
Building a Performance Model for Deep Learning
Recommendation Model Training on GPUs

Zhongyi Lin
Department of Elect. & Comp. Engr.

University of California, Davis
Davis, California

zhylin@ucdavis.edu

Louis Feng
Meta Platforms, Inc.

Menlo Park, California
lofe@meta.com

Ehsan K. Ardestani
Meta Platforms, Inc.

Menlo Park, California
ehsanardestani@meta.com

Jaewon Lee
Meta Platforms, Inc.

Menlo Park, California
jaewon@meta.com

John Lundell
Meta Platforms, Inc.

Menlo Park, California
jlundell@meta.com

Changkyu Kim
Meta Platforms, Inc.

Menlo Park, California
ckkim@meta.com

Arun Kejariwal
Meta Platforms, Inc.

Menlo Park, California
akejariwal@meta.com

John D. Owens
Department of Elect. & Comp. Engr.

University of California, Davis
Davis, California

jowens@ucdavis.edu

Abstract—We devise a performance model for GPU training of
Deep Learning Recommendation Models (DLRM), whose GPU
utilization is low compared to other well-optimized CV and NLP
models. We show that both the device active time (the sum of
kernel runtimes) but also the device idle time are important
components of the overall device time. We therefore tackle them
separately by (1) flexibly adopting heuristic-based and ML-based
kernel performance models for operators that dominate the
device active time, and (2) categorizing operator overheads into
five types to determine quantitatively their contribution to the
device active time. Combining these two parts, we propose a
critical-path-based algorithm to predict the per-batch training
time of DLRM by traversing its execution graph. We achieve less
than 10% geometric mean average error (GMAE) in all kernel
performance modeling, and 4.61% and 7.96% geomean errors
for GPU active time and overall E2E per-batch training time pre-
diction with overheads from individual workloads, respectively.
A slight increase of 2.19% incurred in E2E prediction error
with shared overheads across workloads suggests the feasibility
of using shared overheads in large-scale prediction. We show that
our general performance model not only achieves low prediction
error on DLRM, which has highly customized configurations
and is dominated by multiple factors but also yields comparable
accuracy on other compute-bound ML models targeted by most
previous methods. Using this performance model and graph-
level data and task dependency analysis, we show our system
can provide more general model-system co-design than previous
methods.

Index Terms—DLRM, GPU, performance modeling, machine
learning.

I. INTRODUCTION

Recommendation models (RMs) have been widely deployed
across various industries to improve user experiences and
engagements in products and services. Examples include
search [1], shopping [2], media consumption [3], [4], and
social networking [5]. Driven by ever-increasing demands,
training these models for better prediction rates has become
both data- and computationally intensive by involving training
data with hundreds of billions of samples, model sizes of
up to multiple TBs [6], and multiple (often hundreds of)

512 102420484096 512 102420484096 512 102420484096 16 32 64 128 16 32 64 128 64 128 256 512
Batch Size

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

DLRM_default DLRM_MLPerf DLRM_DDP resnet50 inception_v3 Transformer

Fig. 1. GPU utilization of per-batch training time of six DL models on a
NVIDIA Tesla V100 GPU. Batch sizes shown here are those commonly used
in training. RMs such as DLRM* have substantially more device idle time than
other models. Whereas other models can be adequately modeled by summing
kernel time, modeling RMs is a more complex problem.

hosts and devices [7] for distributed training. This situation
incurs high resource demands for development, debugging, and
optimization, which significantly affects the productivity of
ML engineers and operation cost of data centers. Therefore, a
performance model that accurately predicts an RM’s training
performance (e.g., speed, memory usage, etc.) based on its
configurations (e.g., batch size, data sharding, number of layers,
etc.) is very useful. It removes dependencies on hardware for
some tasks and relieves these resource burdens. The flexibility
to get performance metrics for varying inputs and configurations
helps researchers answer what-if questions, identify bottlenecks,
and better meet design constraints. Example questions that
performance models can help to answer include but are not
limited to: 1) how does changing batch size and/or number
of parameters impact performance and memory constraints;
2) how much performance can be gained with new GPUs;
3) can optimizations such as operator (op) fusion improve
performance; 4) how to improve embedding table sharding
load balance, etc. However, building such a performance model
faces three major challenges:

• Models with lower GPU utilization are difficult to model.
We quantify “GPU utilization” as the ratio of GPU
active time (i.e., when kernels for compute or data
transfer are running on the device) over total training

ar
X

iv
:2

20
1.

07
82

1v
2

 [
cs

.L
G

]
 1

6
N

ov
 2

02
2

time per batch.1Figure 1 shows that the GPU utilizations
of some vision (CV) and natural language processing
(NLP) models like ResNet [8] and Transformer [9] are
close to 100%, whereas that of RMs (with DLRM [10]
as an example) are much lower. While end-to-end (E2E)
runtime of workloads with high GPU utilization can be
accurately modeled by simply adding their constituent
kernel runtimes, the same method fails for workloads
with lower GPU utilization like RMs.

• The combination of GPU asynchronous execution with
task/data dependencies makes it difficult to estimate the
contribution of each operator’s device kernel time and
host-side overhead to the per-batch training time on the
device. Previous approaches focused on op-level execution
times did not account for these complexities, missing
opportunities for a more general and accurate approach.

• Finally, an RM comprises a broader range of operators
than convolution-dominated CNNs and matrix-multiply-
dominated Transformers. While simple models with one
kernel performance model may suffice for these simpler
cases, RMs require more kernel performance models to
characterize their behavior.

In summary, previous performance models for DL workloads
were not accurate enough to model DLRM and by extension
other complex workloads because they did not address low-
GPU-utilization, asynchronous, or many-complex-operator
workloads.

Our research2 addresses these complexities by proposing a
new performance model for the GPU training of DLRM. Once
built, this performance model can provide high-confidence
metrics to answer questions proposed above and beyond without
the need to profile new workloads on GPUs. Here, we focus
on a single-GPU configuration in the context of the above
challenges, leaving multi-GPU for future work. We begin by
analyzing the device execution time of DLRM to identify
dominating operators and kernels. Then, using heuristic or ML
approaches, we build performance models for these kernels
for a wide range of input configurations, and achieve less than
10% geometric mean average error (GMAE) for each of them
in predicting kernel execution time. Beyond accurate kernel
models, we also must incorporate host-side overheads into our
model. This analysis is a key insight of our work. We categorize
host-side overheads into five types and experimentally show
that these overheads are consistent across different ops. Using
our runtime observer inside PyTorch, we record DLRM’s
execution graph for its inputs, outputs, and data dependencies.
Combining the above components and the ML model execution
graph, we construct a critical-path-based E2E performance
model for DLRM training on GPUs. This method achieved
4.61% and 7.96% geomean errors for per-batch GPU active
time and training latency, respectively, compared to actual
measured time collected by running the DLRM benchmark.

1Slightly different from nvidia-smi’s definition of GPU utilization (measured
over a sample period between 1 and 1/6 second). Notice that “GPU utilization”
here is a temporal metric and should be distinguished from hardware utilization.

2Code is open-sourced at https://github.com/owensgroup/ml perf model.

