
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

CMAP-LAP: Configurable Massively Parallel
Solver for Lattice Problems

Tateiwa, Nariaki
Graduate School of Mathematics, Kyushu University

Shinano, Yuji
Applied Algorithmic Intelligence Methods (A²IM), Zuse Institute Berlin (ZIB)

Yamamura, Keiichiro
Graduate School of Mathematics, Kyushu University

Yoshida, Akihiro
Graduate School of Mathematics, Kyushu University

他

https://hdl.handle.net/2324/4771873

出版情報：2021 IEEE 28th International Conference on High Performance Computing, Data, and
Analytics (HiPC), 2022-01-24. Institute of Electrical and Electronics Engineers :IEEE
バージョン：
権利関係：© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

CMAP-LAP: Configurable Massively Parallel
Solver for Lattice Problems

1st Nariaki Tateiwa
Graduate School of Mathematics

Kyushu University
Fukuoka, Japan

ORCID: 0000-0001-7161-6687

2nd Yuji Shinano
Applied Algorithmic Intelligence Methods (A²IM)

Zuse Institute Berlin (ZIB)
Berlin, Germany

ORCID: 0000-0002-2902-882X

3rd Keiichiro Yamamura
Graduate School of Mathematics

Kyushu University
Fukuoka, Japan

ORCID: 0000-0003-4696-2881

4th Akihiro Yoshida
Graduate School of Mathematics

Kyushu University
Fukuoka, Japan

ORCID: 0000-0002-7856-6536

5th Shizuo Kaji
Institute of Mathematics for Industry

Kyushu University
Fukuoka, Japan

ORCID: 0000-0002-7856-6536

6th Masaya Yasuda
Department of Mathematics

Rikkyo University
Tokyo, Japan

ORCID: 0000-0002-1534-5648

7th Katsuki Fujisawa
Institute of Mathematics for Industry

Kyushu University
Fukuoka, Japan

ORCID: 0000-0001-8549-641X

Abstract—Lattice problems are a class of optimization prob-
lems that are notably hard. There are no classical or quantum
algorithms known to solve these problems efficiently. Their hard-
ness has made lattices a major cryptographic primitive for post-
quantum cryptography. Several different approaches have been
used for lattice problems with different computational profiles;
some suffer from super-exponential time, and others require
exponential space. This motivated us to develop a novel lattice
problem solver, CMAP-LAP, based on the clever coordination
of different algorithms that run massively in parallel. With our
flexible framework, heterogeneous modules run asynchronously
in parallel on a large-scale distributed system while exchanging
information, which drastically boosts the overall performance.
We also implement full checkpoint-and-restart functionality,
which is vital to high-dimensional lattice problems. CMAP-LAP
facilitates the implementation of large-scale parallel strategies
for lattice problems since all the functions are designed to be
customizable and abstract. Through numerical experiments with
up to 103,680 cores, we evaluated the performance and stability
of our system and demonstrated its high capability for future
massive-scale experiments.

Index Terms—Discrete optimization; Lattice problem; Lattice-
based cryptography; Shortest vector problem; Parallel algo-
rithms; Ubiquity Generator Framework

I. INTRODUCTION

A lattice is the set of all integral combinations of n
linearly independent vectors in the Euclidean space Rn. Lattice
problems are a class of discrete optimization problems whose
objective functions are defined on the set of lattice points or
the set of lattice bases. The most fundamental instance of the
lattice problems is the Shortest Vector Problem (SVP), which
asks to find the shortest non-zero vector in a given lattice.

Lattice problems are believed to be computationally hard with
both classical and quantum algorithms [1] and have been
used to construct various cryptosystems [2], including post-
quantum cryptography. Therefore, developing a framework
for lattice problems is an important task in both large-scale
optimization and cryptanalysis (see [3] for cryptanalysis using
high-performance computing). More specifically, the security
of many cryptosystems is based on the hardness of an approx-
imate variant of the SVP.

Three basic families of lattice algorithms have been de-
veloped to solve practical lattice problems: basis reduction,
enumeration (ENUM), and sieve. These algorithms have ad-
vantages and disadvantages, and there is no single definite
algorithm for lattice problems. Therefore, practical lattice-
problem solvers generally rely on two or more algorithms.
G6K [4] implements a variety of basis reduction and sieve
algorithms, and it is considered the state-of-the-art SVP solver.
G6K is equipped with both CPU and GPU highly paral-
lelized implementations, but it runs only on a single machine.
Furthermore, the memory requirement is exponential with
respect to the dimension of the lattice, which is inevitable
for sieve algorithms. In contrast, MAP-SVP [5] is based on
basis reduction and ENUM, which showed efficient scalability
above 100, 000 MPI processes.

Existing solvers are limited to a fixed set of algorithms and
lack in flexibility. There are two main obstacles to developing
a large-scale multi-paradigm solver: the need for an efficient
high-level information-sharing scheme across different algo-
rithms, and an adaptive task selection and distribution strategy
for hundreds of thousands of processes. The main contribution

of this paper is that it provides solutions to overcome these
obstacles and develops a flexible framework to make various
algorithms work cooperatively on a large-scale distributed
computing platform. By exploiting the mathematical properties
of the lattice, a clever vector pooling scheme is introduced
to minimize the amount of information communicated among
processes. By extending the well-recognized Ubiquity Gener-
ator (UG) framework [6] for Branch-and-Bound (B&B) algo-
rithms, we have built a solid backbone to manage hundreds
of thousands of processes running heterogeneous algorithms
in parallel. The original UG framework has been successfully
utilized for mixed-integer linear programming problems [7]–
[10], Steiner tree problems [11]–[14], and quadratic assign-
ment problems [15] on supercomputers. For lattice problems,
the MAP-SVP, as mentioned above, is based on the original
UG framework. However, most lattice algorithms are not B&B
ones, and hence, MAP-SVP cannot utilize the full features
of the original UG. The success of MAP-SVP motivated the
UG project to refactor the original UG framework into the
Generalized Ubiquity Generator framework (Generalized UG;
UG version 1.0 RC)1, which allows more flexibility necessary
for lattice algorithms. Particular emphasis is put on the effi-
cient and versatile message-sharing mechanics. Based on the
Generalized UG, we developed the Configurable Massively
Parallel Solver for Lattice Problems (CMAP-LAP). This is
the framework for massively parallel strategies for lattice
problems. It is designed to facilitate the implementation of
new parallel strategy ideas based on this framework. In this
paper, we evaluate the performance of CMAP-LAP using the
naive algorithm for SVP.

Main contributions of this study are summarized below:

• We propose a novel parallel and multi-algorithm scheme
for lattice problems, in which several different single-
or multi-rank solvers work cooperatively, while sharing
information efficiently with other solvers even on a large-
scale computing platform (See Section V, and detail for
solving SVP is in Section VI-A). To realize the scheme,
CMAP-LAP was developed entirely from scratch by fully
utilizing the features of the Generalized UG.

• CMAP-LAP with 103, 680 cores stably and continuously
ran for more than 42 hours. We tested CMAP-LAP in sev-
eral environments with different scales and configurations
(see Section VI).

