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Abstract—Nowadays, there are two main approaches for deal-
ing with data-intensive applications: parallel file systems in
classical High-Performance Computing (HPC) centers and Big
Data like parallel file system for ensuring the data centric vision.
Furthermore, there is a growing overlap between HPC and Big
Data applications, given that Big Data paradigm is a growing
consumer of HPC resources. HDFS is one of the most important
file systems for data intensive applications while, from the parallel
file systems point of view, MPI-IO is the most used interface for
parallel I/O. In this paper, we propose a novel solution for taking
advantage of HDFS through MPI-based parallel applications. To
demonstrate its feasibility, we have included our approach in
MIMIR, a MapReduce framework for MPI-based applications.
We have optimized MIMIR framework by providing data locality
features provided by our approach. The experimental evaluation
demonstrates that our solution offers around 25% performance
formapphase compared with the MIMIR baseline solution.
Index Terms—HPC, Big Data, HDFS, MPI-IO, MapReduce,

Data locality.

I. INTRODUCTION

Nowadays, there are two main approaches for dealing
with data-intensive applications, parallel file systems under
classical High-Performance Computing (HPC) centers and Big
Data like parallel file system for ensuring the data centric
vision. These file systems present different architectures, as file
systems used in HPC currently employ isolated I/O nodes for
accessing data, which are usually much less in number than the
compute nodes. On the other hand, parallel file systems assume
that each compute node has a storage device and, thus, data is
spread among many (all) the compute nodes. The divergence
of both kinds of file systems is mainly due to the differences
between the execution framework in both environments (HPC
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vergencia Big data-Hpc: de los sensores a las Aplicaciones” S2018/TCS-
4423 from Madrid Regional Government and the European Union’s Horizon
2020 research, New Data Intensive Computing Methods for High-End and
Edge Computing Platforms (DECIDE). Ref. PID2019-107858GB-I00 and
innovation program under grant agreement No 801091, project “ÀSPIDE:
Exascale programming models for extreme data processing”.

and Big Data): while the HPC environment addresses scientific
problems (problems with a high computational load), Big Data
environment is specialized in processing large data sets and
large amounts of files.
HPC application domains have been changing in the last

years. Currently they are not only computationally expensive
applications, but also generate a vast amount of intermediate
data that must be optimally processed [1]. To cope with those
new features, various frameworks used in Big Data world,
such as Apache Hadoop or Spark [2] have been deployed on
top of HPC environments. However, they have proven not to
be efficient enough. For this reason, one of the main lines of
research consists of unifying both environments in such a way
that HPC applications can benefit from the Big Data approach
and vice versa.
As discussed in article [3], the solutions used in Big Data

can significantly improve the performance of the applications
used in HPC, especially for data processing. One of the
main paradigms used in Big Data that can help in the HPC
environment corresponds to the applications of MapReduce
[4]. Those application domains are mainly based on the
usage of data locality to obtain a significant improvement
of performance [5]. One of the most used frameworks for
running MapReduce applications corresponds to Hadoop and
its associated HDFS filesystem [6].
The usage of Big Data storage would allow to overcome

one of the main problems existing in the HPC environment:
the bottleneck caused by access to data. As some authors have
proposed, making use of data locality information, as occurs
in Big Data, would be instrumental to provide in-situ data
processing, avoiding sending the data to be processed to the
compute nodes [7]. Most of the applications designed for HPC
make use of MPI and the MPI-IO input/output interface [8],
which does not provide functions to gather a node list where
data are stored. Moreover, due to the HPC systems architec-
ture, most existing parallel file systems are incompatible for
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the location of data in storage, thus preventing to make in-situ
data processing as a general rule.

For those reasons, some authors have proposed to change
the architecture of HPC environments to include local storage
[9], [10]. This is possible nowadays thanks to Solid State
Disks (SSD) devices and, in a near future, the non-volatile
memory (NVM) and the increase of their storage capacity. In
fact, some supercomputers within the top 500 [11] already
offer a large capacity of local storage, and therefore they
can mount a distributed file system on them. Moreover, the
locality of the data can also be used in the event that a hybrid
system consisting of parallel file systems and distributed file
systems is available, as intermediate readings and writes can
write to the distributed file system using locality. However,
most parallel applications are programmed using the MPI
standard, making I/O operations using the MPI-IO interface
or directly through the POSIX interface, and any of those
interfaces provide facilities currently to exploit data locality.

