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Abstract—Gradient sparsification is a communication optimi-
sation technique for scaling and accelerating distributed deep
neural network (DNN) training. It reduces the increasing commu-
nication traffic for gradient aggregation. However, existing sparsi-
fiers have poor scalability because of the high computational cost
of gradient selection and/or increase in communication traffic.
In particular, an increase in communication traffic is caused
by gradient build-up and inappropriate threshold for gradient
selection.

To address these challenges, we propose a novel gradient
sparsification method called MiCRO. In MiCRO, the gradient
vector is partitioned, and each partition is assigned to the
corresponding worker. Each worker then selects gradients from
its partition, and the aggregated gradients are free from gradient
build-up. Moreover, MiCRO estimates the accurate threshold to
maintain the communication traffic as per user requirement by
minimising the compression ratio error. MiCRO enables near-
zero cost gradient sparsification by solving existing problems
that hinder the scalability and acceleration of distributed DNN
training. In our extensive experiments, MiCRO outperformed
state-of-the-art sparsifiers with an outstanding convergence rate.

Index Terms—distributed deep learning, gradient sparsifica-
tion, scalability

I. INTRODUCTION

Over the past decade, overcoming the excessive communica-
tion traffic for gradient aggregation has been a major challenge
to enhancing the distributed training performance of deep
neural network (DNN) models. Gradient sparsification [1]–[9]
is a widely-adopted solution for reducing the size of payloads
in communication between workers. Gradient sparsification
aims to select only large gradients from the entire gradient
vector, and the number of sparsified gradients is quantified
by the density1. Therefore, gradient sparsification can allevi-
ate the communication bottleneck when the communication
bandwidth is insufficient to transmit all the gradients at every
training iteration.

Gradient sparsification can be categorised into sorting- and
threshold-based approaches. In sorting-based sparsifiers [10],
[11], all gradients are sorted, and the k largest gradients
are selected (top-k) for aggregation through communication.
However, gradient vector sorting is an expensive operation
because of its high computational complexity (e.g., O(n log k)
[12]). Moreover, sorting operations cannot properly utilise the
parallelism of streaming processors on GPUs [13]. Figure 1a

1We refer to the ratio of selected gradients (k) to all gradients (ng) as
density, which is defined as d = k

ng
.
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Fig. 1: Challenges in scalable and accelerated gradient sparsifi-
cation: (a) High computational cost due to gradient vector sort-
ing in sorting-based sparsifiers; (b) high communication cost
due to inappropriate threshold in threshold-based sparsifiers.
Both types of sparsifiers cause gradient build-up. All experi-
ments were conducted using d = 0.01 and n = {2, 4, 8, 16}
with ResNet-18 on CIFAR-10.

shows the high computational cost for the gradient vector sort-
ing of the Top-k sparsifier [10] based on the breakdown of the
training time of one iteration. The computational cost remains
constant and consumes a significant portion of the training
time, regardless of the scale-out degree. Therefore, sorting-
based sparsifiers are inadequate for accelerating distributed
DNN training.

Threshold-based sparsifiers [14], [15] select gradients using
a conditional statement that indicates whether each gradient is
larger than a threshold. Threshold-based sparsifiers are easier
to parallelise and faster than sorting-based sparsifiers. Thus,
threshold-based sparsifiers can significantly reduce the com-
putational cost of gradient selection. However, threshold-based
sparsifiers have difficulty effectively reducing communication
traffic owing to inappropriate thresholds. Predicting a threshold
that satisfies the density set by a user is challenging. Figure 1b
shows the excessively high actual density of the hard-threshold
sparsifier [14] where the user-set density was 0.01.
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Additionally, most sparsifiers have difficulties scaling owing
to gradient build-up [11], which causes that the number of
aggregated gradients in the communication becomes larger
than the number of gradients selected by each worker. This
is because a lot of gradients selected by each worker do
not overlap with those of the other workers, although all
workers have the same search range for gradient selection.
Consequently, the density increases at most n times the user-
set density, where n is the number of workers. As shown in
Figure 1, the communication traffic increases as the number
of workers increases because of the gradient build-up.

Therefore, the existing sparsifiers cannot effectively scale
and accelerate distributed DNN training. Based on our obser-
vations, we address the following challenges:

• Gradient build-up. This hinders the scalability of the
distributed training because the communication traffic
increases as the cluster scales out.