• Each process asynchronously performs various lattice
algorithms in coordination while sharing information.
Processes for different algorithms are adaptively allo-
cated, and their parameters are tuned according to the
available resources, current progress, and estimated time
for finding a solution. In particular, our accurate estima-
tion of memory usage drastically improved the stability
and scalability (see Sections V-A4 and V-B3).

• The high-level checkpoint-and-restart functionality is im-
plemented to resume the execution even on different

1The Generalized UG code will be released within the SCIP Optimization
Suite [16] in 2021.

architectures and platforms of various sizes (see Section
V-A5).

• Highly modular architecture allows one to incorporate
new algorithms easily into the system. Existing imple-
mentations that work only in a shared-memory environ-
ment can work as modules of CMAP-LAP, which run
massively in parallel (see Section V-B1).

II. LATTICE PROBLEMS

A lattice of dimension n is the set of integral linear com-
binations of n linearly independent vectors b1, . . . ,bn ∈ Rn;

L = L(b1, . . . ,bn) :=

{
n∑
i=1

xibi : x1, . . . , xn ∈ Z

}
. (1)

The symbol L(B) denotes the lattice spanned by the rows of
an invertible matrix B. The matrix is called a basis matrix of
L. Two matrices B and C span the same lattice if and only if
there exists a unimodular matrix T satisfying C = TB. Given
a basis matrix B of L, the volume of L is defined as vol(L) :=
|det(B)|, independent of the choice of basis matrices.

Lattice problems are algorithmic problems for lattices.
Among of them, the following is of fundamental importance:

Definition 1 (Shortest Vector Problem, SVP): Find the
shortest non-zero vector with respect to the `2-norm in the
lattice L(B), given a basis matrix B.

SVP is a discrete optimization problem of finding the best
combination of integers xi’s in (1) such that v =

∑n
i=1 xibi

is nonzero and the shortest in L, and it is NP-hard under
randomized reductions [17]. (That is, there exists a probabilis-
tic Turing-machine that reduces any problem in NP to SVP
instances in polynomial-time.) The length of the shortest non-
zero vector in L is denoted by λ1(L). SVP is the problem of
finding s ∈ L with ‖s‖ = λ1(L). It should be emphasized
that there is no known polynomial-time algorithm to check if
‖v‖ = λ1(L) given v ∈ L. Therefore we rely on the Gaussian
Heuristic, which assumes that the number of vectors in L∩S
is roughly equal to vol(S)/vol(L) for a measurable set S in
Rn. By taking S to be the ball of radius λ1(L) centered at

the origin 0 in Rn, it leads to λ1(L) ≈
(

vol(L)
ωn

)1/n

, where
ωn denotes the volume of the n-dimensional unit ball. By
Stirling’s formula, we have ωn ≈

(
2πe
n

)n/2
as n → ∞, and

define

GH(L) :=

√
n

2πe
vol(L)1/n. (2)

Then, λ1(L) ≈ GH(L) holds for random lattices L in high di-
mensions n ≥ 40. (Unfortunately, the Gaussian Heuristic does
not hold in low dimensions.) For a vector v ∈ L, the value
‖v‖/GH(L) is called the approximation factor of v. Similarly,
for a basis matrix B, the value min1≤i≤n ‖bi‖/GH(L) is
called the approximation factor of B. They are evaluation
metrics for the lattice vector and the basis. Based on this
observation, an approximate variant of SVP is defined below:

Definition 2 (Hermite Shortest Vector Problem, HSVP):
Given a basis B and an approximation factor γ > 0, find a
non-zero vector v ∈ L(B) such that ‖v‖ ≤ γ · vol(L(B))1/n.

There are other important lattice problems related to the
security of modern lattice-based cryptosystems such as the
learning with errors and NTRU problems (e.g., see [2]). Most
lattice problems can be reduced to SVP or the Closest Vector
Problem (CVP), and hence, SVP and CVP are fundamental.
As Kannan’s embedding [18] transforms CVP into SVP, we
focus on SVP in this paper to simplify the narrative. However,
the proposed methods are applicable to other lattice problems.

III. RELATED WORK

We summarize the existing solvers with a particular empha-
sis on SVP. The Darmstadt SVP challenge [19] has been an
established venue for assessing SVP algorithms. Lattice bases
for dimensions 40 ≤ n ≤ 200 are publicly available. More
precisely, for each dimension with so-called the seed, a lattice
basis is generated. For each generated lattice L, any non-zero
lattice vector with length less than 1.05GH(L) is considered as
a solution. Algorithms search for short vectors within a given
approximate factor. In contrast, (even probabilistic) exact SVP
solvers find a shortest vector with a positive probability.

A. Approximate-SVP solvers

We present recent works for solving the SVP challenge in
high dimensions n ≥ 150. Note that the approximation factors
of most of the current records for n ≥ 150 are over 1.02, and
thus, they are not likely to be the shortest. In 2017, an SVP
instance in n = 150 was first solved with an approximation
factor 1.04192. It was reported in [20] that it took 394 days
using up to 864 cores. The work is based on the random
sampling [21], which samples small xi’s in (1) until a short
vector is found. In 2018, a number of records in n ≤ 155
were updated using the general sieve kernel, called G6K [4].
G6K supports a variety of lattice basis reductions and sieve
algorithms (Section IV). Most of the records for n ≥ 130 and
notably the current highest dimension record (n = 180) have
been found using G6K. It was reported in [22] that the n = 180
record took 51.6 days on a single machine with 4 NVIDIA
Turing GPUs, and its approximation factor was 1.04002.

B. Exact-SVP solvers

We present several works solving exact-SVP based on
ENUM (Section IV). ENUM is asymptotically slower than
sieve, but it is a deterministic algorithm with polynomial-
space (cf., sieve requires exponential-space). Parallelization
for ENUM is conducted for traversing the enumeration tree
by divide-and-conquer [23]–[25]. Another approach has been
pursued by randomization. Applying unimodular transforma-
tion to an input basis does not change the lattice, but it
alters the enumeration tree. Hence, a parallel search can be
conducted on the bases obtained by applying randomly gen-
erated unimodular matrices to the basis. Based on this idea, a
shared-memory parallelized ENUM system based on random-
ization and pruning techniques was presented in 2019 [26].
It reported the running time of solving exact-SVP over 60
cores for dimensions n ≤ 100. In 2020, a massive parallel
exact-SVP solver, called MAP-SVP, was developed in [5]

using the Ubiquity Generator framework. It was a distributed
asynchronous cooperative solver based on randomization and
ENUM with pruning techniques. MAP-SVP found solutions for
many instances of the SVP challenge in n ≤ 127. In particular,
it took 147 hours to find a solution in n = 127 using 100, 032
cores. The approximation factor of the solution is 0.97573, the
smallest among the current records for n ≥ 120.

IV. LATTICE ALGORITHMS

We summarize practical algorithms solving lattice problems,
mainly SVP (see [27], [28] for a survey). We also discuss our
extension of these algorithms for parallel computation.