In an attempt to solve the aforementioned problems and
challenges, in this work we present an extension of the
MPI interface that enables to know and exploit the location
of the data in the storage subsystem. We also present an
extension of the MPI-IO interface to support HDFS, a file
system widely used in Big Data applications. To conclude,
we have evaluated our solution comparing it with MIMIR, a
MapReduce based framework that support MapReduce on top
of the MPI runtime.

The structure of the paper is as follows. Section II presents
work related to the research in this paper. Section III intro-
duces the design and implementation of our contributions.
The evaluation of these contributions is shown in Section V.
Finally, Section VI concludes this paper by discussing about
the contributions and enumerating of future work.

II. RELATEDWORK

MapReduce is a very popular paradigm in Big Data [12],
[13] as it is designed to solve Single Program Multiple Data
(SPMD) problems that are very common domains like data
analytics. However, MapReduce was designed considering and
underlying distributed infrastructure, including local storage
and a distributed file system. An example of this is HDFS
[14], which provides multiple features, including data replica-
tion. Following this popularity, some works in the HPC domain
have provided MapReduce based implementations suitable for
HPC supercomputers [15], [16]. MR-MPI [17] was one of the
first initiatives to provide a MapReduce library on top of MPI.
However, some other authors have claimed that this solution
suffers from scalability limitations. Most recently, MIMIR
[18] has been proposed as a tool to provide memory-efficient
and scalable MapReduce for large supercomputing systems.
A common problem of those solutions is that data location is
not considered, which limits the overall I/O performance. In
contrast, our solution targets to improve the I/O performance
by take advantage of the data locality features provided by
HDFS.

Various authors have proposed different solutions for im-
proving the performance of MapReduce applications in the
HPC environment [19], [20]. The work proposed by Unat et
al. [7] discussed about several ways in which we can exploit
the locality of data in HPC environments by both compiler
and runtime. From those, making use of data locality to avoid
the bottleneck at the entrance and output following the Big
Data model has become a feasible solution [21].
In the literature, we found authors that have proposed

solutions to know the data localization in HPC environments,
making use of multiple implementations based on MPI. As an
example, Lu et al. [22] provided an MPI adaptation based on
the Hadoop environment. In [23], the authors presented an
implementation that works at different levels of the system,
including both memory and storage levels. In other articles,
authors implement a locality layer between MPI and HDFS
[24], so that they can locally access the data. In our proposed
work, we will focus on the way to exploit the locality at system
level, either by means of memory (in-memory storage [25])
or by means of the local storage available at the computing
nodes.
As far as we know, all existing solutions require custom

implementations to make use of data locality, which forces
the users to adapt their applications to deal with the new
framework. Therefore, in this work we propose the extension
of the MPI interface in such a way that it allows to exploit
data locality on those file systems supporting it. In this way
the door can be opened to be able to use the locality at the
system level to all the file systems that are implemented in
MPI, whether they are distributed file systems, parallel file
systems, in-memory systems or burst-buffers.

III. DATA LOCALITY EXTENSION FORMPI-IO

One of the main objectives of this paper is to improve
the way in which MPI accesses data, exploiting the data
locality mechanisms provided by the back-end file system. To
demonstrate this functionality, this work present three main
contributions. First, extending MPI interface for data locality;
Second creating an MPI-IO connector to HDFS into ADIO;
Finally, we have adapted MIMIR to use the data locality
facilities proposed. Our first contribution is to expand the MPI-
IO interface with two new functions that provide information
on the location of the data stored. The functions that we
propose are shown below (Functions 2 and 1).