• Inappropriate threshold. Because the inappropriate
threshold results in an extremely high actual density,
it is difficult to reduce the communication traffic of
the gradient aggregation and accelerate the distributed
training.

• Gradient selection cost. Sorting the gradient vector for
sparsification incurs a high computational cost. Because
its high cost remains constant regardless of the scale-out
of a cluster, it limits the acceleration of distributed DNN
training.

In this study, we propose MiCRO2 to address these chal-
lenges. MiCRO divides the tensor of the entire model equally
into multiple partitions and assigns them exclusively to work-
ers to reduce the search range for the gradient selection from
ng to ng

n . With this partitioning approach, MiCRO can not
only reduce the computational complexity of gradient selection
but also prevent gradient build-up because each worker selects
gradients from exclusively assigned partition.

To reduce the computational cost of the gradient selec-
tion, MiCRO adopts threshold-based sparsification instead of
sorting-based sparsification [10], [11]. Moreover, the gradient
selection of MiCRO is faster than that of existing threshold-
based sparsifiers [14], [15] because the gradient vector parti-
tioning of MiCRO reduces the computational complexity of
the gradient selection from O(ng) to O(

ng

n ). In addition, the
model accuracy of MiCRO can be maintained at the same level
as that of other sparsifiers [10], [14]. This is because the result
of filtering elements (gradients) larger than the threshold in an
array (gradient vector) is invariant, regardless of whether the
array is partitioned or not.

Furthermore, MiCRO satisfies the communication traffic at
the user-set level by estimating the threshold more accurately.
MiCRO estimates the threshold by minimising the compres-
sion ratio error, which is defined as the difference between
the actual and user-set densities. Therefore, MiCRO can
maintain a low communication cost throughout the training
period by estimating the accurate threshold and eliminating

2MiCRO is an acronym for minimising compression ratio error on-the-fly.

gradient build-up. By addressing these challenges, MiCRO
enables near-zero cost gradient sparsification for scalable and
accelerated distributed DNN training.

This study makes the following contributions:
• Exclusive gradient selection. This eliminates the gradi-

ent build-up. In other words, communication efficiency
can be improved because exclusive gradients are aggre-
gated between workers. Moreover, computational cost
can be reduced as the cluster scales out. This primarily
contributes to the scalability of distributed DNN training.

• Accurate threshold estimation. This prevents an exces-
sively high density due to an inappropriate threshold. In
other words, the communication traffic can be maintained
as low as the user-set value. This mainly contributes to
the acceleration of distributed DNN training.

• Multidimensional evaluation. This study provides an ex-
tensive set of experiments and analyses for performance
and efficiency comparisons between MiCRO and state-
of-the-art sparsifiers.

The remainder of this paper is organised as follows. Sec-
tion II presents the preliminaries of the study. Section III clari-
fies the limitations of the state-of-the-art gradient sparsification
methods. Section IV proposes MiCRO, which is designed to
address the challenges stated in this study. Section V verifies
our contributions through thorough empirical comparisons be-
tween MiCRO and state-of-the-art gradient sparsifiers. Finally,
Section VI concludes the paper.

II. PRELIMINARIES

Gradient sparsification is a type of lossy algorithm be-
cause most of the computed gradients are discarded at every
iteration. In terms of computational efficiency, discarding
the majority of gradients is unproductive because backward
propagation comprises a massive number of computational
operations in DNNs. Moreover, discarded gradients cause a
difference between sparsified and non-sparsified DNN models
in distributed training. Thus, the fidelity loss of the sparsified
model must be reduced to apply gradient sparsification to
distributed training.

Error feedback [16] is an auxiliary method for sparsifiers to
reduce the fidelity loss caused by discarded gradients. Instead
of discarding unselected gradients, the error feedback locally
accumulates them into the ng-dimensional vector ei,t, where
i and t are the worker and iteration numbers, respectively. In
other words, each element of ei,t represents the accumulated
gradient of one parameter. When each gradient is selected, the
accumulated value is initialised to zero because the gradient
contributes to the model update. Hereafter, we refer to the L2-
norm of ei,t as the local error denoted by ∥ei,t∥. Accordingly,
the error3 at iteration t is defined as follows:

∥et∥ =
1

n

n−1∑
i=0

∥ei,t∥. (1)

3In this study, the terms ‘error’ and ‘compression ratio error’ are dis-
tinguished. The error indicates the difference between sparsified and non-
sparsified models. The compression ratio error indicates the difference be-
tween actual and user-set densities.
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Fig. 2: Error minimisation performance of sparsifiers on 16 GPUs. The Y-axis indicates the error, which is the average of local
errors of workers.