The Gram-Schmidt orthogonalization of a basis b1, . . . ,bn
is the orthogonal vectors b∗1, . . . ,b

∗
n defined recursively by

b∗1 := b1, b∗i := bi −
i−1∑
j=1

µijb
∗
j , µij :=

〈bi,b∗j 〉
‖b∗j‖2

(3)

for 2 ≤ i ≤ n. Let B∗ denote the matrix whose rows are the
Gram-Schmidt vectors b∗i ’s. Let U = (µij) denote the lower
triangular matrix given by (3) and µii = 1. Then B = UB∗,
and hence vol(L) =

∏n
i=1 ‖b∗i ‖ for L = L(B). For each

1 ≤ k ≤ n, define an orthogonal projection map as

πk : Rn −→ 〈b∗k, . . . ,b∗n〉R, πk(v) =

n∑
i=k

〈v,b∗i 〉
‖b∗i ‖2

b∗i ,

where 〈b∗k, . . . ,b∗n〉R is the R-vector space spanned by
{b∗k, . . . ,b∗n}. The lattice spanned by πk(bk), . . . , πk(bn) is
denoted by πk(L), called a projected lattice, whose dimension
is n− k + 1 and volume is equal to

∏n
i=k ‖b∗i ‖.

A. Enumeration (ENUM)

ENUM is a deterministic algorithm solving SVP exactly.
For an SVP instance of dimension n, the time complexity is
2O(n2), but the space complexity is a polynomial in n. Given a
basis {b1, . . . ,bn} of a lattice L, ENUM is based on a depth-
first tree search for an integer combination (v1, . . . , vn) such
that s = v1b1 + · · · + vnbn is the shortest in L \ {0}. With
the information (3), the target vector can be written as

s =

n∑
i=1

vi

b∗i +

i−1∑
j=1

µijb
∗
j

 =
n∑
j=1

vj + n∑
i=j+1

µijvi

b∗j

By the orthogonality of b∗i ’s, the projected vector πk(s) has

squared length
∑n
j=k

(
vj +

∑n
i=j+1 µijvi

)2

‖b∗j‖2 for each
1 ≤ k ≤ n. Given a search radius R > 0, an enumera-
tion tree of depth n is constructed, whose nodes at depth
n − k + 1 correspond to the set of all vectors in πk(L) of
a maximum length of R. The key observation is that if a
shortest vector satisfies ‖s‖ ≤ R, its projections also satisfy
‖πk(s)‖2 ≤ R2 for all k. Therefore, it is crucial to choose a
good R that is sufficiently small but larger than the shortest
norm. One useful strategy is pruning [29] where a smaller
tree is built by replacing the inequalities ‖πk(s)‖2 ≤ R2 with
‖πk(s)‖2 ≤ R2

n+1−k with shorter radii R1 ≤ · · · ≤ Rn = R
at each depth determined by a pruning strategy. This method

is probabilistic because it is not certain that s can be found in
this pruned tree. Another strategy is parallelization. We start
with a sufficiently large R. When one instance finds a short
vector, its norm R′ is shared across all instances. Then we
can replace R with R′ to reduce the size of the enumeration
tree. To boost reduction of the search radius, we introduce
the novel sub-ENUM algorithm, which produces many short
lattice vectors using similar idea as sub-sieving [30]. ENUM
is performed in a projected lattice πk(L) to obtain short lattice
vectors v ∈ L such that ‖πk(v)‖ ≤ τ ·GH(πk(L)), where τ is
a constant. We typically chose τ =

√
4
3 in our implementation.

Then, ENUM is again used to find a shortest vector for the
k-dimensional lattice spanned by {b1, . . . ,bk−1,v}.

B. Sieve

Given a lattice L of dimension n, sieve is a probabilistic
algorithm that solves SVP exactly with a time complexity of
2O(n), which is asymptotically faster than ENUM. The down-
side is that it requires exponential space of 2Θ(n). Consider
a ball S centered at 0 and radius R with λ1(L) ≤ R ≤
O(λ1(L)). Then, Equation (2) implies #(L ∩ S) = 2O(n).
ENUM performs an exhaustive search of L ∩ S by going
through all the vectors in the union set ∪nk=1 (πk(L) ∩ S) with
a total number of 2O(n2). In contrast, the sieve relies on the
following observation. Let M be a set of vectors uniformly
sampled from L∩S. The shortest lattice vector is included in
M with a probability close to 1 if #M � #(L ∩ S). More
precisely, there exists a vector w ∈ L ∩ S such that w and
w + s are both contained in M with a positive probability
for some shortest vector s ∈ L \ {0}. Therefore, the shortest
vector s can be found by computing the differences of pairs
in M . There are various implementations of sieve algorithms
that differ mainly in how to sample M , such as GaussSieve
[31]. Similar to ENUM, the choice of R is crucial to the sieve.

C. Basis reduction

Basis reduction algorithms seek for a new basis of the same
lattice with short and nearly orthogonal basis vectors (such
basis is called reduced or good). The well-known reduction
algorithms are LLL [32], BKZ [33], and their generalizations,
DeepLLL and DeepBKZ [34]. LLL is constructed using basic
row-wise matrix transformations, and β-BKZ is constructed
with LLL and SVPs on the β-dimensional projected lattice
spanned by {πi(bi), πi(bi+1), . . . , πi(bi+β−1)}. These algo-
rithms do not always find the shortest vector, but they are much
faster than exact-SVP solving algorithms, such as ENUM and
sieve. In practice, basis reduction is also performed as a pre-
processing step of ENUM and sieve to reduce their expensive
cost. In contrast, short (not necessarily shortest) vectors found
by ENUM and sieve can be used in conjunction with lattice
basis reduction algorithms to obtain better bases. Our CMAP-
LAP cleverly manages this mutual dependency.

V. DESIGN OF CMAP-LAP

It is essential for a practical solver to utilize the multiple lat-
tice algorithms introduced in Section IV. Most of the existing

Reduction
(§Ⅲ. C)

Enumeration
(§Ⅲ. A)

Sieve
(§Ⅲ. B)

reduced basis short vectors current shortest
vector found

Fig. 1. Interaction among SVP algorithms with a synergy: Basis reduction
generates a reduced basis, over which enumeration and sieve can find short
vectors efficiently. In contrast, enumeration and sieve find short vectors so
that basis reduction accelerates to find a more reduced basis.

solvers discussed in Section III rely on either the combination
of lattice reduction and sieve or the combination of lattice
reduction and ENUM. These algorithms are inter-dependent
and executed sequentially. In contrast, CMAP-LAP is built on
a new multi-algorithm paradigm in which multiple lattice al-
gorithms are executed cooperatively and yet asynchronously in
parallel. The key idea is that each lattice algorithm described in
Section IV can be considered a sampler of short lattice vectors.
Furthermore, each algorithm benefits from the knowledge of
short vectors; for example, the enumeration tree of ENUM
shrinks according to the upper bound R of the shortest norm.
Using different algorithms and randomly transformed bases,
we can increase the number of samplers, which mutually
boosts the sampling performance by sharing the information
of short vectors found (see Fig. 1). To realize the novel multi-
algorithm paradigm, CMAP-LAP was developed entirely from
scratch utilizing the full power of the Generalized UG, which
is a generic high-level task parallelization framework.