Function 1Get file data block size
———————–
Get file data block size
———————–
MPIX_File_get_blocksize(MPI_File , int * )

Require:MPI_File : File descriptor.
Ensure:int *: File block size in bytes. If this feature is not
available a negative value is returned.
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I 

Function  2 Get file data location 

Get file data location 

MPIX_File_get_locality(MPI_File MP!_ Offset 
MPI_Offset ,  char**** , int * ) 

Require: MPI_File :  File descriptor 
Require: MPI_Offset : Initial offset of the buffer to be located 
Require: MPI_Offset : Final offset of the buffer to be located 
Ensure: char****  : List of nodes where blocks are located, 
if locality is available in the file system. NULL if locality 
is not available in the file system 

Ensure: int *replication: 0 if locality is not available in the file 
system, else a value greater than O showing the replication 
level in the file system 

For the first function, the second argument returns the block 
size in bytes of the file indicated by the first argument. 
The fourth and fifth arguments of the second function 

return two values. Firstly, the fourth argument returns the 
identity of the node(s) where the file block(s) storing the 
offset interval defined in arguments  2 and 3 is stored for the 
file indicated by the first argument, the identity of the node 
returned is the same as the value returned by the function 
MPI_Get_proccesor_name. Secondly, the number of replicas 

used to store the blocks of the file is returned in the fifth 
argument. Using this function, any application using MPI 
could know the node where data is located and take placement 
decisions to make in-situ data processing. 
Listing 1 shows an example of usage of the functions 

proposed to get the locations of the blocks of a file. As may 
be seen, in spite of its power, the usage of the functions inside 
an MPI program is very easy and not disruptive. Of course, 
the functions depend on the file system capacity to support 
locality and replication features. 

Listing 1: Demo of the usage of the locality functions 

2 #include <stdi o .h> 
3 #include •mpi. h • 
4 

5 int main (int argc, c har • argv [ J) ( 
6 MPI_File fd; 
7 MPI_Offset filesize; 
8 int bloc ksize; 
9 int replication; 

10 c har *** nodes = NULL; 
II 
12 MPI_Init (&argc, &argv) ; 

13 
14 / / Enabl e  locality support 
15 MPI_Info i nfo; 
16 MPI_Info_creat e (&info); 
17 MPI_Info_set (info, "hdfs_set_locality" , • 1 • ) ; 

18 I I Open file for reading 
19 MPI_File_open (MPI_COMM_WORLD,  "hdfs: //filename•, 

20 
21 
22 
23 
24 
25 
26 
27 
28 

MPI_MODE_RDONLY, info,&fd); 

//Get  file size 
MPI_File_ge t_size(fd,&filesize) ; 

//Get the  s ize of the  file block 
MPIX_Fi le_get_block s ize(fd,&blocksize) ; 
i f(blocksize < 0)( 

// Feature not s upported by FS 
printf("Get b lock size failed \n" ) ; 
MPI_Abort(MPI_COMM_WORLD,-1); 

29 
30 
31 //Get  the i d of t he nodes where each b lock is stored 
32 MPIX_File_get _ locality(fd, O, f i lesize,&nodes, & 

repl icat ion); 
33 if (nodes = NULL ) ( 

34 // Locality not s upported by FS 
35  printf("Get  locality failed \n" ) ; 
36 MPI_Abort (MPI_COMM_WORLD, -2); 

37 
38 
39 I I Number of blocks in the file. 
40 int blocksnumber = filesize /  b locks ize; 
41 //Demo loop t o print the nodes where 
42  /  / each b lock is s tored 
43 for( i n t  i = O;  i < blocksnumber; i++){ 
44 for (int j = O;  j < replicat ion ; j++) ( 
45 pri ntf("BLOCK::%d stored in the node .. %s\n " , i , 

nodes[i)(j)) ; 

46 
47  l 
48 / /Close file 
49 MPI_File_close (&fd); 
50 MPI_Finalize (); 
51 return O; 
52 

A. Supporting HDFS in MPl-/0 

After including the proposed locality mechanisms inside 
MPI-10 , we created a new file system connector for HDFS. We 
have employed  MPICH [26], as this version of MPI provides 
access to several file systems through ROMIO [27] and the 
abstract device interface for parallel 1/0, called ADIO [28]. 
Figure 1  shows the structure of the MPI-10 stack after the 
inclusion of the HDFS connector presented in this paper. 

, , 

MPI interface 

HDFS 

connector 

NameNode 

HDFS environment 

MPI_IO 

ADIO 

Parallel 
Filesystem 

' \ 

Fig. 1: MPI-IO stack including HDFS connector. 