TABLE I: Strengths and weaknesses of state-of-the-art gradient sparsifiers and the proposed MiCRO.

Sparsifier Gradient
build-up

Unpredictable
high density

Hyperparameter
tuning

Model fidelity
loss

Worker
idling

Gradient
selection cost

Additional
overhead

Top-k [10] Yes Yes No No No Very high No

CLT-k [11] No No No Yes Yes Very high No

Hard-threshold [14] Yes Yes Yes No No Very low No

SIDCo [15] Yes Yes No No No Very low Very high

MiCRO No No No No No Near-zero No

In other words, minimising ∥et∥ results in a reduction
of difference between sparsified and non-sparsified models.
However, it is challenging to maintain a high model training
performance while minimising ∥et∥. To minimise ∥et∥, the
sparsifier should initialise a lot of accumulated gradients to
zero in ei,t. Because this implies a high density of sparsified
gradients, the training performance slows down because of the
huge communication traffic.

Figure 2 shows the error variations in the two sparsifiers
over the training iterations. The hard-threshold sparsifier se-
lects all the gradients larger than the threshold, thus maintain-
ing a consistent error level. However, the error of the hard-
threshold sparsifier is much lower than that of Top-k in most
iterations; thus, it is clear that the hard-threshold sparsifier can
show a significantly higher density than Top-k. In other words,
communication for the gradient aggregation of hard-threshold
sparsifier is expensive. We verify how much runtime of hard-
threshold sparsifier is occupied by the communication through
experiments detailed in Section V.

III. LIMITATIONS OF STATE-OF-THE-ART METHODS

In this section, we discuss the limitations of state-of-the-art
gradient sparsifiers. Table I lists the strengths and weaknesses
of the state-of-the-art sparsifiers.

A. Sorting-based sparsifiers

In gradient sparsification, most computationally inefficient
results are obtained from the gradient vector sorting phase of
sorting-based sparsifiers, such as Top-k [10] and cyclic local
top-k (CLT-k) [11]. The extremely high sorting cost is the main
hindrance to the scalability and acceleration of distributed
training.

In terms of communication efficiency, CLT-k maintains the
user-set density by eliminating the gradient build-up of the
Top-k. In CLT-k, a worker becomes the leader worker at

each iteration and is delegated to determine all the gradient
indices to be aggregated. Consequently, the number of aggre-
gated gradients is the same as that of the selected gradients.
However, the delegation policy for gradient selection has two
side effects. First, most of the computing resources used
by all other workers cannot be utilised during the gradient
selection of the leader worker. Second, the model fidelity may
be reduced because only one worker determines the gradient
indices that contribute to the model update at each iteration.
Therefore, Top-k and CLT-k exhibit limitations in terms of
scalability and training performance.

B. Threshold-based sparsifiers

The computational cost of gradient selection can be reduced
considerably using threshold-based sparsifiers such as hard-
threshold sparsifier [14] and SIDCo [15]. However, they
have limitations in terms of communication inefficiency. In
addition to the gradient build-up problem, the actual density
is excessively high because of inaccurate threshold estimation.
This is mainly because their threshold estimation methods
are insufficiently generalised to fit various types of models
and datasets well. In particular, hard-threshold sparsifier may
not estimate the appropriate threshold with untested training
settings because its threshold should be defined before training
begins and remain constant for every iteration. Therefore,
hard-threshold sparsifier requires hyperparameter tuning for
each model and dataset.

