
bottom: max. communication volume) between balanced k-
means and the hierarchical version (lower is better).

(see VI-A), TOPO2 (see VI-B) and TOPO3 (see VI-C), which
are further explained in the corresponding subsections.

All relevant material, tool versions and guidelines on
how to reproduce the experimental results are publicly
available in https://github.com/hu-macsy/geographer/tree/Dev/
publication results.

a) Metrics: Combinatorial quality metrics considered
here are the edge cut and the maximum communication
volume. Regarding actual application performance, we con-
duct simulations on a cluster and report running time results
for common HPC kernels such as SpMV (sparse matrix-
vector produce) and linear system solves with CG (conjugate
gradient). We apply the CG solver from the numerical library
LAMA [4] to systems derived from the graph’s Laplacian
matrix. To ensure that the linear systems have a solution,
we shift the diagonal of the Laplacian slightly to make the
matrix positive definite. For SpMV and for the CG solver, the
Laplacian of the input matrix is distributed according to the
partition provided by the respective partitioning tool.

b) Tool Selection: For all our experiments we consider a
variety of distributed tools for the partitioning process. More
precisely, in the competitors set we include two versions of
ParMetis, termed ParMetisGeom and ParMetisGraph. Their
difference is that ParMetisGeom uses an SFC to obtain the
initial partition of the graph. From the tools in the zoltan2
package [3], we consider the geometric partitioning methods
RCB, RIB, and SFC. The graph partitioner xtraPulp is not
included in our set because it targets complex networks and
preliminary tests showed insufficient quality (high cut values
and unbalanced parts) for out data sets. The current imple-
mentation of MultiJagged and ParHip do not accept sufficiently
imbalanced block weights, so that they are excluded as well.
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name nodes n edges
NACA0015 1,039,183 3,114,818

M6 3,501,776 10,501,936
333SP 3,712,815 11,108,633
AS365 3,799,275 11,368,076
NLR 4,163,763 12,487,976

hugetric-00020 7,122,792 10,680,777
hugetrace-00020 16,002,413 23,998,813

hugebubbles-00020 21,198,119 31,790,179
alyaTestCaseA 9,938,375 39,338,978
alyaTestCaseB 30,959,144 122,951,408

refinetrace 578,551,252 867,786,528
rdg 2d 2x 2x, x = 25, . . . , 29 ≈ 3n
rgg 2d 2x 2x, x = 25, . . . , 29 ≈ 3n
rgg 3d 2x 2x, x = 25, . . . , 29 ≈ 3n

TABLE II: The graphs used in the experiments with the
number of nodes and edges.

Regarding Geographer, geoKM refers to the balanced k-
means method, geoRef when we additionally perform local
refinement as a postprocessing step. The version geoPM-
Ref consists of the balanced k-means method plus the local
refinement routine from ParMetis.

c) Instances: To test the partitioners, we use geometric
graphs that stem from or resemble scientific simulations. The
graphs are displayed in Table II. The larger graphs were
generated using the generator for random geometric graphs
(rgg) and Delaunay triangulations (rdg) from KaGen [13]. We
also include two graphs from the PRACE benchmark suite [30]
that represent the respiratory system. Moreover, we use the
generator from Ref. [25] to create a large adaptive triangular
2D mesh (from the refinetrace series) with 578M vertices. The
rest of the graphs come from the 10th DIMACS challenge [1].
In our detailed presentation of the results, we use aggregate
values for representative instances. Due to the different nature
of the individual instances, an aggregation over all instances
would not lead to meaningful results.

d) Test Systems: We use two test systems for our ex-
periments. The small one is a local cluster with 16 compute
nodes, each with 4 6-core Intel Xeon X7460 CPUs and
128 GB of RAM. This system was used for the smaller
inputs from DIMACS and PRACE. The main volume of the
experiments were carried out on the HLRN IV system Lise
(https://www.hlrn.de/). Each compute node of Lise has two
Intel Cascade Lake Platinum 9242 CPUs with 384 GB RAM
and 96 cores. Using two different systems here does not affect
the evaluation, since the running time comparison depends
on relative values. For exact values on certain graph and
topologies see Table IV. For the experiments in TOPO3, we
used the local cluster and tuned down the CPU speed of certain
compute nodes to simulate heterogeneity – as described in
Section VI-C. In our experiments we assign one MPI process
per PU. The factors between different PU speeds reflect recent
results [7] on CPU-GPU comparisons.