A. Architecture of CMAP-LAP

We describe the architecture of CMAP-LAP. The General-
ized UG consists of a controller process, LoadCoordinator
(LC), and multiple Solvers. Each Solver communicates with
LC asynchronously. This system is suitable for multiple pro-
cesses that run different algorithms and share information, as
needed. The LC has the following data pools: 1) Instance Pool,
2) Solver Pool, 3) Task Pool, and 4) Share-Data Pool. (See Fig.
2). The LC creates special purpose local threads as needed: 1)
Checkpoint Writer thread 2) Local Solver threads.

Each Solver carries a Task, which is a triple of:

• Instance is the data that represents the problem to solve,
which in the case of SVP is a lattice basis, and in the
case of CVP is a lattice basis and a target vector.

• Parameters describe the type of algorithm and the param-
eters of the algorithm. For example, an ENUM algorithm
with a pruning strategy from Parameters.

• Status represents the algorithm’s progress, e.g., for the
depth-first search of the enumeration algorithm, it is the
node currently being searched.

LoadCoordinator (LC) rank = 0

rank 2

List

Solver:
(thread = 0)
ENUM

Solver: (thread = 0) Sieve

rank 1 rank N

⋯

Solver:
(thread = 0)
DeepBKZ sampler

Solver Pool

sieve
DeepBKZ ⋯

Task Pool

ENUM
DeepBKZ ⋯ Checkpoint

Writer

Basis
⋯

Basis

Solver:
(thread = 1)
DeepBKZ

Basis
⋯

rank 3

⋯

Solver:
(thread = 1)
ENUM

Instance Pool

Basis Basis ⋯

⋯

Share-data Pool
vec
vec ⋯vec

vec
vec
vec

vec
vec

vec
vec

Fig. 2. System overview of CMAP-LAP for SVP

(3) Send

task

(3) Pop

task

(4) Take

algorithm

(4) Receive

task

(2) Pop

instance

Instance Pool

Instance

⋯Instance ⋯

Solver Pool

Task Pool

Task
Task ⋯+・Parameters

・Initial StatusInstance

Message Handler

Solver

Task

(2) Create and

store task

(5) Share

Data

(4) Store

Instance

Data
Data

Data
Data

(4) Store

Data

TaskTask

⋯Task
Solver

Solver

⋯

Message Handler ParaSolver

Algorithms

Algorithm

(4) Run algorithm from Status

(4) Share Instance,

Data and Status, periodically

(4) Update

Status of Task

Status

DataInstance +・Parameters

・Initial StatusInstance
Task

Data

(4) (5)

Share-data Pool
(1) Store

instance

LoadCoordinator (LC)

Fig. 3. Execution flow of CMAP-LAP

Given a lattice problem, each Solver is created in one core
and assigned a Task by LC. The basic flow of CMAP-LAP is
as follows (see Fig. 3):

1) LC stores given Instance in the instance pool.
2) LC pops an Instance from the instance pool, sets Param-

eters for Instance, and initializes Status. The created Task
= (Instance, Parameters, Status) is stored in the task pool.

3) If there exists an idle Solver, LC pops a Task in the task
pool and sends it to the idle Solver, and stores it to the

solver pool.
4) Each Solver takes the algorithm and its input from the

received Task, and occasionally shares information to
LC, such as Instance, Data, Status. The information sent
depends on the algorithm, as shown in Fig. 1. LC stores
information in the pool according to this type. In addition,
Solver sends Status to LC, and LC updates Task in the
solver pool for the checkpoints.

5) Information in the share-data pool is occasionally re-
trieved from LC, and shared among Solvers.

6) When a Solver finishes the assigned Task, it sends its
final Status to LC and becomes idle.

LC always checks for messages from Solver. Messages
received by the LC are processed through the message handler
according to the type of message. As described above, Solver
only communicates with LC, and Solver does not share
information with other Solvers directly. This communication
via the share-data pool is an effective solution for massive
parallelization to achieve 1) the reduction in the number of
communication paths, 2) the management of the total amount
of communication, 3) the control over the memory usage.

The detail of the components of CMAP-LAP is given as
follows.

1) Instance Pool: Instance pool stores instances of the
problem together with their priorities. For example, bases
transformed by unimodular matrices give the same lattice
and represent different instances of the same lattice problem.
Provided a lattice basis that specifies the lattice problem, the
instance pool is initialized with the single basis. LC stores
bases sent from Solvers, which run the reduction algorithm. In
the case of SVP, the priority can be computed by the estimated
total number of nodes in the enumeration tree described in
Section IV-A such that the shortest vector will be found more
efficiently with an instance of higher priority. LC pops an
instance with the highest priority from the instance pool and
creates a Task from it.

2) Task Pool: Task pool stores Tasks, which are triples of
(Instance, Parameters, Status). It manages the Tasks waiting
to be executed. LC assigns the Task with the highest priority
to a Solver. In this way, the Tasks which would lead to

better solutions quickly, are prioritized. Multiple Tasks may
be generated from a single instance using different algorithms
and parameters.

3) Solver Pool: Solver pool stores information of the run-
ning Solvers. Each Solver is managed by (Solver-Id, Task).
The Status of Task is periodically updated by the Status
message sent from Solver. This allows LC to grasp the status
of all Solvers. When Solver finishes the assigned Task, it is
registered as idle. In addition, when LC wants to assign a
new Task of high priority immediately, LC chooses a running
Solver to interrupt the current Task. The number of active
Solvers that runs on a single machine node is determined by
LC according to the computational cost of Task. For example,
sieve algorithms have a large memory footprint to maintain a
large number of lattice vectors; a single Solver becomes active
and runs on a single machine node. Meanwhile, ENUM and
reduction algorithms use little memory, and the same number
of Solvers as that of the cores run on a single node.

4) Share-Data Pool: Share-data pool stores information
that is shared across multiple Solvers. In the case of CMAP-
LAP, a typical type of information sent from Solvers is the
lattice vector of a small norm. LC checks if the sent vector is
already in the pool. If it is not in the pool, an entry (Data, S,
priority) is created in the pool, where Data is the sent vector.
S is a set that records the Solver-Ids to which Data has been
sent. The priority is computed by its norm. When the pool
size gets bigger, LC decides which entries remain stored in
the pool according to their priorities. At an interval, LC selects
an entry according to the priority and pushes it to the Solvers
whose Solver-Ids are not in S and adds their Solver-Id to S. In
this way, information is shared among all Solvers efficiently
while controlling the total amount of communication. The
interval at which Solvers and LC push information can be
tuned depending on the configuration of the machine.

The share-data pool is the most memory-consuming part
of the LC. The size of share-data pool increases over time,
and the limit of the pool size must be set appropriately
according to the available memory. In particular, the size of
S is dominant and should be carefully estimated in case of
massive parallelization. Moreover, the cost of Data retrieval
increases when the pool size and the number of Solvers are
large. In this case, the limit of the pool size and the frequency
of data sharing are suppressed.