In contrast, SIDCo derives a threshold using a statistical
model at each iteration. Because the threshold changes over the
training iterations, the density can be adjusted more flexibly
than with a hard-threshold sparsifier. However, SIDCo is
based on several predefined statistical models, and threshold
estimation by statistical models requires a high computational
overhead. In summary, both hard-threshold sparsifier and



Forward
propagation

Backward
propagation

Error-
feedback

Model
updateProceed next iteration

MiCRO
Coarse-grained gradient vector 
partitioning

Equally divided into 𝑛 partitions (ex. 𝑛 = 4)

Exclusive gradient selection 
& aggregation

Gradient vector

Worker Worker Worker Worker

𝑝0 𝑝1 𝑝2 𝑝3

AllGather & AllReduce

[Threshold-based gradient selection]

[Gradient aggregation]

Compression ratio error 
minimisation by threshold scaling

𝑘 − 𝑘𝑖,𝑡−1
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SIDCo exhibit limitations in terms of efficient communication
for scalable distributed training.

The limitations of state-of-the-art sparsifiers show that it
is challenging to satisfy all the criteria listed in Table I. We
not only overcome the limitations of state-of-the-art methods
using a novel sparsifier but also achieve it with near-zero cost.

IV. MICRO DESIGN

We designed MiCRO as a threshold-based gradient sparsi-
fier, in which each worker selects gradients from the exclusive
partition of the entire gradient vector. Figure 3 presents
an overview of MiCRO. MiCRO comprises the following
sequences: 1) coarse-grained gradient vector partitioning; 2)
exclusive gradient selection by threshold; and 3) minimisation
of compression ratio error by threshold scaling. These pro-
cesses begin after backward propagation at each iteration. The
following subsections present a detailed discussion of each
process of MiCRO.

A. Coarse-grained gradient vector partitioning

MiCRO equally divides the entire gradient vector into n
partitions and assigns each partition to the corresponding
worker. By gradient vector partitioning, each worker can
obtain a search range that is exclusive to that particular worker.
The partition assignment is not fixed for every iteration. At the
beginning of each iteration, the partitioned vectors are assigned
to the workers in a cyclic order. That is, each worker has the
opportunity to search for gradients in the entire gradient vector
in every n iterations, and it also has the chance to select its
local gradients at every iteration.

As shown in Figure 3, the entire gradient vector is par-
titioned in a coarse-grained manner. Each partitioned vector
has a subsequent range of gradient indices. We designed this

coarse-grained gradient vector partitioning method by consid-
ering the GPU memory access pattern. Because each thread
group of the GPU (i.e., warp in CUDA [17]) accesses the
global memory simultaneously, the elements that the threads
want to access should be in a cache line to utilise parallelism.
Therefore, coarse-grained partitioning enables efficient GPU
global memory access, unlike fine-grained partitioning, such as
interleaved partitioning, which severely degrades performance
owing to memory divergence [18].

B. Exclusive gradient selection

To prevent gradient build-up, a sparsifier should provide
workers with a non-overlapping search space. Because the gra-
dient build-up results from overlapping search spaces between
workers, MiCRO restricts the search space of each worker
to one partitioned vector, which is divided by coarse-grained
gradient vector partitioning. Accordingly, each worker in the
MiCRO can select gradients in its exclusively partitioned gra-
dient vector, and gradient build-up never occurs. As shown in
Figure 3, exclusive gradient selection enables nonoverlapping
selected gradients.

Notably, MiCRO prevents loss of model fidelity, unlike
CLT-k [11]. In CLT-k, each worker has the chance to select its
local gradients once every n iterations. However, workers have
no selection authority for the remaining n − 1 iterations. In
other words, the locally computed and accumulated gradients
of each worker will become stale. By contrast, MiCRO does
not suffer from model fidelity loss because all workers can
participate in the model update at every iteration. Moreover,
the threshold-based gradient selection of MiCRO prevents
model fidelity loss because all gradients are inspected to
determine whether each of them is larger than the threshold. In



other words, the significance of selecting the largest
∑n−1

i=0 ki,t
gradients is maintained.

In addition, exclusive gradient selection reduces the compu-
tational complexity of threshold-based gradient selection from
O(ng) to O(

ng

n ). Therefore, scalability is enhanced because of
the reduction in computational cost as the number of workers
increases.

C. Compression ratio error minimisation by threshold scaling

To prevent a high density caused by an inappropriate
threshold, a sparsifier should estimate the accurate threshold
to achieve the user-set density. MiCRO focuses on minimising
the compression ratio error at each iteration. Let k and ki,t be
the number of gradients that should be selected and the number
of gradients selected by worker i at iteration t, respectively.
If |k − ki,t| is close to zero, it implies that the threshold
is appropriate to satisfy the user-set value. Thus, minimising
|k− ki,t| is crucial for adjusting the communication traffic of
gradient aggregation.