A. Experiments for TOPO1
In the first category, we have 2 sets of PUs, set S (for slow)

and set F (for fast). This category is further divided into two
parts. Using k as the total number of PUs, we set |F | := k/12

exp speed memory tw(fast)/tw(slow)
1 1 2 1 - 1
2 2 3.2 2 - 2
3 4 5.2 3.2 - 3.5
4 8 8.5 5.5 - 6.1
5 16 13.8 9.4 - 11.5

TABLE III: Speed and memory of the fast PUs used for
TOPO1 and TOPO2. The slow PUs have computational speed 1
and memory 2 for all the experiments. The last column show
approximately how bigger is the target block weight for the
fast PUs for the experiments where |F | = p/12 and p/6.

in the first part and |F | := k/6 in the second one. The specs of
the PUs in S remain always constant and we increase only the
memory capacity and computational speed of the PUs in |F |
as follows. We start with the same computational speed and
memory as the slow PUs; this corresponds to a homogeneous
system since all target block weights are equal. Then, we
increase the computational speed of the fast PUs by a factor
of 2 and the memory by a factor of 1.6 for 4 steps. The speed
and memory of the PUs in F , for each experiment, are shown
in Table III. In the first heterogeneous step, the PUs in F
have enough memory to get the desirable block size, but in
the remaining three steps, their memory is saturated. In total,
this gives 10 experiments per graph. These experiments are
performed for k = 24 · 2i, where i ∈ {2, 3}.

Fig. 2(a) shows results aggregated over the three hugeX
graphs. The x-axis shows the different variations of TOPO1,
the y-axis relative quality or partitioning time. A first obser-
vation is that heterogeneity plays a role, but not a big one. In
particular the geometric methods from Zoltan are negatively
affected in terms of quality with increasing heterogeneity
(from left to right). The geometric-only approaches provide
solutions with comparably high cut and max communication
volume values, especially for two dimensions. Among these,
the balanced k-means approach has the best quality in most
cases with more than 15% improvement. Quality-wise, in most
cases, ParMetis offers solution quality very close to the quality
of balanced k-means. But the best solutions come from the
two version geoRef and geoPMRef, which combine balanced
k-means with local refinement.

For the 3D alya graphs in Fig. 2(b), the geometric meth-
ods narrow the gap somewhat. These application graphs are
presented to show results against the general trend. In a few
cases, the geometric methods even give here the solution with
the lowest cut or volume, e. g., for topo1 f8 fs16. ParMetis so-
lutions have good cut values – on the other hand, the max
communication volume is worse, even compared to geometric
methods. As for Geographer, geoKM is better than the other
geometric methods, but the combination with refinement offers
some improvement. As expected, geometric methods have the
lowest running time, less than a few seconds. The refinement
of geoRef is faster than the refinement of ParMetis for the 2D
graphs. For the 3D alya graphs, our refinement algorithm is
affected by heterogeneity; the more heterogeneous the system,
the slower the algorithm becomes. This is probably because,
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(a) hugeX graphs representing numerical simulation meshes (2D)
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Fig. 2: Results for (a) three hugeX graphs from the 10th DIMACS Challenge and (b) two alya graphs using 96 PUs and 16
different topologies. The data points are the geometric mean of the values for each graph and are relative to the respective
balanced k-means value. For the names in the x-axis: topoX indicates TOPO1 or TOPO2, ‘f’ indicates the number of fast PUs
and ‘fs’ indicates the speed of the fast PUs. The slow PUs have speed 1 in all cases. These experiments were conducted on
the local cluster. Values are relative to balanced k-means (lower is better).

as speed and memory of the fast PUs increase, the size of the
blocks that correspond to the fast PUs increases, too. As we
consider a percentage of vertices from each block for the local
refinement, more vertices are eligible to move.