We demonstrate that using shared overheads across workloads
only incurs a slight 2.19% prediction error increase compared
to using individual workloads’ overheads. This means a user
can maintain a shared database for large-scale predictions for
numerous workloads. We compared our performance model
with several existing performance models on representative CV
and NLP models beyond DLRM. The results show that our
method is general and works well across a variety of workloads
on different generations of GPUs. We also discuss potential use
cases of our performance model at the end of the paper, where
we demonstrate the model’s ability to provide insights into
the RM workload characterization and assist practical model-
system co-design with the support of the execution graph. Our
contributions in this research include:

• For predicting GPU training time of DL models, we show
our critical-path-based E2E performance model is a more
generalized solution than previous methods that only focus
on the device active time, especially those with low GPU
utilization such as DLRM.

• We separately predict kernel time and GPU idle time and
show that compared to op-based methods, this separation
facilitates performance modeling by sharing kernel per-
formance models across ops that call the same type of
kernels and thus reducing the cost of collecting metrics
from microbenchmarks. The principles and techniques we
used to model kernels can model other kernels that are
not included in DLRM as well.

• With our specialized model execution graph observer that
captures data dependencies among ops, we provide more
flexible simulation and performance modeling options
that together assist model-system co-design than previous
methods do. Without actually running the computation on
GPUs, users can model performance impacts optimization
of DL models, such as changing batch size, hardware,
operator fusion, reordering, and parallelization, by simply
transforming and changing the model execution graph.

II. RELATED WORK

A. Recommendation Models and DLRM

RMs have evolved from simple regression-based predictive
models [11], collaborative filtering [12], and neighborhood
methods [13] to deep-learning-based RMs [10], [14]–[17].
Some deep learning models, such as DIEN [18], also consider
sequences of users’ actions. The key characteristics that
differentiate RMs from CNNs and NLPs are a mixture of
sparse and dense computations, large training data volumes,
and large, potentially unbounded model sizes.

We choose to use DLRM implemented in PyTorch as a
modern representative workload in our analysis. The reasons
are: 1) DLRM is a typical example of ML workloads that
are highly customizable and at the risk of having low GPU
utilization; 2) DLRM forms a common and effective paradigm
of using embedding lookup and MLP to process sparse and
dense features respectively that generalize to RM design.
Figure 2 depicts DLRM’s high-level model architecture. In

2

https://github.com/owensgroup/ml_perf_model

Top Multilayer Perceptron (MLP)

Feature Interaction

Bottom Multilayer
Perceptron (MLP)

Embedding
Lookup

Embedding
Lookup

...

...
Dense

Features
Sparse

Feature
Sparse

Feature

Inputs

Fig. 2. The high-level model architecture of DLRM. The inputs (usually user
and product data in practice) can be dense and sparse (categorical) features.
Each embedding table contains up to millions of embedding vectors and
hundreds of values per vector, and because of which they are often sharded
across multiple devices in the distributed training.

contrast to embedding table lookups, which are memory-
intensive, the multilayer perceptron (MLP) operations are
compute-intensive, while any or both of them can dominate
the execution time. Besides, the feature interaction is bounded
by communication if the model is trained on a multi-GPU
platform, and the inputs might be memory-capacity-bound
if the training data size is large. Compared to other kinds
of models, including CNNs and NLPs, DLRM is potentially
bounded by these multiple factors, and as a result building a
performance model for it is technically more challenging.

B. GPU operator and kernel performance models

Op-level and kernel-level performance models usually fall
into two categories. Heuristic models (e.g., the roofline
model [19]) estimate the kernel execution time by estimating
memory traffic, floating point operations, etc. ML-based models
are trained with benchmark data of kernel execution to predict
kernel time for any input size.

a) Models for GEMM-based kernels: With the current
PyTorch release, MLP layers (intrinsically matrix multiplica-
tion) rely on cuBLAS and its GEMM-based kernels as the
low-level implementation on NVIDIA GPUs. Either using the
roofline model or designing a heuristic performance model for
these kernels turns out to be infeasible because of not only
the lack of source code, but also the special tile quantization
and wave quantization effects of cuBLAS [20]. In existing
research (e.g., Lym et al. [21]) on heuristic performance model
design for proprietary libraries like cuDNN, many parameters
are still opaque or extremely difficult to measure. Therefore,
rather than heuristic ones, an ML-based performance model
is more suitable in this case. Previous work [22], [23] shows
that either a CNN or MLP model is sufficient to capture the
performance features of the GEMM operation. In our work,
we use MLP to construct the performance model for cuBLAS
kernels called by PyTorch ops like addmm, bmm, linear, etc.,
which are all GEMM-based.

C. Model-level performance modeling

Previous work [22]–[25], [27], [28] mainly focuses on
CNNs and/or NLP models, which are primarily dominated
by compute-bound convolution or GEMM ops and have high

TABLE I. Comparison of our work with previous ones. E2E prediction of
Zhu et al. is marked as ‘Limited’ as it only estimates the optimization efficacy

on certain kernels instead of making predictions for every single kernel.

Work Kernel
Pred.

Idle Time
Pred.

E2E
Pred.

Target Model
Types

Justus et al. [24] 3 7 3 CNNs
Pei et al. [25] 3 7 3 CNNs
Liao et al. [22] 3 7 3 CNNs
Zhu et al. [26] 7 7 Limited Multiple
Yu et al. [23] 3 7 3 Multiple
Rajagopal et al. [27] 7 7 3 CNNs
Ours 3 3 3 Multiple+RMs

GPU utilization. In contrast, our work targets a more complex
model (DLRM) that can be highly customized with multiple
dominating factors, and handles DLRM’s substantial device
idle time in our E2E training time prediction. Daydream [26]
predicts model runtime after certain optimizations by simulating
execution based on the kernel-task dependency graph. This
work has a similar approach to ours in addressing the timing
of both CPU and GPU threads; however, it lacks the ability
to directly predict individual kernel runtime. This limits its
capability in predictions for varying input and configuration
changes without recollecting performance data using hardware.
Separately, Habitat [23] presented a performance predictor
using MLP models trained with kernel metrics. It showed
that combining Habitat and Daydream resulted in a higher
average error of 16.1% than Daydream alone. We reduce
prediction error compared to this previous work by actually
predicting the kernel runtime and overheads based on a finer
granularity of instrumentation. In addition, Daydream’s kernel
dependency graph does not capture data dependencies and
thus is limited in discovering and predicting the efficacy of
other optimizations such as concurrent kernel execution. In our
work, data dependencies are well-captured by the execution
graph and therefore we can accurately model a wider variety of
optimizations, such as performance-model co-design. Table I
summarizes different features implemented in previous work
and ours. To the best of our knowledge, our work is the first that
can successfully target the performance modeling complexities
characteristic of complex models like DLRM.