5) Fully Checkpoint Functionality with Checkpoint Writer
thread: One of the most powerful features of CMAP-LAP is
the checkpoint mechanism for storing high-level information
of the entire system. Lattice problems are hard and often
require millions of core hours. Thus, it is critical to record
the progress and resume after an interruption. Our checkpoint
functionality is carefully designed so that high-level, platform-
independent information is stored to enable restart even on
different platforms. When a checkpoint is requested, the data
in the pools in LC are serialized and saved in checkpoint files
using zlib [35], a portable compression library. At the time
of restart, CMAP-LAP reads the checkpoint files to restore
pools. The task pool contains Tasks, including the progress

information Status, which can be assigned to Solvers to
resume. When the checkpoint files are loaded in a different
environment from the one that has saved them, the number
of cores and the available memory may be different. In this
case, LC distributes the Tasks in the task pool to Solvers as
much as possible, leaving the other Tasks in the task pool. At
the same time, LC creates new Tasks when a large number of
Solvers are available.

The technically important point is that the message process-
ing from Solvers to LC is blocked when LC writes checkpoint
files. With many MPI packages, this is problematic because
the size of the queue of MPI messages waiting to be received
becomes large and eventually leads to an error when the upper
limit is reached. This problem becomes more pronounced for
larger-scale execution. To avoid this problem, LC temporarily
creates a copy of the pools on memory, and a dedicated thread
in LC, called Checkpoint Writer, is created to write the copy in
the checkpoint files. This has significantly reduced the block
time for checkpoints and enabled CMAP-LAP to run stably on
large-scale platforms.

B. Implementation Technicalities

1) Extendability: There are many lattice problem solvers,
including the state-of-the-art sieve solver G6K, which is avail-
able as open-source software. CMAP-LAP’s flexible and highly
modular design allows solvers to be incorporated as a part of
the system. For the ease of incorporation, an interface class
ParaSolver is provided, with which existing solvers can be
turned into Solvers with minimum effort. Each Solver has a
ParaSolver object that takes care of all the communication,
and existing solvers only have to receive input data and send
the results via ParaSolver’s API (see bottom of Fig. 3).

LoadCoordinator (LC)

Thread 1
Solver

Thread T
Solver⋯

⋯
Local

Thread T
Solver

⋯

Rank = 0

Rank = 1 Rank = N

ISendQueue ISendQueue

LocalComm

ParaComm

LC Solver Solver ⇆ Solver Solver LC
Flow of communication

Thread 0
rootSolver

Thread 0
rootSolver

Comm

Fig. 4. Communicators between and within MPI processes: ParaComm and
LocalComm.

2) Hybrid Parallelization: CMAP-LAP uses hybrid paral-
lelization, which combines MPI with C++11 thread commu-
nication. LC and Solver have two kinds of communicators:

one is ParaComm, which wraps MPI functions, and the
other is LocalComm, which wraps C++11 communication
functions. ParaComm is used for inter-process communication,
and LocalComm is used for inter-thread communication within
a process. Because all Solvers know the MPI rank of LC,
Solvers send messages directly to LC using ParaComm and
ISendQueue, which is described in the following section. In
contrast, when LC sends a message to Solver, LC first sends
a message via ParaComm to the MPI rank where the Solver
resides. The solver with 0 thread-Id receives the message;
we call this the rootSolver. Then, the rootSolver sends the
message to the Solver using LocalComm. Therefore, the
rootSolver receives more messages than the other Solvers, the
received messages must be checked frequently, even during
the execution of the algorithm. However, the idle time for
message processing can be reduced by using non-blocking
communication, as described below.

3) MPI ISend Communication: Because LC receives mes-
sages from all busy Solvers, the LC’s load is the highest of
all the processes in the case of large-scale computation. In
addition, depending on the type of messages received, pro-
cessing such as inserting Data into the share-data pool occurs
in LC. This blocks the LC message processing and delays
the receipt of messages. Therefore, to reduce the idle time of
communication in Solver, we send all messages from Solver
to LC by using MPI ISend, the non-blocking communication.
This leads Solver to resume the algorithm without waiting
for the check that LC receives the message. To prevent the
objects deleted before they are sent, we copy the objects sent
by MPI ISend to a queue called ISendQueue in the memory
of that process. We remove them from ISendQueue as soon
as the transmission is confirmed by MPI Test. By examining
the size of each ISendQueue, we can determine the number of
unreceived LC messages. Therefore, we set an upper limit on
the size of ISendQueue and the messages exceeding the limit
are destroyed instead of being sent, thereby preventing many
messages from accumulating in LC.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of CMAP-LAP
on the SVP challenge. The computing platform used in the
following numerical experiments includes the Lisa and Emmy
at Zuse Institute Berlin, and ITO at Kyushu University. These
specifications are summarized in Table I.

A. Solving SVP with CMAP-LAP

We briefly describe the overall behavior of CMAP-LAP for
solving SVP. Recall that an SVP is specified by a lattice basis
matrix. At the beginning of the execution, the LC reads the
basis matrix from a file and stores it in the instance pool. Then,
LC generates DeepBKZ Tasks for the bases in the instance
pool. The reduced bases are sent from Solvers performing
DeepBKZ Tasks to LC, and LC stores them in the instance
pool. LC also generates ENUM and sieve Tasks using the bases
in the instance pool. Short lattice vectors are occasionally

0 1 2 3 4 5
Time [h]

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130
size of share-data pool = 100,000 (CMAP-LAP)
size of share-data pool = 1 (MAP-SVP)
size of share-data pool = 0

Fig. 5. Transition of the approximation factors for different share-data pool
sizes; execution were done on the CAL A and CAL B with 144 cores. The
solid blue lines in Fig. 5, 6 and 8 represent the same experimental results.

sent from Solvers to LC, which are inserted into the share-
data pool. At regular intervals, Solvers request LC to send
short vectors from the share-data pool. Each algorithm has no
constraint on the timing of the communication and can reflect
it in its own algorithm anytime. Therefore, if there is a delay
in communication, there is no need to stop the algorithm and
wait for the share-data. DeepBKZ Tasks insert the received
short vectors into the basis, sieve Tasks use the received short
vectors as sampling seeds, while ENUM adjusts the search
radius according to the norm of the shortest vector ever found.
We calculated the communication interval and the number of
vectors shared from the number of cores and the maximum
MPI buffer size to relax the communication delay.

Because computing the exact norm of a shortest vector
of a given lattice is as hard as computing a shortest vector,
we evaluate the progress of solving an SVP instance by the
approximation factor defined in Section IV. A smaller value
of the approximation factor indicates a better (temporary) so-
lution. With the Gaussian Heuristics, the approximation factor
should be about 1.0 for a good candidate of a shortest vector.
From a cryptanalysis viewpoint, an approximate factor of 1.05
is often set as a goal as in the SVP challenge. The number of
lattice vectors having smaller approximation factors decreases
quickly; for example, in dimension n = 130, the ratio of the
numbers of lattice vectors having approximation factors 1.20
and 1.30 is approximately (1.20n/1.30n) ≈ 3.03 × 10−5. In
other words, it is 33, 000 times harder to reach an approximate
factor of 1.20 compared with 1.30.