At file creation in HDFS, the interface enables the definition 

of parameters such as block size, buffer size, and the number 



of replicas for each block. It is also possible to create files
only for writing or it will be later available for reading. In
order to implement all these features, we have made use of
theMPI_Infoabstraction. The following variables have been
defined inMPI_Infoto permit users to customize the way
of creating or writing files in HDFS:

• write_mode: allows to specify when data written will
be available for the user. By default,WRITE_ON_CLOSE
policy is employed, but also, users can defineHFLUSH
to enforce immediate writing to storage (write-thought).

• hdfs_buffersize: allows to define the size in bytes
for the internal HDFS buffer used to temporally store file
system block in main memory of the process.

• hdfs_replication: permits to define the replication
level (number of replicas) for the file created.

• hdfs_blocksize: defines the size in bytes of the file
block.

MPI-IO has a large number of functions that enable access
to different file systems. Because HDFS implements single-
writer multiple-readers model, it has not been possible to
implement all the MPI functionalities. We list the recognized
limitations:

• A file can be only be open in write or read mode, never
read/write.

• Concurrent writes to a file is not allowed.
• Non-blocking read/write functions have not been imple-
mented in the current prototype.

IV. MIMIRINTEGRATION OFHDFS

Currently, there are multiple frameworks that permit the
execution of Big Data applications under MPI environments.
To check how the effect of data locality in one of those
frameworks, we have adapted the current implementation of
MIMIR to use HDFS and our locality functions.
The current implementation of MIMIR performs a block
distribution algorithm without taking into account the file
system below, as it assumes that the underlying file system
will read the blocks wherever they are and will bring them
to the compute nodes. Thus, each worker reads a consecutive
chunk of the file, without considering any locality. However,
having a HDFS distributed file system, part of the blocks to
read could be stored in the same compute node.
In this work, we have modified MIMIR’s block distribution
algorithm in such a way that each worker only processes those
file blocks which are stored locally, as shown in Figure 2. In
this way, we reduce the amount of data sent over the network,
sending only the necessary data for the shuffle phase. For this
purpose, we have made use of the MPI functions designed and
previously implemented, as well as the HDFS connector.
One of the main features of distributed file systems is the
block replication, which means that the same block is stored
on multiple storage nodes simultaneously. Our algorithm takes
advantage of this feature in order to enhance the distribution
of the workload among the nodes in case the file system does
not distribute the blocks evenly (i.e., HDFS).

Another important feature of our approach is how the block
assignation between the computation nodes is done. During
this work, in order to have a homogeneous distribution of the
workload among the different processes that are running on a
given node, the block allocation is done per node, instead of
per process. This implies that each assigned block to a certain
machine will be divided among the different processes that are
running on that node as shown in the Figure 2.

Listing 2: MIMIR wordcount example.
1 //Map function
2 voidmap(Readable<char*,void>*input, Writable<char*,

uint64_t>*output,void*ptr)
3 {
4 char*line = NULL;
5 while(input->read(&line, NULL) == true)
6 {
7 char*saveptr = NULL;
8 char*word = strtok_r(line,"", &saveptr);
9 while(word != NULL)
10 {
11 if(strlen(word) < 1024) {
12 uint64_t one = 1;
13 output->write(&word, &one);
14 nwords += 1;
15 }
16 word = strtok_r(NULL,"", &saveptr);
17 }
18 }
19 }
20
21
22
23 //Reduce function
24 voidreduce(Readable<char*, uint64_t>*input, Writable<

char*, uint64_t>*output,void*ptr);
25 {
26 char*key = NULL;
27 uint64_t val = 0;
28 uint64_t count = 0;
29 while(input->read(&key, &val) == true)
30 {
31 count+= val;
32 }
33 output->write(&key, &count);
34 }

Listing 2 shows a fragment of the classical wordcount use
case implemented on top of MIMIR1. As shown in Line 5,
the read function is internally implemented by using the MPI-
IO interface. In this case, thereadcall individually extracts
each line of the file in an iterative manner. In the past, this
file access was done using the parallel system provided by the
infrastructure (i.e., Lustre, GPFS, OrangeFS). This approach
has two drawbacks. First, it is difficult to tune the accessed
block size for adapting the nature of the input data. Second,
the source code is executed in the compute node in where the
data are located.
To cope with those aforementioned counterparts, we have
extended MIMIR to support data locality and to fine-tune
the HDFS locality-aware file system. Algorithm 1 details the
steps need to provide a data-locality scheme inside MIMIR
framework.
Another extension corresponds to the sharing of the end
of the block between different processes. In a similar way to
MIMIR, in our implementation we have decided to tokenize

1This source code is taken from the MIMIR Git repository at
https://github.com/TauferLab/Mimir/blob/master/examples/wordcount.cpp
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Fig. 2: Distribution of blocks between processes with locality. 