III. METHODOLOGY

Typically, the per-batch training time is estimated by sum-
ming the execution time of each op in a certain way. Op
execution time can be either measured at the host or the device
as the sum of kernel execution time. Since GPU kernels are
scheduled asynchronously, it is hard to accurately predict an
op’s host time from the computation it conducts, and thus the
op’s execution on the device is usually the time to be measured.
For example, CNNs usually resemble the right-hand-side case
in Figure 4: ops are mostly convolution and GPU compute-
bound, and therefore they usually have high GPU utilization.
Previous studies that have primarily targeted CNNs can safely
make the prediction by summing the individual kernel time and
the effects of omitting CPU overheads are minimal. However,
this method is sometimes not sufficient to accurately model
the E2E execution time, if the model’s GPU utilization is

3

DLRM Model Heuristic/ML-based

Kernel Perf Models

Extract

Execution Graph

Microbenchmark

Data

Trace Analysis Microbenchmark
Design/Train Perf

Models

End to End Perf

Estimator

Model Execution

Graph

Op Overhead Stats
Overhead

Analysis

Per-batch training

time prediction

Dominating

kernels

Prediction track

Analyisis track

Fig. 3. An overview of our prediction pipeline. We begin with DLRM models taken as inputs. These are sent through the Analysis Track for trace analysis,
microbenchmark data collection, kernel performance model design/training, and op overhead analysis. Armed with these analyses, subsequent DLRM models
simply go through the Prediction Track, where their execution graphs are extracted and their performance is predicted. This prediction pipeline is designed to
be modular so that building blocks of the pipeline marked with blue cylinders can be reused and enriched for modeling tasks for workloads beyond DLRM.

low. As noted in Section I, DLRM, with its varying sizes
and composition of ops, could possibly resemble either the
left or right cases in Figure 4 and have as low as 40% GPU
utilization. This means the per-batch training time prediction
error will be 60% by following the same method, even if
the kernel prediction accuracy is 100%. In practice, execution
inefficiencies and inherent model design could both be the
cause of low GPU utilization. These complexities necessitate
a better methodology of building the performance model for
DLRM as well as other models with low GPU utilization.

CPU Op1

Kernel1GPU

Op2

Kernel2

Op1

Kernel1

Op2

Kernel2

Fig. 4. Two cases for dependent ops. The small rectangles below the (CPU)
ops indicate the launch of their GPU kernels. The left trace is CPU-bound
and the right one is GPU-bound. In either case, summing the device active
time of the two ops does not properly represent the total execution time, in
part because host-side overheads are not considered.

To address this challenge, we devise a performance modeling
pipeline that separates the prediction of device active time and
idle time, and integrates both parts with a critical-path-based
algorithm that tracks the execution time on both the CPU
and GPU. Such a separation brings two major advantages in
building kernel performance models:

• Ops (e.g., addmm/bmm vs. {Addmm/Bmm}Backward) that
have the same type of kernel calls (i.e., cuBLAS GEMM
kernels) can share the same performance model. This
saves us a large amount of time for microbenchmarking
and training of ML-based kernel performance models.

• Although ML-based performance models can predict
kernel time and op overheads as a whole for each op,
heuristic models solely based on an op’s mathematical
expression are not able to address its overheads. Separating
them allows us to flexibly choose between these two
approaches, while the overheads are handled separately.

Figure 3 depicts an overview of the prediction pipeline.
Although we focus on modeling DLRM’s performance in this
section, it should be noted that this performance model can be
handily extended to model ML workloads beyond DLRM by
adding new kernel performance models and operator overheads
information to the pipeline as assets. Typically, our performance
model runs fast and usually finishes a single E2E prediction

in a few seconds. The remainder of this section explains how
each building block of the pipeline works in detail.

A. Per-batch Training Time Breakdown

To understand the device active time and identify dominating
ops and kernels, we perform a breakdown of per-batch training
time through analyzing PyTorch profiler trace files, in which the
metadata of all events, i.e., calls to operators, is flattened. We
construct an event tree to represent the calling stack of each op
so that the device execution time of each kernel is attributed to
the corresponding op, and thus we know the dominating kernels
by knowing the dominating ops. The device time breakdown of
three DLRM models (configurations shown later) is presented
in Figure 5. We observe that:

• Just as we noted in Section I, the device-side idle time
forms a non-negligible proportion of the total device time
because the host-side op overheads and data dependencies
implicitly contribute to it by blocking the scheduling of
GPU kernels. This demonstrates the necessity of analyzing
kernel execution time and overheads separately.

• There is no single op that dominates the device active time
of the model. Ops that jointly dominate include compute-
bound ops addmm and bmm, the memory-bound op
embedding lookup, and communication-bound ops concat
and to (memory copy), as well as their counterparts in
the backward pass.

• Trivial/element-wise ops such as relu and MseLoss sum to
around 5% of the E2E time. This means they should not
be omitted in order to achieve high prediction accuracy.

Furthermore, we perform an in-depth analysis on the kernel
composition of the dominating ops. The analysis reveals that
most of them are composed of or dominated by one single ker-
nel. Exceptions includeAddmmBackward and BmmBackward0
that are dominated by two GEMM kernels, and Optimizer’s
forward and backward ops that are both dominated by a series
of element-wise kernels. Ops in the last category are handled
by predicting their sum of kernel time as a whole, possibly
ignoring minor kernels that do not appreciably impact the
run time. We conclude that there are six major kernels that
dominate the per-batch device active time for DLRM training:
sparse embedding lookup kernels (both forward/backward) for
embedding table lookup, GEMM kernels for bottom and top
MLP, and four memory kernels including concatenation, data

4

copy, tensor permutation, and IndexBackward (low triangular
matrix extraction and flatten in feature interaction).

B. Microbenchmark and Performance Models for Dominating
Kernels in DLRM

We create microbenchmarks for seven kernels in total based
on the results we get from the breakdown: the six mentioned
above plus the trivial IndexForward that partners with In-
dexBackward. We run the microbenchmarks that sweep through
a wide range of (up to 30k) tensor shapes and arguments for
each target kernel and take days to run. Specifically, since
all GEMM-related ops are dominated by one or two GEMM
kernel calls, we skip benchmarking all these ops and share the
GEMM kernel benchmark data for their performance modeling.
We also discover that the only one type of tensor permutations
that occurs in DLRM is the batched matrix transpose, i.e.,
permutation of the second and third axes of a 3D tensor, and
thus it becomes the only type of permutation we benchmark.
We first execute the corresponding PyTorch operators on one
single GPU for 5 iterations as warm-up, then use NVIDIA’s
nvprof profiler to extract the name of the dominating kernels,
and then solely benchmark these kernels for 30 iterations to
extract their execution time. Default GPU application clocks are
applied, and the CPUs’ turbo boost is turned off to guarantee
both the accuracy and stability of the benchmark.

With this data, we are able to develop kernel performance
models for each of the dominating kernels, as it is impossible
to apply one single such model to accurately predict the kernel
execution time for all dominating kernels we identify. These
performance models are designed in two different ways:

1) For kernels without source code access, such as cuBLAS,
PyTorch JIT generated kernels, etc., we predict their
execution time with ML-based performance models
trained and verified with microbenchmark data.

2) For kernels that are either accessible or trivial, i.e.,
element-wise, we predict their execution time by either
using the roofline model or designing heuristic perfor-
mance models with memory and throughput estimation
through code analysis. As such, the microbenchmark data
is solely used to verify the prediction accuracy.

0% 20% 40% 60% 80% 100%

DLRM_default

0% 20% 40% 60% 80% 100%

DLRM_MLPerf

0% 20% 40% 60% 80% 100%

DLRM_DDP

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

LookupFunctionBackward
LookupFunction
aten::to
aten::linear
BmmBackward0

IndexBackward
Optimizer.step
Optimizer.zero_grad
AddmmBackward

aten::bmm
aten::relu
ReluBackward0
aten::add

aten::cat
aten::index
MseLossBackward
aten::mse_loss

SliceBackward
aten::sum
others
Idle

Fig. 5. Device time breakdown of three DLRM models with a batch-size
of 2048 on a V100 GPU, with profiler overheads excluded. Notice that
with different configurations, DLRM is dominated by different kernels, e.g.,
embedding lookup forward and backward dominates the first and third cases,
whereas in the second case it appears to be less important, giving the domination
in to IndexBackward and FC.