B. Experiments for TOPO2

The second category consists of three sets of PUs, F , S1 and
S2. It is designed to model systems with two kinds of CPUs
and one kind of GPU. Again, |F | = k/6 or |F | = k/12, but
now, the slow PUs are divided in two equally sized groups
|S1| = |S2|. The PUs in S1 have constant memory and speed,
but the speed of the PUs in S1 increases as shown in Eq. (5):

cs(s1)

mcap(s1)
=

1

2

cs(f)

mcap(f)
, s1 ∈ S1, f ∈ F (5)

This ensures that PUs in S1 will be assigned their block
weights after the PUs in F but before the PUs in S2. The specs
of the PUs in F are increased as before, see Table III. These
experiments are performed for k = 24 · 2i, i = 1, 2, . . . , 8.

Experiments with high numbers of PUs were conducted on
Lise; their results are shown in Fig. 3 for the refinedtrace
graph, which shows representative results: the algorithms
geoRef and geoPMRef yield partitions with the lowest cut and
communication volume. As the number of PUs increases, we

observe that ParMetisGraph and geoPMRef suffer from high
running times, in contrast to our refinement implementation.
Geometric approaches are steadily worse in quality but very
fast in running time. Heterogeneity has again a negative effect
on the edge cut produced by the geometric tools from Zoltan,
whereas ParMetis seems to benefit slightly. An effect on the
different algorithms in Geographer is hardly visible.

In Fig. 4, we see experiments with 3D random geometric
and Delaunay triangulation graphs. Regarding quality, the
same pattern as before emerges: geoKM is better than other
geometric methods and the combinatorial algorithms all give
better solutions (of similar quality). Again, geoRef seems to
suffer from high running times when the topologies become
more heterogeneous.

C. Experiments for TOPO3
The third category consists of heterogeneous topologies

simulated in the local compute cluster. We cannot change the
specs of an individual core, but we change all 24 cores of a
node. The experiments involve 4 and 8 compute nodes (96 and
182 PUs) where, each time, 1 or 2 nodes (24 or 48 PUs) are
unchanged and the rest have their speed and memory lowered
in order to represent the slow PUs. For these experiments we
are able to get meaningful running times for SpMV and CG.
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Fig. 3: Results for the refinetrace graph with 24 · 2i, i =
4, . . . , 9 PUs. All experiments belong to TOPO2. For the names
in the x axis: ‘b’ is the number of blocks/PUs, next, ‘f’
indicated the number of fast PUs and ‘fs’ indicates the speed
of the fast PUs. The slow PUs have speed 1 in all cases. These
experiments were conducted in the Lise cluster.

For the benchmarks to be meaningful, we use a sufficiently
large graph that still fits into the memory, rdg 2d 29. In Fig. 5
we see the edge cut and the running time of the CG solver per
iteration for the linear systems (the SpMV results are similar
to CG and thus omitted). The previous trend regarding the
cut quality continues. However, while the quality in terms
of edge cut differs across different tools, the communication
volume and the running time per CG iteration show smaller
deviations. We conjecture that a more severe heterogeneity
will also translate into higher real-world differences.

VII. CONCLUSIONS

So far, when working with established partitioning tools for
load distribution in sparse matrix / graph problems on com-
pute systems with different PUs and memory capacities, an
additional preprocessing step is required. This preprocessing
computes the different block sizes in a partition, which are then
fed into the partitioners. For the first phase of this two-stage
process, we proposed a greedy algorithm and proved it to be
optimal. Our experiments for the second phase indicate that a
combination of geometric and combinatorial methods yield the
most promising results regarding the tradeoff between quality
and running time. Overall, the results suggest that more work
is necessary to support strongly heterogeneous computations
out of the box and in a scalable way. This particularly includes

a one-phase approach for even more complex scenarios with
different computational weights and communication costs.
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Franchetti, John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.
Owens, Marcin Zalewski, Timothy G. Mattson, and José E. Moreira.
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APPENDIX