As shown in Figure 3, ki,0 may be far from the user set k
because it is difficult to predict the initial threshold δ0 accu-
rately at iteration 0. To minimise |k−ki,t|, MiCRO adjusts the
threshold at each iteration by inspecting whether the number of
selected gradients are larger than k. This threshold scaling has
two advantages over statistical threshold estimation [15]. First,
it is robust to varying training settings such as models, datasets,
and learning parameters because only the compression ratio
error is considered when adjusting the threshold. Moreover,
additional overhead does not occur because inspecting |k−ki,t|
and adjusting the threshold are performed by inspecting the
condition statement and merely assigning an adjusted value to
the threshold, respectively. Therefore, the threshold scaling of
MiCRO is generally applicable to various training settings and
is faster than statistical model-based threshold estimation.

D. Overall workflow of MiCRO

Algorithm 1 presents the pseudocode of the distributed SGD
with gradient sparsification of MiCRO. In line 6, the gradients
computed by backward propagation accumulate in local error.
In line 7, the dedicated partition number is assigned to each
worker in cyclic order. In line 8, the entire gradient vector
is divided into n partitions, and each partition is assigned to
a dedicated worker. In line 9, each worker selects gradients
based on the threshold in its exclusive partition and returns
the indices of the selected gradients. According to the partition
and selection policies, gradient build-up never occurs because
the selected indices of each worker do not overlap with those
of the other workers. From lines 10 to 12, the globally selected
indices are collected and the averages of the selected gradients
are computed. In line 13, the threshold of the next iteration is
derived based on the compression ratio error minimisation. As
the iterations proceed, the threshold approaches a value that
satisfies the user-set density. In line 14, the model is updated
using averaged gradients. In lines 15 and 16, the accumulated
value of each selected gradient is initialised to zero, and those

Algorithm 1 Distributed SGD with MiCRO
Input: G(·): stochastic gradients

Sparsify(·): threshold-based gradient sparsifier
ng: number of gradients in model

1: for worker i ∈ [0, n− 1] in parallel do
2: Initialise model x0 ∈ Rng ;
3: Initialise local error ei,0 ← 0ng ;
4: Initialise threshold δ0;
5: for iteration t ≥ 0 do
6: acci,t ← ei,t + ηtGi,t(xt);
7: cycle ← (t % n + i) % n;
8: parti,t ← Partition(acci,t, cycle);
9: idxi,t ← Sparsify(parti,t, δt);

10: idxt ← AllGather(idxi,t);
11: gi,t ← acci,t[idxt];
12: gt ← AllReduce(gi,t, SUM);
13: δt+1 ← Estimate(k, ki,t, δt);
14: xt+1 ← xt − 1

ngt;
15: acci,t[idxt] ← 0;
16: ei,t+1 ← acci,t;

TABLE II: Description of each DNN application. n: number
of workers, Bl: local batch size, ne: number of epochs.

Model Dataset Density n Bl ne

ResNet-18 {CIFAR-10, CIFAR-100} {0.01, 0.001} 16 32 200

GoogLeNet {CIFAR-10, CIFAR-100} {0.01, 0.001} 16 32 200

SENet-18 {CIFAR-10, CIFAR-100} {0.01, 0.001} 16 32 200

of the unselected gradients become the local error of the next
iteration.

V. EVALUATION

A. Methodology

System configuration. All the experiments were conducted
on a cluster equipped with 16 GPUs. A cluster comprises
two nodes, each with eight NVIDIA Tesla V100 GPUs with
NVLink, two 16-core Intel Xeon Gold 6226R @ 2.90 GHz
CPUs, and 384 GB DDR4 memory. For all the experiments,
mpirun of OpenMPI 4.0.5 [19] was used for multiprocess
execution to automatically assign an exclusive rank to each
worker. Each worker was run on one GPU with CUDA 10.1
[17].