The following subsections elaborate how these kernel per-
formance models are developed. Our performance models are
highly extensible, as the principles and techniques we introduce
(code analysis, ML-based kernel performance model training,
etc) also apply to any new ops not covered by this work.

1) Heuristic Performance Models:
a) Characterizing the Embedding Lookup Kernels:

The embedding lookup layers are intrinsically SpMM opera-
tions that map categorical features to dense representations.
Therefore, the procedure that we describe here for modeling
embedding lookup kernels also apply to other kernels of a
similar type with irregular memory access patterns and/or is
possibly bound by GPU global memory bandwidth. Given a
matrix of vector of weights A ∈ Rm×t that contains t multi-hot
vectors of length m and an embedding table (weight matrix)
W ∈ RE×d, the embedding lookup operation can be written
as S = ATW . Since a real industrial-scale DLRM model
usually contains multiple embedding tables, we can simply
concatenate these embedding tables, and pack and batch the
input indices into new input tensors, such that the embedding
lookup operation over multiple embedding tables can be done
in one pass. We integrate the implementation of this batched
embedding table lookup algorithm (with SGD for the backward
case) from Tulloch [29] into DLRM. The following analysis is
based on the code of this implementation. Important parameters
of the implementation include B as the batch size, E as the
number of embeddings per table, T as the number of tables,
L as the number of lookup operations to produce one dense
vector, and D as the embedding vector length. Note that we
extend the definition of “warp” for simplicity and refer to a
group of threads that all have the same blockIdx.x/y/z and
threadIdx.y/z as a WARP. In practice, this typically refers to
groups of threads of sizes 32, 64, or 128.

We spot that the bounding factor of this op is the memory
traffic caused by looking up embedding vectors from the weight
tensor. In practice, the value of E can range from a few
hundreds to thousands of millions, while L is much smaller,
i.e., up to one hundred. We can expect that embedding vectors
are more frequently fetched from DRAM than from L2 cache.
Therefore, we approximate the execution time of the forward
kernel by its DRAM access time, which is given by

tr table offsetsw = 32 bytes
tr offsetsw = 64 bytes

tr indicesw = d4× L/32e × 32 bytes
tr weightsw = tr outputsw = d4×D/32e × 32 bytes

t =
DRAM traffic

peak DRAM BW

=
B × T × (sum of all above)

peak DRAM BW
.

The subscript w denotes that these are per-WARP DRAM
traffic; B×T is the total number of WARPs. For the backward
kernel, we simply replace the per-WARP weights traffic by

tr weightsw = d2× 4× L×D/32e × 32 bytes,

5

and follow exactly the same other equations.
This method can be further enhanced by estimating the L2

cache hit rate of accessing the embedding lookup table and
separating the total memory traffic into DRAM traffic and L2
traffic. As one thread WARP is responsible for computing one
vector in the output tensor, assuming only one CTA resides
on each streaming-multiprocessor (SM) on the GPU at a time,
the number of embedding lookup tables whose (at least part
of) data simultaneously reside in L2 cache is given by

num tables = rows per block× (#SM)/B,

where rows per block is a kernel argument specifying how
many output vectors are computed per CTA. With the L2 cache
size of the GPU known to us, we can calculate the number of
rows per table that resides in the L2 cache as

avg cached rows per table = min

(
L2 cache size

(num tables)×D
,E

)
,

where the second term covers the case when an embedding
lookup table with E rows is small enough to reside in the
L2 cache. Therefore, the hit rate of the L2 cache, i.e., the
probability that the accesses to a total of L embedding lookup
table row vectors among all E vectors, can be estimated by

p =

(avg cached rows per table
L

)(
E
L

) .

Notice that the table offsets and offsets tensors are relatively
very small and frequently accessed, and thus we assume they
always stay in L2. Therefore, we construct the enhanced
performance model as:

trL2 = tr table offsetsw + tr offsetsw + p× tr weightsw
trDRAM = tr indicesw + tr outputsw + (1− p)× tr weightsw

t =
DRAM traffic

peak DRAM BW
+

L2 traffic
peak L2 BW

= B × T ×
(

trDRAM

peak DRAM BW
+

trL2

peak L2 BW

)
.

b) Characterizing Element-wise Kernels: For memory
kernels of ops including concat, memcpy, etc. that involve
intra-GPU or CPU-GPU data transfer, as well as element-wise
kernels of ops like ReLU, sigmoid, etc., it is straightforward
to estimate their execution time by applying the roofline
model [19]:

t = max(t compute, t memory)

= max

(
FLOP

peak throughput
,

bytesread + byteswrite

peak BW

)
.

We use the maximum measured bandwidth of the benchmark
as the corrected peak bandwidth in calculation.

2) ML-based Performance Models: Dominating kernels of
DLRM that require ML-based performance models include
GEMM, transpose, and the forward and backward kernels of
tril, for their source code being either non-accessible or too
complex to model heuristically. Specifically, we find that it is
non-trivial to model the performance of transpose ops like T or

permute, because technically the underlying implementations of
tensor transpose might differ significantly [30], [31], yet these
implementations are opaque to users in PyTorch since the kernel
is JIT-generated. Therefore, we adopt the ML performance
modeling approach for transpose kernels.

TABLE II. MLP performance model search space.

Hyperparameter Range

num layers [3,4,5,6,7]
num neurons per layer [128,256,512,1024]
optimizer [Adam, SGD]
learning rate [1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2]

For each kernel in this category, we train a MLP model that
takes the kernel’s input dimensions as the input features and
predict the kernel execution time as the output. We conduct a
grid search over a universal search space defined in Table II
for the best configuration by training a series of MLP models
over the microbenchmark data and keeping the one with the
lowest prediction error. The loss function for training is Mean
Square Error (MSE). As the input sizes of the benchmark are
chosen in an almost exponential scale, e.g., 32, 64, 128, etc.,
we preprocess the dataset by taking logarithm values of both
the sizes and the results. We also scale the learning rate by 10
if SGD is chosen as the optimizer. Typically, obtaining such
an MLP model for one kernel through grid search takes a few
hours of training on one single GPU.

C. Device Idle Time Analysis

Device idle time, as we show in Figure 5, is an important
part of the total device execution time. We predict device idle
time based on overheads obtained by analyzing the trace files
generated by profilers. In a single-GPU context, the main source
of device idle time is the host overheads that are not hidden.
There are two assumptions we make for these overheads:

• Model-independence: Same types of overheads of the
same op have the same stats on the same machine.

• Size-independence: Overheads do not depend on in-
put/output tensor sizes of ops.

That means overheads are supposed to be only dependent
to the training platform (i.e., CPUs) configurations. Based on
these two assumptions, we analyze the host-side overheads and
categorize them into five types as shown in Figure 6, including:

• Type 1: Overhead between two top-level PyTorch op calls.
• Type 2: Overhead before an op’s first kernel launch begins.
• Type 3: Overhead after an op’s last kernel launch ends.
• Type 4: Execution time of CUDA runtime functions, e.g.,

cudaLaunchKernel, cudaMemcpyAsync, etc.
• Type 5: Overheads between two kernel launches.
Some of the overheads, namely T2, T3, and T5, should be

independent of the input parameters of the op, as we assume all
the parameter-defined operations, mainly the computation and
data movements, are offloaded to the device. By analyzing 100-
iteration trace files of the models we choose, we characterize
each type of overheads and store their mean values in a JSON
file to be used in the E2E performance model. To guarantee
the accuracy, profiler overheads of CPU and GPU events are

6

CPU

GPU

Op1 Op2

Op1 1

Kernel1 1

Op1 2

Kernel1 2

Op1 3

Kernel1 3

Op2 1

Kernel2 1

T1T2 T3T4 T4 T4T5 T5
Fig. 6. Host-side overhead types. The labels T1–T5 indicate the five overhead
types introduced in Section III-C. Each op has one T2 and one T3 overhead,
and at least one T4 overhead if it has device kernel calls.

excluded by subtracting them from the execution time of each
event. In practice we use 4 µs as indicated in the PyTorch
source code to model the profiler overheads of GPU events,
while that of CPU events vary from platform to platform, and
we find that an empirical value of 2 µs is a good choice.