Algorithm 1 Algorithm to include data locality in MIMIR 

Require: File in HDFS to be processed. 
Ensure: List of blocks to be processed by each process. 

I: for all Running process do 
2 : Send all to all the name of the node where each process 

is running. 
3: end for 
4: Get the file size. 

5: Get the block size of the file. 
6: Calculate the number of blocks in the file. 
7: for all Blocks file do 
8: Get the machines in which the block is stored. 

9: for all Machines do 
10: The machine with the fewest allocated blocks is 

selected 
11: Get the number of processed which are running in 

this machine. 
12: if There is only one process executing in that machine 

then 
13: The block is assigned to that process. 
14: else 
15: The block is divided between the different pro-

cesses running on that machine. 
16: end if 
17: end for 
18: end for 
19: return List of blocks processes by each process. 

the file into lines.  To solve the proble m that a token cannot 
be divided into two blocks, we propose a mechanism divided 
into the following steps: 

1) Each process reads the portion of the block allocated to 
it and a fragment of the consecutive portion (even if it 
is another block). 

2) Each process processes the first token found in the 
consecutive portion. 

3) If it is not the first fragment of the first block, each 
process discards the first token of its portion, since it 
has been processed by the previous fragment. 

V. EVALUATION 

The experimental evaluation has been carried out in a cluster 
of 8 nodes with the following configuration. Each node has 
an Intel(R) Xeon(R)  CPU ES-2603 v4 processor with 126GB 
DDR4 of RAM memory. Additionally, each node has two 
hard disks, one with a capacity of 512 GB for storage of the 
operating system and applications and the other with a capacity 

of 2TB for data storage. All nodes are connected through a 
1 Gbps network interface. The compiler used is GCC 8.0. 
After that, the source code has been compiled using both - 0 3 
and -DNDEBUG flags. HDFS storage system is configured to 

use 64 MB blocks and all nodes act as DataNode. The result 
shown in this paper are obtained by calculating the averaged 
value of five consecutive executions. The MPI implementation 
employed in this paper is MPICH 3.2. 
In order to evaluate the performance of our proposed inter-

face, we have carried out two type of experiments.  First, we 
have evaluated the overhead of our proposed ROMIO interface 
in comparison with the native C-based HDFS interface called 
libhdfs2. Second, we evaluated how the implementation of 
our locality algorithm affected the performance of the overall 

applications.  To conduct these experiments, two applications 
have been developed on top of the MIMIR framework: word-
count (we) and a protein matching (pm) [29] applications. 

A HDFS interface for MPl-/0 

We have designed different testbeds to evaluate the overhead 

built into our HDFS interface implementation. Figures 3, 4 and 
5  plot the overall throughput by reading a single file of 1,  8 
and 32 GIB. libhdfs corresponds to native HDFS functions, im-
plicit offset corresponds to MPI_File_read or MPI_File_write, 
explicit offset corresponds to MPI_File_read_at and finally 
shared pointer corresponds to MPI_File_read_shared. In ad-
dition, we also modify the size of the read and write request 
(1 and 128 MB), with the aim of modifying the number of 

requests made by each process performs. 

Fig. 3: Throughput obtained reading an 8GB file. 

2 A JNI based CAP! for HDFS https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/LlbHdfs.html 
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Fig. 5: Throughput obtained writing a 1GB file. 

As can be seen in  Figures 3 and 4, the functions 
MPI_File_read and MPI_File_read_at do not incorporate any 
overhead in the read time with respect to the native HDFS 
library to perform the same operation. We also note that the 
function MPI_File_read_shared does not scale with respect to 
the number of read requests that are made. This is mainly 
due to the way the processes  share the file pointer in our 
implementation. 
We have also evaluated the performance of the write func-
tion MPI_File_write with respect to the native HDFS write 
function. Due to HDFS disallows simultaneous writing of a 
file by multiple processes, this evaluation is limited to write a 1 
GB file by a single process. Figure 5 depicts that no overhead 
has been added in the implementation of the write function 
with respect to the native functions of HDFS. 