Models and datasets. We evaluated the performance of Mi-
CRO and other sparsifiers (Top-k, CLT-k, and hard-threshold
sparsifiers) on computer vision applications. For the DNN
models, we used ResNet-18 [20], GoogLeNet [21], and SENet-
18 [22]. For datasets, CIFAR-10 and CIFAR-100 [23] were
used. To conduct an extensive set of experiments and analyses,
our evaluation comprised multidimensional training settings,
as listed in Table II. By changing one factor among the
model, dataset, and density, the impact of each factor on the
performance of each sparsifier can be identified.
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Fig. 4: Convergence performance of sparsifiers on 16 GPUs. All experiments were conducted over 200 epochs.

Implementation. We implemented MiCRO and other ap-
proaches on top of the deep learning framework PyTorch 1.5
[24]. The distributed communication package PyTorch was
used to implement the communication routine for the dis-
tributed training. Moreover, NCCL 2.4 [25] was adopted as a
backend to support multi-GPU and multi-node communication
primitives such as broadcast, all-gather, and all-reduce, which
are optimised for NVIDIA GPUs and networking. To fairly
compare the appropriateness of the thresholds between the
MiCRO and the hard-threshold sparsifier, the initial threshold
δ0 of the MiCRO was set to that of the hard-threshold
sparsifier. The source code includes everything required to
reproduce the results of this study, and is available publicly at
https://github.com/kljp/micro.

Metrics. The metrics used for each type of performance
evaluation are as follows:

• Convergence performance: The test accuracy by runtime
was measured to evaluate how fast each sparsifier attained
the final accuracy in 200 epochs.

• Sparsification performance: The actual density was mea-

sured to evaluate whether each sparsifier could satisfy the
user-set density.

• End-to-end training performance: The average wall clock
time for one iteration was measured to evaluate the
overall training speed of each sparsifier based on the
breakdown of the training time.

B. Performance evaluation
Convergence performance. Fig 4 shows the convergence

performance of each sparsifier under varying training settings
for the model, dataset, and density. All experiments were com-
pleted at epoch 200, and each result showed the convergence
rate by runtime. In every experiment, all sparsifiers attained
a similar convergence point. However, the convergence rates
of the sparsifiers differ because of their computational or
communication efficiencies. In all cases, MiCRO shows the
fastest convergence rate among the sparsifiers because its
sparsification cost is almost zero owing to the threshold-based
gradient selection and the elimination of gradient build-up.

However, CLT-k shows the slowest convergence rate among
the sparsifiers because the training speed is limited by gradient

https://github.com/kljp/micro
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(g) ResNet-18 on CIFAR-10 (d = 0.001)

0

0.05

0.1

0.15

0.2

0 5000 10000 15000

D
en

si
ty

Iteration number

Top­k CLT­k

Hard­threshold MiCRO
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(k) GoogLeNet on CIFAR-100 (d = 0.001)
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(l) SENet-18 on CIFAR-100 (d = 0.001)

Fig. 5: Sparsification performance of sparsifiers on 16 GPUs. The Y-axis indicates the actual density measured over training
iterations.

sorting and the model fidelity is reduced by the delegated
gradient selection policy. Top-k requires a long training time,
similar to that of CLT-k. However, the convergence rate of
Top-k was faster than that of CLT-k. This is because Top-k
entails a gradient build-up, which makes Top-k select a lot
more gradients than CLT-k (i.e., at most n times the user-
set density). Although the hard-threshold sparsifier has no
computational cost for gradient sorting, its convergence rate
is slower than that of MiCRO because it suffers from a large
increase in communication traffic owing to the inappropriate
threshold and gradient build-up.

Sparsification performance. Fig 5 shows the sparsification
performance of each sparsifier in multidimensional training
settings. In every experiment, MiCRO exhibited the actual
density close to the user-set density owing to the threshold
based on compression ratio error minimisation. Moreover,
gradient build-up does not occur because of the exclusive
gradient selection with gradient vector partitioning.

However, the actual densities of the Top-k and hard-
threshold sparsifiers were not close to the user-set densities

because of gradient build-up. In particular, hard-threshold
sparsifier exhibited the excessively high actual density owing
to inappropriate threshold in every experiment. Despite the
increasing gradient accumulation during training iterations,
the hard-threshold sparsifier used only a fixed threshold. In
other words, the actual density increased as the iterations
proceeded. In every experiment, the density of the hard-
threshold sparsifier dropped suddenly after iteration 14,600.
This is because we set the learning rate decay at epoch 150.
That is, the model almost converges after that epoch.