D. E2E GPU Training Performance Model

One challenge of building an end to end performance model
of an ML training workload is to have sufficient information
about its run-time execution. Early implementations of ML
frameworks such as Caffe [32] define an ML model as a
static graph in the protobuf format. In recent years, ML
frameworks such as TensorFlow [33] and PyTorch [34] have
closely integrated programming language bindings to support
dynamic ML model graphs characterized by conditionals and
loops. Furthermore, they support eager mode execution. With
the flexibility of these frameworks, the ML model definition is
essentially a program and requires execution to fully capture
the run-time characteristics. We implemented an execution
graph observer inside PyTorch that allows us to extract both
the operators executed and their inputs and outputs data
dependencies during the model training process. Once the ML
model’s run-time execution is captured, the execution graph
can be reconfigured to use different data inputs or hardware
devices. For example, we may collect the execution graph
while running on CPU and apply our performance models to
the execution graph to predict the workload’s performance on
the GPU or other types of hardware.

We devise a critical-path-based Algorithm 1 that integrates
the predicted kernel time and overheads to predict the E2E
training time of DLRM. We identify the critical path of
execution by keeping track of both the execution time on
CPU and GPU. For each operator, we first add T1 and T2 to
the CPU time as a prerequisite. If the op has kernel calls, we
set the start time of each kernel based on whether the CPU or
GPU time is the critical path (line 11), so that the device idle
time caused by the host overheads is counted. Each kernel time
is then added to the GPU time, while T4 and T5 are added
to the CPU time. T3 is added after all kernels are processed.
Eventually, we take the maximum of CPU and GPU time as
the critical-path and thus the final E2E predicted time.

IV. RESULTS AND ANALYSIS

We evaluate our benchmark and performance models on
three different NVIDIA GPUs—Tesla V100, Tesla P100, and
GeForce GTX TITAN Xp—with CUDA 11.3 and Python 3.9.
We conduct the E2E tests on three open-sourced DLRM models

Algorithm 1 E2E GPU Training Performance Model.
1: Input: Execution graph G of a DLRM model; Kernel

performance models {M}; Overheads Ov.
2: Output: Predicted per-batch training time T .
3: Initialize cpu time = 0, gpu time = 0
4: for each op in G do
5: Look up T1, T2, T3, T4, T5 from Ov for op
6: cpu time += T1
7: if op has kernel calls then
8: cpu time += T2
9: for each kernel k op calls do

10: Predict kernel time Tk with the corresponding
performance model picked from {M}

11: gpu time = max(gpu time + 1, cpu time +
T4/2) + Tk

12: cpu time += T4
13: if k is not the last kernel then
14: cpu time += T5
15: end if
16: end for
17: cpu time += T3
18: else
19: cpu time += T5
20: end if
21: end for
22: T = max(gpu time, cpu time)

that can be accessed in Meta’s DLRM repo on Github [35]. We
name them DLRM default, DLRM MLPerf, and DLRM DDP,
and show their configurations in Table III. To launch the training
of the DLRM MLPerf model, we use the Kaggle Criteo dataset
as the training dataset, and change the embedding table sparse
feature size of DLRM MLPerf from 128 to 32 to allow it to fit
into the memory of our TITAN Xp and P100. We also use the
code repository of Konstantinidis et al. [36] to benchmark the
GPU hardware parameters, e.g., FLOPS, DRAM bandwidth,
etc., that are needed by the heuristic performance models.

TABLE III. DLRM model configurations

DLRM default DLRM MLPerf DLRM DDP

Bot MLP 512-512-64 13-512-256-128 128-128-128-128
EL Tables 8 26 8
Rows 1000000 Up to 14M 80000
EL Dim 64 128 128
Top MLP 1024-1024-1024-1 1024-1024-512-256-1 512-512-512-256-1

A. Performance Models for Dominating Kernels in DLRM

In Table IV we can see that on all types of GPU, our
plain performance model for batched embedding table lookup
achieves a varying yet low error rate for all table sizes and a
stable and lower error rate for big table sizes (E > 100k). This
is because when the lookup tables are small, the L2 cache can
capture substantial locality, and thus our assumption that lookup
traffic comes from DRAM is no longer valid. However, with
our enhanced performance model, we successfully reduce and
stabilize the error rate for all table sizes while still maintaining a
lower error rate for big table sizes. Thus we adopt the enhanced

7

TABLE IV. Execution time prediction error for each of the dominating kernels. Abbreviation examples: EL (embedding lookup), GEMM (fully connected and
interaction layers), memcpy (memory copy from host to device), concat (concatenation), tril (lower triangular extraction and flatten), F (forward), B

(backward), H (with hit rate estimation for EL), L (large size, average embedding table size greater than 100000).

Approach GPU V100 TITAN Xp P100
Kernel GMAE mean std GMAE mean std GMAE mean std

Heuristic

EL-F 11.46% 35.92% 56.81% 12.81% 34.05% 38.92% 8.63% 33.19% 54.72%
EL-FL 6.93% 11.22% 8.96% 7.54% 16.76% 16.01% 2.89% 5.52% 6.26%
EL-FH 9.27% 16.73% 16.39% 11.88% 25.44% 26.04% 6.42% 13.06% 14.81%

EL-FHL 7.85% 12.68% 10.02% 8.84% 18.20% 16.68% 3.84% 7.02% 7.08%
EL-B 9.53% 34.39% 60.91% 8.31% 38.62% 65.77% 12.49% 35.26% 62.70%

EL-BL 5.27% 5.94% 2.29% 2.38% 2.95% 1.61% 9.88% 10.13% 2.37%
EL-BH 7.39% 13.37% 15.01% 5.57% 15.16% 23.99% 8.42% 12.59% 12.12%

EL-BHL 5.69% 6.24% 2.28% 2.55% 3.21% 1.68% 10.19% 10.42% 2.33%

concat 5.34% 11.45% 14.76% 8.17% 11.48% 9.08% 3.30% 6.54% 12.63%

memcpy 0.57% 0.96% 2.46% 7.05% 13.87% 17.45% 5.10% 7.95% 8.28%

ML-based

GEMM 5.80% 10.00% 10.33% 8.92% 14.24% 11.83% 7.59% 12.30% 10.39%

transpose 2.95% 5.47% 6.71% 5.75% 10.13% 9.67% 3.35% 5.92% 6.84%

tril-F 2.13% 3.67% 3.81% 3.23% 6.54% 8.17% 3.71% 6.74% 8.31%
tril-B 3.67% 7.35% 9.40% 3.08% 6.69% 9.30% 2.71% 4.76% 4.51%

model in our E2E analysis. Except for embedding lookup, we
also achieve decent (i.e., less than 10%) GMAE errors on
both ML-based models and other heuristic models for all other
kernels. The errors of our kernel performance models correlate
across all three different GPU devices.