B. Information sharing

We evaluate the effect of our novel information-sharing
scheme and the parallelization with the lattice reduction al-
gorithm. We performed experiments running DeepBKZ with
β = 30 for five instances of the SVP challenge of dimension
130 with seeds from 0 to 4. We executed all computations on
the CAL A and CAL B with 144 cores.

We show the efficiency of the information sharing with
CMAP-LAP. In CMAP-LAP, Solvers share multiple short lat-

TABLE I
COMPUTING PLATFORMS USED

Machine Memory / node CPU CPU frequency # of nodes # of cores
Lisa (HLRN IV) 384 GB Intel Xeon Platinum 9242 (CLX-AP) 2.30 GHz 1,080 103,680 (96 × 1,080)

Emmy (HLRN IV) 384 GB Intel Xeon Platinum 9242 (CLX-AP) 2.30 GHz 128 12,288 (96 × 128)
ITO 192 GB Intel Xeon Gold 6154 (Skylake-SP) 3.00 GHz 128 4,608 (36 × 128)

CAL A 256 GB Intel(R) Xeon(R) CPU E5-2640 v3 2.60 GHz 4 64 (16 × 4)
CAL B 256 GB Intel(R) Xeon(R) CPU E5-2650 v3 2.30 GHz 4 80 (20 × 4)

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux Server release 7.3.1611],
CAL A and CAL B [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217,
openmpi3.1.3], CAL A, CAL B [icc 19.1.3.304, openmpi4.0.5]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, scipoptsuite
v6.0.2, OpenBLAS, fplll v5.2.1

0 1 2 3 4 5
Time [h]

1.175

1.200

1.225

1.250

1.275

1.300

1.325

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130
DeepBKZ 143 sub-ENUM 0 GaussSieve 0
DeepBKZ 126 sub-ENUM 16 GaussSieve 1
DeepBKZ 110 sub-ENUM 32 GaussSieve 1
DeepBKZ 78 sub-ENUM 64 GaussSieve 1

Fig. 6. Same as Fig. 5, but for different allotment of algorithms; execution
were done on the CAL A and CAL B with 144 cores.

tice vectors via the share-data pool in LC. The amount of
information shared among Solvers can be controlled by the
size of the share-data pool. Fig. 5 compares the transition of
the approximation factor (averaged over 5 instances) overtime
with the size of the share-data pool 0, 1, and 100, 000. When
the size of the share-data pool is set to zero, no information is
shared and all the Solvers are executed independently. When
the size of the share-data pool is set to 1, only the current
shortest lattice vector (the current solution) is shared among
Solvers. This is equivalent to the sharing scheme of MAP-SVP.
We observe that the approximation factor is drastically reduced
when the size of the share-data pool is set to 100, 000. This
shows the effectiveness of our data sharing scheme.

C. Coordination of heterogeneous algorithms

We show the effectiveness of CMAP-LAP’s multi-algorithm
paradigm, in which heterogeneous lattice algorithms are exe-
cuted concurrently in coordination. In this experiment, we fix
the number of Solvers assigned to each Task, that is, Deep-
BKZ, sub-ENUM, and GaussSieve. Each Solver is assigned
the the same type Task when it completes the current Task.
Fig. 6 shows the results for a 130-dimensional SVP with four
different configurations of the Task assignment. We ran the
experiment on the CAL A and CAL B with 144 cores for an
hour or five hours, and the 1 core was assigned to LC, and
the other 143 cores were assigned to three types of Tasks.
We set the size of the share-data pool to be infinity. The best
result was obtained with the combination of (DeepBKZ, sub-

3000 3500 4000 4500 5000 5500 6000 6500 7000
0

100

200

300

Nu
m

be
r o

f v
ec

to
rs

(DeepBKZ, sub-ENUM, GaussSieve) = (143, 0, 0)
 The number of vectors = 36,055

DeepBKZ

3000 3500 4000 4500 5000 5500 6000 6500 7000
Norm of lattice vector

0

200

400

600

800

1000
Nu

m
be

r o
f v

ec
to

rs
(DeepBKZ, sub-ENUM, GaussSieve) = (110, 32, 1)

 The number of vectors = 101,952
DeepBKZ
sub-ENUM
GaussSieve

Fig. 7. Distribution of the norm of vectors in the share-data pool.

ENUM, GaussSieve) = (110, 32, 1). To investigate the reason,
we examine the distribution of vector norms in the share-data
pool for two configurations (see Fig. 7). The total number
of vectors shared through the share-data pool for (DeepBKZ,
sub-ENUM, GaussSieve) = (143, 0, 0) was 36, 055, and that
for (DeepBKZ, sub-ENUM, GaussSieve) = (110, 32, 1) was
101, 952. In both configurations, shorter vectors were found
by DeepBKZ Solver. However, a large number of relatively
short vectors found by sub-ENUM and GaussSieve helped
DeepBKZ find shorter vectors.

D. Scalability

In addition, we evaluated the effect of parallelization on
the transition of the approximation factor (see Fig. 8). We
experimented with the same SVP instances as in Section
VI-B using different numbers of Solvers. The size of the
share-data pool was set to 100, 000. We used the CAL A
and CAL B with 144 cores and ITO with 576 and 2, 304
cores for this experiment. The best (minimum) approximation
factor obtained within 5 hours was 1.176, 1.133 and 1.117

0 1 2 3 4 5
Time [h]

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50
Ap

pr
ox

im
at

io
n

Fa
ct

or
Dimension 130

Number of Solver = 143
Number of Solver = 575
Number of Solver = 2303

Fig. 8. Same as Fig. 5, but for different number of Solvers; execution were
done on the CAL A and CAL B with 144 cores, and ITO with 576 and 2,304
cores.

with 143, 575 and 2, 303 Solvers, respectively. In terms of
Gaussian Heuristics, the 2, 303 Solvers execution is considered
to be 1.176130/1.117130 ≈ 800 times better than 143 Solvers
execution. It took 14, 844 seconds to reach the approximation
factor of 1.176 with 143 Solvers while it took 2, 965 seconds
with 2, 303 Solvers, which is a speed-up by a factor of
5.0 compared with 143 Solvers. Similarly, the time for the
approximation factor to fall below 1.2 was 7, 319 seconds with
143 Solvers and 1, 360 seconds with 2, 303 Solvers, which is
a speed-up by a factor of 5.3.

In these experiments, the average ratio of idle time to the
total execution time of the Solver processes was 0.00314,
0.00342 and 0.00359 for the number of Solvers is 143, 575
and 2, 303, respectively. The idle time included the waiting
time for the communication of the vector, Status, and Task
with LC. This indicates the high CPU utilization. We also
measured the idle time of LC . It should be noted that certain
amount of idle time is desirable for LC so that more messages
from Solver can be handled with no delay. The average ratio
of the idle time to the total execution time of the LC process
in these experiments was 0.9463, 0.9533 and 0.9122 for the
number of Solver 143, 575 and 2, 303, respectively, indicating
that the LC process is also highly efficient.