A. Proof of Lemma 1
Proof. We will prove that if some arbitrary PU in position
i in the sorted sequence is non-saturated, then all PUs in
positions greater than i are also non-saturated. Towards a
contradiction, let d be the first iteration in which the first
saturated PU appears after a non-saturated one. Consequently,
when denoting the state of jLoad and jSpeed at the
beginning of iteration i, 0 ≤ i ≤ k − 1, by jLoad(i) and
jSpeed(i) respectively, we get:

desW(bd) > mcap(pd)

=⇒ cs(pd) · jLoad
(d)

jSpeed(d)
> mcap(pd)

=⇒ cs(pd)

mcap(pd)
>
jSpeed(d)

jLoad(d)
(6)

By construction PU pd−1 is not saturated. Thus:

desW(bd−1) ≤ mcap(pd−1)

=⇒ cs(pd−1)

mcap(pd−1)
≤ jSpeed(d−1)

jLoad(d−1) (7)

Since the PUs are sorted non-increasingly (and with
Eq. (6)), we obtain:

cs(pd−1)

mcap(pd−1)
≥ cs(pd)

mcap(pd)
>
jSpeed(d)

jLoad(d)
(8)

By Line 11, the computational load left at the end of
iteration d is what was left beforehand minus what we assigned
to PU pd – similarly for the joint speed:

jLoad(d) = jLoad(d−1) − tw(bd−1)

jSpeed(d) = jSpeed(d−1) − cs(pd−1)

Let us take a closer look to jLoad(d). Since PU pd−1 is
non-saturated, tw(pd−1) = desW(bd−1), so that we get:

jLoad(d) =jLoad(d−1) − tw(bd−1)

=jLoad(d−1) − cs(pd−1) · jLoad
(d−1)

jSpeed(d−1)

=jLoad(d−1) · jSpeed
(d−1) − cs(pd−1)

jSpeed(d−1)

=jLoad(d−1) jSpeed(d)

jSpeed(d−1) (9)

Combining Eq. (8) and Eq. (9) yields:

cs(pd−1)

mcap(pd−1)
>
jSpeed(d)

jLoad(d)
=

jSpeed(d)

jLoad(d−1) · jSpeed(d)

jSpeed(d−1)

=
jSpeed(d)jSpeed(d−1)

jLoad(d−1)jSpeed(d)
=
jSpeed(d−1)

jLoad(d−1) , (10)

which is the desired contradiction of Eq. (7).

B. Proof of Theorem 1

Proof. The running time is dominated by the sorting step,
since the loop has k iterations and all other operations need
only constant time.

Clearly, all saturated PUs receive their optimal load, since
more load would exceed their memory capacity. Let d now be
the iteration in which the first non-saturated PU appears in our
sorted sequence. We need to show that all PUs pi with i ≥ d
receive a load that is proportionate to jLoad(d) · cs(pd)

jSpeed(d) –
as this minimizes Eq. (2).

Let us apply an inductive argument, starting in iteration d.
Clearly, PU tw(bd) fulfills this condition. For the inductive
step, we assume the claim to be true for all iterations i′ with
d ≤ i′ ≤ i. We now consider iteration i + 1:

tw(bi+1) = cs(pi+1) · jLoad
(i) − tw(bi)

jSpeed(i) − cs(pi)

In order to prove that the assignment in iteration i + 1 is
proportionate to the load and speed situation in iteration i
(and thus d by our assumption), it is sufficient to show that

jLoad(i) − tw(bi)

jSpeed(i) − cs(pi)
=

jLoad(i)

jSpeed(i)
.

Inserting the value for tw(bi) and some rearranging yields:

jLoad(i) − tw(bi)

jSpeed(i) − cs(pi)

=
jLoad(i) −

(
jLoad(i)·cs(pi)

jSpeed(i)

)
jSpeed(i) − cs(pi)

=
jSpeed(i)

(
jLoad(i) −

(
jLoad(i)·cs(pi)

jSpeed(i)

))
jSpeed(i)

(
jSpeed(i) − cs(pi)

)
=
jLoad(i)

jSpeed(i)

(
jSpeed(i) − cs(pi)

jSpeed(i) − cs(pi)

)

=
jLoad(i)

jSpeed(i)
.
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