B. Using MIMIR locality with HDFS 

Currently, there are a large number of applications that take 
advantage of the MapReduce paradigm [30]. To study the 
effects of data locality on the runtime of the applications, we 
have designed two Big Data applications  using the MIMIR 
framework: (1) wordcount (we), which counts the number of 
occurrences of a word in a file; and (2)  a  protein matching 
application (pm), which searches  a certain protein in a large 
dataset Both applications have been selected to compare the 

data locality effect on applications that generate a large number 
of <key, value>pairs and on those whose number of generated 
pairs is lower. 

We carry out two different experiments processing with 
two different datasets  (8GB and 32 GB) using from 8 to 64 
processes. Moreover, because HDFS does not distribute blocks 
in storage nodes uniformly, we have configured two different 
experiments per application varying the blocks replication 
factor from 1 to 3. In this work, we present the results obtained 
in the Map phase. 
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Fig. 6: Throughput reading an 8GB file in we application 
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We measured the effect of data locality on read operations 

of the Map process for both applications wc and pm. Figures 

6, 7 , 8, and 9 show the results obtained As may be seen in 
case of wc application, the throughput to access data increases 

by 50% when our data locality solution is applied.  Figure 9 

plots how the data access performance is also better for the 

pm application. We observe that in case of wc application, our 
approach gets better performance improvement than pm. This 

is mainly motivated by the fact that the employed network 
setup shares the bandwidth for both data and computation. 

We also highlight that the number of <key, value> pairs is 
much lower is case of pm, which produces fewer intermediate 

data, reducing the stress in the network capacity and reducing 
the influence of that bottleneck. Finally, we conclude that the 

inclusion of data replication does not reduce the average time 

each process spent on each read operation. 
Figures 10 and 11 show the Map phase execution time for 

the wc application with and without applying data locality for 

8GB and 32GB files (lines) and the speedup obtained with 
our solution (bars). As may be seen, the total time required 

by the Map phase is reduced in all cases. The replication factor 
plays a significant role in the total execution results, as shown 

in the figure, because with a replication factor of 3 we achieve 
even more speedup than with replication factor of 1, This is 

due to the better distribution of the workload achieved by the 
proposed solution with a higher replication. The improvement 

in the execution time of the Map phase is not only due to the 
reduction in the access time to the data. In the first version of 
MIMIR, the blocks of the files had to be sent over the network, 
as well as all the <key, value> pairs that each of the processes 

generated. Thus, including locality reduces the amount of data 
that must travel over the network, the bottleneck that it must 

support is significantly reduced. 
Figures 12 and 13 show the results for the pm application. 

It presents similar results as the wordcount application. This 
application requires less computation time compared to the 
wordcount application, so reading time occupies a higher 

percentage of the total execution time of the Map phase. For 
this reason, it is observed that a better speedup is achieved 

under equal conditions. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed two new functions for 
MPI-10 that are able to extract the data locality of a file, 

assuming that the underlying file system provides those details. 
To exploit locality functions we have created a new MPI-10 
connector for HDFS that has been deployed in the MPICH 
distribution. 
To demonstrate its feasibility, we have evaluated our pro-

posal including it into MIMIR, a framework for MapReduce 

for MPI applications, and we have shown that MIMIR frame-
work can be optimized including data locality support, infor-

mation that is obtained  through our MPI-10 implementation. 
We have also demonstrated that the proposed functionality 

enhances MIMIR performance for two typical Big Data appli-
cations, such as wordcount and protein matching, as the read 

data phase is greatly reduced by using our functions. 
In our opinion, this locality functions would be beneficial or 

most applications running in large scale system from now on 
as in-memory storage systems and large size SSD will provide 

local storage per node, but also for some file system providing 



some locality info such us HDFS, Luster, etc. In general,
knowing where data are, will allow applications to include
strategies to reduce the I/O time for Big Data applications
running in HPC systems and for workflows crating data
dependencies.
Work is going on to make a proposal to include the
functionality in the MPI standard, to create more connectors
in ADIO to provide data locality information, and to extend
and enhance the HDFS interface to support as many MPI-IO
functionalities as possible (for example, collective writing on
a file or file pointer sharing).
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