E. Stability with massive parallelization

We show the results of a long-time execution of CMAP-LAP.
Fig. 9 shows the result of multiple executions of a 134 dimen-
sional SVP instance. We ran the experiment 13 times using our
checkpoint-and-restart functionality on the Lisa supercomputer
with 103, 680 cores. The first few executions were performed
for short periods to test the checkpoint functionality. During
the test, we observed occasional aborts due to an excessive
number of MPI messages waiting to be received by the LC.
As a workaround, the Checkpoint Writer (described in Section
V-A5) was developed, and the upper limit of the size of
ISendQueue was set based on the number of messages the
Solver sends to the LC (described in Section V-B3). This
has improved the stability and enabled a longer execution
time. We have tested up to 42 hours of continuous execution.

0 20 40 60 80 100
Time [h]

1.06

1.07

1.08

1.09

1.10

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 134 Seed 0

Fig. 9. Transition of the approximation factor of a 134-dimensional SVP for
long-time execution on the Lisa with 103,680 cores. Each dot represents the
beginning of restart from checkpoint.

0 50 100 150 200 250
Time [h]

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 0
12,288 Cores (Emmy)
103,680 Cores (Lisa)

Fig. 10. Transition of the approximation factor of a 130-dimensional SVP for
long-time execution on the Emmy with 12,280 cores and Lisa with 103,680
cores.

Together with checkpoint and restart, the approximation factor
was improved over time.

Fig. 10 shows the result of multiple executions of a 130
dimensional SVP. This time, we tested a restart from a
checkpoint created on a different environment. The first 14
executions were performed on the Emmy with 12, 288 cores
and the last 1 execution was restarted on the Lisa with 103, 680
cores. Although the number of cores used in the Lisa is 8.44
times more than that of the Emmy, the execution was carried
over by the checkpoint functionality without any problem. The
Tasks running on the Emmy when the checkpoint was created
were executed on the Lisa immediately after the restart, and
new Tasks were generated from the instance pool and assigned
to extra Solvers available on the Lisa. It should be noted that
the approximation factor was improved in the last execution
after the final restart (see the purple segment in Fig. 10).

The interval of the creation of checkpoint files were set to an
hour. It took an average of 1, 531.75 seconds per checkpoint
for the Checkpoint Writer to compress and write the pool’s
information in files with a size of approximately 7.09 GB on
memory. In contrast, it took only an average of 2.77 seconds
for LC to copy the pools for the Checkpoint Writer. In this
manner, the blocking time of LC’s message processing was
greatly improved by the Checkpoint Writer.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a novel large-scale framework, CMAP-
LAP, for lattice problems. Lattice problems are a type of
discrete optimization problem that is difficult to solve, even
for a quantum computer. CMAP-LAP offers a multi-algorithm
paradigm in which multiple types of lattice algorithms run in
parallel while sharing information to improve the performance
of the entire system. To realize this paradigm, we developed
four key components. Our communication interface class
enables hybrid parallel processing, independent of the solver’s
internal algorithms. This makes it easy to incorporate existing
solvers, those run not only on shared-memory systems but also
on distributed-memory systems [36]. The efficient collection
and distribution of short lattice vectors by the management
process facilitate information exchange among heterogeneous
solvers. This is based on the fact that each lattice algorithm
generates short lattice vectors as by-products, which can
be utilized by other algorithms if shared. Furthermore, the
management process generates new tasks from the collected
information and assigns them to the solvers in the order of the
estimated likelihood of finding a solution. In addition, a power-
ful checkpoint functionality is implemented, which is essential
for long execution times. The management of memory and
communication delays is carefully realized, which is essential
for the stability of large-scale parallel execution. Several
numerical experiments demonstrated the stability, scalability,
and checkpointing of CMAP-LAP and showed performance
improvement through information sharing and heterogeneous
execution of multiple algorithms.

CMAP-LAP has the following limitations. 1) In the ex-
periments conducted in this study, we used simple lattice
algorithms such as the naive GaussSieve for testing purposes
of the framework. The system can be made more powerful
by incorporating state-of-the-art solvers such as G6K. 2) The
memory requirements of the management process can be
high in massively parallel environments with over a million
cores. Thus, a distributed management of memory should be
developed for further parallelization. 3) The system has been
tested only with SVP. It is readily applicable to other lattice
problems, and we intend to evaluate the system on them.

ACKNOWLEDGMENT

This research project was supported by the Japan Science
and Technology Agency (JST), the Core Research of Evolu-
tionary Science and Technology (CREST), the Center of Inno-
vation Science and Technology based Radical Innovation and
Entrepreneurship Program (COI Program), JSPS KAKENHI
Grant Number JP20H04142, Japan, the Research Campus
MODAL funded by the German Federal Ministry of Education
and Research (fund number 05M14ZAM). This work was also
supported the National High Performance Computing Center
at the Zuse Institute Berlin (NHR@ZIB). We are grateful to
the supercomputer staff, especially Matthias Läuter and Tobias
Watermann.

REFERENCES

[1] J.-Y. Cai, “The complexity of some lattice problems,” in Algorithmic
Number Theory, W. Bosma, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 1–32.

[2] C. Peikert, “A decade of lattice cryptography,” Foundations and Trends
in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2016.
[Online]. Available: http://dx.doi.org/10.1561/0400000074

[3] A. Joux, “A tutorial on high performance computing applied to crypt-
analysis (invited talk),” in Advances in Cryptology–EUROCRYPT 2012,
ser. Lecture Notes in Computer Science, vol. 7237. Springer, 2012, pp.
1–7.

[4] M. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite,
and M. Stevens, “The general sieve kernel and new records in lattice
reduction,” in Advances in Cryptology–EUROCRYPT 2019, ser. Lecture
Notes in Computer Science, vol. 11477. Springer, 2019, pp. 717–746.

[5] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda,
and K. Fujisawa, “Massive parallelization for finding shortest lattice
vectors based on ubiquity generator framework,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020, pp. 1–15.

[6] “UG: Ubiquity Generator framework,” http://ug.zib.de/.
[7] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch,

“ParaSCIP – a parallel extension of SCIP,” in Competence in High
Performance Computing 2010, C. Bischof, H.-G. Hegering, W. E. Nagel,
and G. Wittum, Eds. Springer, 2012, pp. 135–148.

[8] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler, “Fiberscip—a
shared memory parallelization of scip,” INFORMS Journal on
Computing, vol. 30, no. 1, pp. 11–30, 2018. [Online]. Available:
https://doi.org/10.1287/ijoc.2017.0762

[9] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Win-
kler, “Solving open MIP instances with ParaSCIP on supercomputers
using up to 80,000 cores,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, 2016, pp. 770–779.