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096
Batch Size

0

2

4

6

8

10

12

14

Ti
m

e
(u

s) Overall Mean

DLRM_default
DLRM_MLPerf
DLRM_DDP

Fig. 7. T1 overhead mean and std of all models and batch sizes on V100.

B. Overheads Analysis

We perform analysis on overheads extracted from collected
traces of models’ E2E execution. We remove per-type outliers
outside whiskers (Q1− 1.5IQR, Q3 + 1.5IQR) for each indi-
vidual workloads. The reason we do not conduct an op-level
microbenchmark for overheads is because it hardly simulates
the overhead behaviors in actual E2E execution. Fig. 7 and 8
show the statistics of T1 and T2/3/5 overheads respectively.
We omit T4 here as we use a value of 10 µs to approximate
all the CUDA runtime functions. We see that the means of
T1 of different models and batch sizes are close to each other
around 8 µs. With different overall mean values, the same
conclusion holds for all comparison shown in Fig. 8. From
these two figures, no trends of model types or tensor sizes
(represented by the batch size while treating all ops per E2E run
as an ensemble) being able to affect the overhead statistics are
observed. Although this is not a strict mathematical proof the
model/size-independence, as we only need a simple estimation
for the overheads to fill the gap between device active time

and per-iteration time, we argue that it is safe to use the mean
values of overhead per type per workload in E2E prediction.

C. E2E GPU Training Performance Model for DLRM and
More DL Models

We evaluate our E2E prediction on the three DLRM models
on three GPUs and show the results in Table V and Figure 9.
The baseline we use (“kernel only” in Figure 9) is the
E2E training time prediction error by summing up solely
the predicted kernel execution time without the modeled
overheads i.e. GPU active time. We predict the E2E training
time with our proposed algorithm. Specifically, “E2E” means
to predict E2E time with overheads from individual workloads,
while “shared E2E” means to predict with shared overheads
aggregated across the workloads., i.e., averaging the samples
across the workloads collected in overhead analysis. We see
that the geomean values of active and E2E time prediction
error are 4.61% and 7.96% respectively. The E2E prediction
error with shared overheads is 10.15%, only 2.19% higher than
that with individual overheads; this indicates the feasibility of
maintaining an overhead database for large-scale ML workload
predictions in an industrial environment. We notice a trend
of gaps between E2E and kernel only shrinking as batch size
increases. This is because GPU utilization increases with batch
size and therefore our performance model degenerates towards
“kernel only”. The fact that kernel only prediction errors are
much worse than E2E when GPU utilization is low justifies
the necessity and success of including the modeling of device
idle time in our prediction algorithm. Device-wise, the GPU
active time error on V100 is the lowest among the three,
while the E2E error is the lowest on the platform with TITAN
Xp. The prediction error of the device active time comes
from the kernel execution time prediction error. For example,
the MLPerf model has non-constant table sizes and thus we
have to use the average table size in the performance model,
which affects its accuracy. Overall, the device active time
error rate lies within the range of our expectation, proving

8

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40

AddmmBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40

50

aten::linear

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

10

12

AccumulateGrad

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

30
aten::relu

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20
ReluBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

10
aten::add_

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

20

40

60

80

100
LookupFunction

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

aten::to

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

aten::zero_

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

30

aten::cat

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40
AddmmBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

AccumulateGrad

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20
aten::linear

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

10
ReluBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40

50

60

LookupFunctionBackward

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

10

12

aten::relu

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40
BmmBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

30

LookupFunction

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

1

2

3

4

aten::zero_

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0.0

2.5

5.0

7.5

10.0

12.5

15.0
IndexBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40

AddmmBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

10

20

30

40

50
aten::linear

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

30
IndexBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

25

30
aten::index

51
2

10
24

20
48

40
96 51

2
10

24
20

48
40

96
0

5

10

15

20

25

30

aten::binary_cross_entropy

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

1

2

3

4

TBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

5

10

15

20

BmmBackward0

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96

1

0

1

2

3

4
aten::zeros

51
2
10

24
20

48
40

9651
2
10

24
20

48
40

9651
2
10

24
20

48
40

96
0

2

4

6

8

aten::view

51
2

10
24

20
48

40
96 51

2
10

24
20

48
40

96
0

5

10

15

BinaryCrossEntropyBackward0

Ti
m

e
(u

s)

Batch Size DLRM_default DLRM_MLPerf DLRM_DDP

Fig. 8. Overhead mean and std of 10 most dominating ops per overhead type for each models and batch size on V100. Each row represents T2, T3, T5,
respectively in top-down order. Overall means of each overhead type per op are plotted in dash lines in each subplot.

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096
-30%
-20%
-10%

0%
10%
20% DLRM_default DLRM_MLPerf DLRM_DDP

-53.7% -59.0% -42.9% -78.5% -69.7% -52.0%

V100

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096
-30%
-20%
-10%

0%
10%
20% DLRM_default DLRM_MLPerf DLRM_DDP

-40.7% -51.5% -69.6% -53.6% -36.5%

Xp

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096
-30%
-20%
-10%

0%
10%
20% DLRM_default DLRM_MLPerf DLRM_DDP

-48.8% -35.9% -62.1% -44.0%

P100

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

Pr
ed

ict
io

n
Er

ro
r

Iteration Tim
e (m

s)

Batch Size

active
E2E

shared_E2E
kernel_only

Fig. 9. E2E per-batch training time prediction of three DLRM models on
three GPUs. active, total, kernel only are respectively the prediction errors
of GPU active time, E2E per-batch time, and solely using GPU active time
without modeled idle time as the E2E time. Measured iteration time is plotted
in orange color for reference.

the success of the kernel performance model. The E2E time
predictions have a clear trend of underestimation, which can
be explained by the underestimation of device idle time. We
suspect that it is because some of the overheads, e.g., T1, or
T4 of cudaMemcpyAsync, etc., have long-tail distributions with
high variation, while we remove many upper outliers and use
their mean values in the predictions. Since these are usually
common overheads (T1 is the most common as it occurs for
every single op), the error might accumulate quickly and thus
result in underestimation of device idle time and E2E time.
In addition, we observe no systematic or correlated errors in
either active or idle time and are confident that the E2E device
active time and total time are appropriately predicted.

As Figure 10 shows, we also compare our performance
model on two CV models (ResNet50 and Inception-V3) with
two previous works, Habitat [23] and MLPredict [24], neither
of which supports DLRM mainly because of their limited
coverage of ops. We do not compare with Daydream as it is not
open-source and does not make E2E predictions. To enable the
prediction of these two models, we extend our microbenchmark
to cover the convolution and batch-normalization ops. We can
see that our work achieves comparable or better prediction
errors against the two previous works. The reason MLPredict
fails to produce accurate results on some tests might be that the
pretrained predictor does not cover certain batch sizes (possibly

16 32 64 16 32 64
0%

20%

40%
ResNet50 Inception-V3

66.3%
V100

16 32 64 16 32 64
0%

20%

40%
ResNet50 Inception-V3

50.2% 73.2%
Titan XP

16 32 64 16 32 64
0%

20%

40%
ResNet50 Inception-V3

53.3%
P100

0

250

500

0

250

500

0

250

500

Pr
ed

ict
io

n
Er

ro
r

Iteration Tim
e (m

s)

Batch Size

Ours Habitat MLPredict

Fig. 10. E2E per-batch training time prediction of ResNet50 and Inception-V3
as representatives of non-DLRM DL models on three different GPUs. We
used Habitat open source project to collect the prediction result on TITAN
Xp since it was not reported in the paper. Actual iteration time is also plotted
in orange color for reference.

due to GPU memory limits) and/or convolution input sizes
(such as Inception-V3’s 1× 7 and 7× 1 convolution filters).