End-to-end training performance. Fig 6 shows the break-
down of the training time for one iteration. For each sparsifier,
the wall-clock time of one iteration was measured by the
slowest worker, and the average time was calculated across
all iterations. The experiment was repeated using four different
seeds for each sparsifier. Finally, the average wall-clock time
shown in Figure 6 was obtained from the average value of the
four executions.

In Figure 6, the training time comprises the forward propa-
gation, backward propagation, gradient selection, communica-
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(g) ResNet-18 on CIFAR-10 (d = 0.001)
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(h) GoogLeNet on CIFAR-10 (d = 0.001)
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(i) SENet-18 on CIFAR-10 (d = 0.001)
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Fig. 6: Training time breakdown of sparsifiers on 16 GPUs. The training time is the average wall-clock time for one iteration.

tion, and overhead times. The CLT-k and Top-k sparsifiers
show much longer training times than the other sparsifiers
owing to gradient vector sorting. Hard-threshold sparsifier
exhibits long communication times in several cases owing
to its inappropriate threshold and gradient build-up. These
results indicate that a fixed threshold must be tuned for every
training setting. In other words, hard-threshold sparsifier has
limitations in general use in various training settings.

In contrast, MiCRO showed considerably faster training
performance than the other sparsifiers in every experiment.
This is because MiCRO reduces the computational cost to
near-zero by using exclusive gradient selection with gradient
vector partitioning and reduces the communication cost by
eliminating gradient build-up and estimating the accurate
threshold without overhead. As discussed in Section IV-C,
the threshold estimation yields zero overhead because it only
includes the condition statement for inspecting |k − ki,t|
and the assignment of the adjusted value to a variable (i.e.,
the threshold). Moreover, the gradient vector partitioning of
MiCRO does not yield any overhead because this process
only determines the starting index of each partition. Therefore,
when MiCRO is applied to distributed DNN training, the
cost of gradient sparsification is near-zero, and this advantage
contributes significantly to the scalability and acceleration of

distributed training.

C. Effectiveness evaluation of MiCRO

Scalability. Fig 7 shows the convergence performance of
MiCRO by scale-out in our multidimensional training settings.
MiCRO shows that every case consistently attains a similar
convergence point, regardless of the number of workers.
Moreover, the convergence rate was significantly accelerated
by scale-out. These scalability and acceleration mainly result
from communication cost reduction by eliminating gradient
build-up and estimating the accurate threshold.

Threshold estimation performance. In this experiment, we
evaluate the threshold estimation performance of the MiCRO.
To maintain the accurate density, the threshold should be
changed according to the error variation. That is, the thresh-
old should increase when the error increases to prevent an
increase in density. To identify whether MiCRO can satisfy
this principle, we plotted the threshold and error trends. As
the magnitude of the error is much larger than the threshold,
we scaled the magnitude of the error to fit within a range
of threshold changes. Thus, we multiplied the error of each
iteration by the scaling factor, defined as the ratio of

∑T−1
j=0 δj

to
∑T−1

j=0 ∥ej∥, where T is the number of iterations.
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Fig. 7: Convergence performance of MiCRO by scale-out. All experiments were conducted over 200 epochs.

Fig 8 presents the threshold estimation performance of
MiCRO in our multidimensional training setting. In every
experiment, the threshold was properly changed according to
the error trend. Through accurate threshold estimation based
on compression ratio error minimisation, MiCRO can satisfy
the communication traffic required by a user.

VI. CONCLUSION

In this paper, we propose MiCRO, which partitions the
gradient vector and assigns each partition to a correspond-
ing worker. The design of MiCRO comprises coarse-grained
gradient vector partitioning, exclusive gradient selection, and
compression ratio error minimisation through threshold scal-
ing. Using these components, MiCRO can achieve high perfor-
mance in terms of convergence, sparsification, and threshold
estimation. Consequently, it enables near-zero cost gradient
sparsification by providing remarkable training efficiency ow-
ing to its reduced computational and communication costs.
In our thorough empirical experiments, MiCRO outperformed
state-of-the-art sparsifiers in terms of the scalability and ac-
celeration of distributed DNN training.
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