[10] Y. Shinano, T. Berthold, and S. Heinz, “Paraxpress: an experimental
extension of the fico xpress-optimizer to solve hard mips on
supercomputers,” Optimization Methods and Software, vol. 33,
no. 3, pp. 530–539, 2018. [Online]. Available: https://doi.org/10.1080/
10556788.2018.1428602

[11] G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano, “SCIP-
Jack—a solver for STP and variants with parallelization extensions,”
Mathematical Programming Computation, vol. 9, no. 2, pp. 231–296,
2017.

[12] Y. Shinano, D. Rehfeldt, and T. Koch, “Building optimal steiner trees
on supercomputers by using up to 43,000 cores,” in Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research.
CPAIOR 2019, vol. 11494, 2019, pp. 529–539.

[13] Y. Shinano, D. Rehfeldt, and T. Gally, “An easy way to build parallel
state-of-the-art combinatorial optimization problem solvers: A com-
putational study on solving steiner tree problems and mixed integer
semidefinite programs by using ug[scip-*,*]-libraries,” in 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2019, pp. 530–541.

[14] D. Rehfeldt, Y. Shinano, and T. Koch, “Scip-jack: An exact high perfor-
mance solver for steiner tree problems in graphs and related problems,”
in Modeling, Simulation and Optimization of Complex Processes HPSC
2018, H. G. Bock, W. Jäger, E. Kostina, and H. X. Phu, Eds. Cham:
Springer International Publishing, 2021, pp. 201–223.

[15] K. Fujii, N. Ito, S. Kim, M. Kojima, Y. Shinano, and K.-C. Toh, “Solving
challenging large scale qaps,” ZIB, Takustr. 7, 14195 Berlin, Tech. Rep.
21-02, 2021.

[16] “SCIP Optimization Suite,” https://scipopt.org/#scipoptsuite.
[17] M. Ajtai, “Generating hard instances of lattice problems,” in Symposium

on Theory of Computing (STOC 1996). ACM, 1996, pp. 99–108.
[18] R. Kannan, “Minkowski’s convex body theorem and integer program-

ming,” Mathematics of operations research, vol. 12, no. 3, pp. 415–440,
1987.

[19] M. Schneider, N. Gama, P. Baumann, and L. Nobach, “SVP challenge
(2010),” URL: http://latticechallenge.org/svp-challenge.

[20] T. Teruya, K. Kashiwabara, and G. Hanaoka, “Fast lattice basis reduction
suitable for massive parallelization and its application to the shortest
vector problem,” in Public Key Cryptography (PKC 2018), ser. Lecture
Notes in Computer Science, vol. 10769. Springer, 2018, pp. 437–460.

http://dx.doi.org/10.1561/0400000074
http://ug.zib.de/
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1080/10556788.2018.1428602
https://scipopt.org/#scipoptsuite

[21] C. P. Schnorr, “Lattice reduction by random sampling and birthday
methods,” in Symposium on Theoretical Aspects of Computer Science
(STACS 2003), ser. Lecture Notes in Computer Science, vol. 2607.
Springer, 2003, pp. 145–156.

[22] L. Ducas, M. Stevens, and W. van Woerden, “Advanced lattice sieving
on gpus, with tensor cores,” IACR ePrint 2021/141, 2021.

[23] Ö. Dagdelen and M. Schneider, “Parallel enumeration of shortest lattice
vectors,” in Euro-Par 2010–Parallel Processing, ser. Lecture Notes in
Computer Science, vol. 6272. Springer, 2010, pp. 211–222.

[24] J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel,
“Parallel shortest lattice vector enumeration on graphics cards,” in
Progress in Cryptology–AFRICACRYPT 2010, ser. Lecture Notes in
Computer Science, vol. 6055. Springer, 2010, pp. 52–68.

[25] P.-C. Kuo, M. Schneider, Ö. Dagdelen, J. Reichelt, J. Buchmann, C.-M.
Cheng, and B.-Y. Yang, “Extreme enumeration on GPU and in clouds,”
in Cryptographic Hardware and Embedded Systems–CHES 2011, ser.
Lecture Notes in Computer Science, vol. 6917. Springer, 2011, pp.
176–191.

[26] M. Burger, C. Bischof, and J. Krämer, “p3Enum: A new parameterizable
and shared-memory parallelized shortest vector problem solver,” in
Computational Science–ICCS 2019, ser. Lecture Notes in Computer
Science, vol. 11540. Springer, 2019, pp. 535–542.

[27] P. Q. Nguyen, “Hermite’s constant and lattice algorithms,” in The LLL
Algorithm. Springer, 2009, pp. 19–69.

[28] M. Yasuda, “A survey of solving SVP algorithms and recent strate-
gies for solving the SVP challenge,” in International Symposium on
Mathematics, Quantum Theory, and Cryptography. Springer, 2021, pp.
189–207.

[29] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice enumeration using
extreme pruning,” in Advances in Cryptology–EUROCRYPT 2010, ser.
Lecture Notes in Computer Science, vol. 6110. Springer, 2010, pp.
257–278.

[30] L. Ducas, “Shortest vector from lattice sieving: A few dimensions for
free,” in Adavances in Cryptology–EUROCRYPT 2018, ser. Lecture
Notes in Computer Science, vol. 10820. Springer, 2018, pp. 125–145.

[31] D. Micciancio and P. Voulgaris, “Faster exponential time algorithms
for the shortest vector problem,” in Symposium on Discrete Algorithms
(SODA 2010). ACM-SIAM, 2010, pp. 1468–1480.

[32] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Mathematische Annalen, vol. 261, no. 4, pp.
515–534, 1982.

[33] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
programming, vol. 66, pp. 181–199, 1994.

[34] J. Yamaguchi and M. Yasuda, “Explicit formula for Gram-Schmidt
vectors in LLL with deep insertions and its applications,” in Number-
Theoretic Methods in Cryptology (NuTMiC 2017), ser. Lecture Notes in
Computer Science, vol. 10737. Springer, 2017, pp. 142–160.

[35] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” RFC 1950, May, Tech. Rep., 1996.

[36] L.-M. Munguı́a, G. Oxberry, D. Rajan, and Y. Shinano, “Parallel pips-
sbb: multi-level parallelism for stochastic mixed-integer programs,”
Computational Optimization and Applications, vol. 73, no. 2,
pp. 575–601, Jun 2019. [Online]. Available: https://doi.org/10.1007/
s10589-019-00074-0

https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/s10589-019-00074-0

	Introduction
	Lattice Problems
	Related Work
	Approximate-SVP solvers
	Exact-SVP solvers

	Lattice Algorithms
	Enumeration (ENUM)
	Sieve
	Basis reduction

	Design of CMAP-LAP
	Architecture of CMAP-LAP
	Instance Pool
	Task Pool
	Solver Pool
	Share-Data Pool
	Fully Checkpoint Functionality with Checkpoint Writer thread

	Implementation Technicalities
	Extendability
	Hybrid Parallelization
	MPI_ISend Communication

	Numerical Experiments
	Solving SVP with CMAP-LAP
	Information sharing
	Coordination of heterogeneous algorithms
	Scalability
	Stability with massive parallelization

	Conclusion and Future Work
	References