V. DISCUSSIONS

The advantages of our performance model against previous
works include: (1) accurate prediction of individual kernel
performance and op overheads and (2) op data dependencies
capturing with our execution graph. Therefore, we are able
answer the questions we ask in Section I with more comprehen-
sive and flexible performance modeling and simulation options
than both previous works and trace file inspection. Typical
use cases of our work include iterative model tuning and op
optimization such as fusion. Beyond the models and devices
used in this paper, our system as shown in Figure 3 is highly
extendible for performance modeling of other types of ML
workloads on heterogeneous platforms with types of devices
from other vendors such as Intel and AMD.

A. Performance Modeling for Model-System Co-design

a) Iterative Model Tuning: To ensure both high pre-
cision/recall and fast training speed, the iterative tuning of
configurations of ML models (e.g., number and size of layers)
is necessary yet difficult, especially when frequent training job
launches in an industrial environment is costly and not always
practical. With our performance model, users can handily
make transformations like insert, remove, replace, resize, and
parallelize on our easily mutable execution graph and predict

9

TABLE V. Statistics of active (kernel) time and E2E time prediction errors across three platforms.

Overall V100 TITAN Xp P100
geomean min max geomean min max geomean min max geomean min max

Active 4.61% 0.41% 15.25% 2.69% 0.41% 7.82% 5.73% 1.18% 11.04% 6.37% 1.99% 15.25%
E2E 7.96% 0.09% 24.92% 7.56% 0.73% 21.96% 6.97% 0.09% 24.92% 9.59% 2.04% 22.76%
Shared E2E 10.15% 0.75% 28.38% 6.92% 0.75% 20.79% 12.52% 1.13% 26.17% 12.09% 1.06% 28.38%

Fig. 11. Separate embedding bag ops (left) and batched embedding op (right).

the outcome of their optimization without actually running the
code. Specifically, it is straightforward to change metadata of
tensor shapes of selected ops and their parent and child nodes in
the graph for resize, and to assign ops in parallel branches with
no data dependency to different GPU streams for parallel. This
can only be performed with our support of data dependencies
between ops and individual kernel runtime prediction. In fact,
our performance model could be integrated as a module into
network architecture search (NAS) and significantly improve
automatic search for the best ML model configuration. We see
this as exciting future work.

b) Op Fusion: Op fusion is a common optimization
technique that brings speedup by replacing multiple ops with
a mathematically equivalent one to reduce both the compute
time and overheads. When users implement a new op, it is
good to know how it improves the performance in a ML model
generally (i.e., with arbitrary input tensor shapes). Figure 11
shows an example of optimization that we have done with
the performance model. On the left side it shows a series of
embedding bag ops as a good target (i.e., causing too much
device overheads) to be fused into a batched embedding op,
as shown in the right side. Our prediction pipeline captures
optimization opportunities like this during trace analysis. We
then can easily modify the execution graph and replace the
subgraph of all embedding bag ops with arbitrary input shapes
with one single batched embedding op, whose performance
is then predicted by our kernel performance model. This is
extremely efficient when there are a large number of ML
models to be optimized and evaluated, since we never need to
launch jobs and benchmark them.

c) Load Balancing: In the cases of multi-GPU training,
subgraphs that are too expensive to be computed on one
single device are distributed to several through data- or model-
parallelism. This is also a common practice for DLRM,
especially the enormous embedding tables. Our performance
model enables the evaluation of each device’s performance
upon any schemes of splitting embedding tables that results
in different combinations of embedding table sizes on these
devices. Again, this greatly accelerates the development and
debugging of DLRM training on multi-GPU platforms.

B. Extendibility

Our performance model is designed to be highly extendible
for both workloads and devices. To extend, users only need
to design/train new kernel performance models and collect
op overheads information for the new devices, which is a
straightforward and relatively simple effort. To run on different
devices, one should also make sure PyTorch’s Kineto tracing
is able to capture events of kernels running on these new
devices in order to support dominating-kernels identification
and overheads extraction. Besides, the extension of this work
to (distributed) multi-GPU platforms also requires kernel per-
formance models of communication collectives (e.g., all to all,
all reduce). This is one of our work in progress.

VI. CONCLUSION AND FUTURE WORK

We devise a performance model for GPU training of DLRM
as well as other ML models. We find that some ML workloads,
with DLRM as a typical example, consist of a broad range
of ops and have GPU utilization.Therefore, we propose to
use different approaches for constructing kernel performance
model for these ops; compared to simply predicting the E2E
time as the sum of kernel time, our work is a more general
methodology that covers the case of model configurations
with low GPU utilization. Our final end-to-end performance
model is proved to have low error and high extendibility,
and is able to assist model-system co-design. Future work
includes investigating communication collective performance
for modeling ML workload training on (distributed) multi-GPU
platforms. Another of our goals is to model the performance of
embedding lookups with a non-constant number of embeddings
and number of lookups per table, which should improve our
overall model accuracy. Finally, we would also love to develop a
tool that visualizes and facilitates the manipulation of execution
graphs for model-system co-design.

REFERENCES

[1] M. Tennenholtz and O. Kurland, “Rethinking search engines and
recommendation systems: A game theoretic perspective,” Commun.
ACM, vol. 62, no. 12, pp. 66–75, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3340922

[2] B. Smith and G. Linden, “Two decades of recommender systems at
Amazon.com,” IEEE Internet Computing, vol. 21, no. 3, pp. 12–18,
May/Jun. 2017. [Online]. Available: https://doi.org/10.1109/MIC.2017.72

[3] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
YouTube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems, ser. RecSys ’16, Sep. 2016, pp. 191–198.
[Online]. Available: https://doi.org/10.1145/2959100.2959190

[4] E. Elahi and A. Chandrashekar, “Learning representations of hierarchical
slates in collaborative filtering,” in Fourteenth ACM Conference on
Recommender Systems, ser. RecSys ’20, Sep. 2020, pp. 703–707.
[Online]. Available: https://doi.org/10.1145/3383313.3418484

10

https://doi.org/10.1145/3340922
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/3383313.3418484

[5] Q. Song, D. Cheng, H. Zhou, J. Yang, Y. Tian, and X. Hu, “Towards
automated neural interaction discovery for click-through rate prediction,”
in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’20, 2020, pp.
945–955. [Online]. Available: https://doi.org/10.1145/3394486.3403137

[6] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “AIBox: CTR
prediction model training on a single node,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’19, 2019, pp. 319–328. [Online]. Available:
https://doi.org/10.1145/3357384.3358045

[7] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical GPU parameter server for massive scale deep
learning ads systems,” in Proceedings of Machine Learning and
Systems 2020, ser. MLSys 2020, I. S. Dhillon, D. S. Papailiopoulos,
and V. Sze, Eds. mlsys.org, Mar. 2020. [Online]. Available:
https://proceedings.mlsys.org/book/315.pdf

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition, ser. CVPR 2016, Jun. 2016, pp. 770–778. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., Dec.
2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[10] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, Jun. 2019. [Online]. Available: https://arxiv.org/abs/
1906.00091

[11] S. H. Walker and D. B. Duncan, “Estimation of the probability of
an event as a function of several independent variables,” Biometrika,
vol. 54, no. 1–2, pp. 167–179, Jun. 1967. [Online]. Available:
https://doi.org/10.1093/biomet/54.1-2.167

[12] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, ser. CSCW ’00, 2000, pp.
241–250. [Online]. Available: https://doi.org/10.1145/358916.358995

[13] X. Ning, C. Desrosiers, and G. Karypis, “A comprehensive survey of
neighborhood-based recommendation methods,” in Recommender Systems
Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds. Springer, 2015, pp.
37–76. [Online]. Available: https://doi.org/10.1007/978-1-4899-7637-6 2

[14] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “DeepFM: A factorization-
machine based neural network for CTR prediction,” in Proceedings of
the 26th International Joint Conference on Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, pp. 1725–1731.

[15] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque,
L. Hong, V. Jain, X. Liu, and H. Shah, “Wide & deep learning for
recommender systems,” in Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, ser. DLRS 2016, 2016, pp. 7–10.
[Online]. Available: https://doi.org/10.1145/2988450.2988454

[16] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun,
“XDeepFM: Combining explicit and implicit feature interactions
for recommender systems,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’18, 2018, pp. 1754–1763. [Online]. Available:
https://doi.org/10.1145/3219819.3220023

[17] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad
click predictions,” in Proceedings of the ADKDD’17, ser. ADKDD’17,
2017. [Online]. Available: https://doi.org/10.1145/3124749.3124754

[18] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’18, 2018, pp.
1059–1068. [Online]. Available: https://doi.org/10.1145/3219819.3219823

[19] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[20] NVIDIA. (2020, Jul.) cuBLAS deep learning performance matrix
multiplication. [Online]. Available: https://docs.nvidia.com/deeplearning/
performance/dl-performance-matrix-multiplication/index.html

[21] S. Lym, D. Lee, M. O’Connor, N. Chatterjee, and M. Erez, “DeLTA:
GPU performance model for deep learning applications with in-depth
memory system traffic analysis,” in 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), Mar. 2019,
pp. 293–303.

[22] Y.-C. Liao, C.-C. Wang, C.-H. Tu, M.-C. Kao, W.-Y. Liang, and
S.-H. Hung, “PerfNetRT: Platform-aware performance modeling for
optimized deep neural networks,” in 2020 International Computer
Symposium, ser. ICS 2020, Dec. 2020, pp. 153–158. [Online]. Available:
https://doi.org/10.1109/ICS51289.2020.00039

[23] G. X. Yu, Y. Gao, P. A. Golikov, and G. Pekhimenko, “Computational
performance predictions for deep neural network training: A runtime-
based approach,” CoRR, vol. abs/2102.00527, Feb. 2021. [Online].
Available: https://arxiv.org/abs/2102.00527

[24] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in 2018 IEEE International
Conference on Big Data, ser. BigData 2018, Dec. 2018, pp. 3873–3882.
[Online]. Available: https://doi.org/10.1109/BigData.2018.8622396

[25] Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei, “Iteration time prediction
for CNN in multi-GPU platform: Modeling and analysis,” IEEE
Access, vol. 7, pp. 64 788–64 797, 14 May 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2916550

[26] H. Zhu, A. Phanishayee, and G. Pekhimenko, “Daydream: Accurately
estimating the efficacy of optimizations for DNN training,” in 2020
USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020, A. Gavrilovska and E. Zadok, Eds. USENIX Association, 2020,
pp. 337–352.

[27] A. Rajagopal and C. Bouganis, “perf4sight: A toolflow to model cnn
training performance on edge gpus,” in 2021 IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW). Los Alamitos, CA,
USA: IEEE Computer Society, oct 2021, pp. 963–971. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCVW54120.2021.00112

[28] S. Li, R. J. Walls, and T. Guo, “Characterizing and modeling
distributed training with transient cloud GPU servers,” in 2020 IEEE
40th International Conference on Distributed Computing Systems,
ser. ICDCS 2020, Nov. 2020, pp. 943–953. [Online]. Available:
https://doi.org/10.1109/ICDCS47774.2020.00097

[29] A. Tulloch. (2020, May) Batch embedding lookup GPU kernel and more.
[Online]. Available: https://github.com/ajtulloch/sparse-ads-baselines

[30] J. Gómez-Luna, I.-J. Sung, L.-W. Chang, J. M. González-Linares,
N. Guil, and W.-M. W. Hwu, “In-place matrix transposition on
GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 3, pp. 776–788, 2016. [Online]. Available: https:
//doi.org/10.1109/TPDS.2015.2412549

[31] J. Vedurada, A. Suresh, A. S. Rajam, J. Kim, C. Hong, A. Panyala,
S. Krishnamoorthy, V. K. Nandivada, R. K. Srivastava, and
P. Sadayappan, “TTLG - an efficient tensor transposition library
for GPUs,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, pp. 578–588. [Online]. Available:
https://doi.org/10.1109/IPDPS.2018.00067

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, ser. MM ’14, 2014, pp. 675–678. [Online].
Available: https://doi.org/10.1145/2647868.2654889

[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation, ser. OSDI 16, 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 33, ser. NeurIPS 2019, Dec. 2019, pp.
8026–8037. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

11

https://doi.org/10.1145/3394486.3403137
https://doi.org/10.1145/3357384.3358045
https://proceedings.mlsys.org/book/315.pdf
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://doi.org/10.1093/biomet/54.1-2.167
https://doi.org/10.1145/358916.358995
https://doi.org/10.1007/978-1-4899-7637-6_2
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3124749.3124754
https://doi.org/10.1145/3219819.3219823
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://doi.org/10.1109/ICS51289.2020.00039
https://arxiv.org/abs/2102.00527
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1109/ACCESS.2019.2916550
https://doi.ieeecomputersociety.org/10.1109/ICCVW54120.2021.00112
https://doi.org/10.1109/ICDCS47774.2020.00097
https://github.com/ajtulloch/sparse-ads-baselines
https://doi.org/10.1109/TPDS.2015.2412549
https://doi.org/10.1109/TPDS.2015.2412549
https://doi.org/10.1109/IPDPS.2018.00067
https://doi.org/10.1145/2647868.2654889
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[35] Facebook. (2019, Jun.) DLRM Github repo. [Online]. Available:
https://github.com/facebookresearch/dlrm

[36] E. Konstantinidis and Y. Cotronis, “A quantitative roofline model
for GPU kernel performance estimation using micro-benchmarks
and hardware metric profiling,” Journal of Parallel and Distributed
Computing, vol. 107, pp. 37–56, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0743731517301247

12

https://github.com/facebookresearch/dlrm
https://www.sciencedirect.com/science/article/pii/S0743731517301247
https://www.sciencedirect.com/science/article/pii/S0743731517301247

	I Introduction
	II Related Work
	II-A Recommendation Models and DLRM
	II-B GPU operator and kernel performance models
	II-C Model-level performance modeling

	III Methodology
	III-A Per-batch Training Time Breakdown
	III-B Microbenchmark and Performance Models for Dominating Kernels in DLRM
	III-B1 Heuristic Performance Models
	III-B2 ML-based Performance Models

	III-C Device Idle Time Analysis
	III-D E2E GPU Training Performance Model

	IV Results and Analysis
	IV-A Performance Models for Dominating Kernels in DLRM
	IV-B Overheads Analysis
	IV-C E2E GPU Training Performance Model for DLRM and More DL Models

	V Discussions
	V-A Performance Modeling for Model-System Co-design
	V-B Extendibility

	VI Conclusion and Future Work
	References

