An object oriented parallel finite element scheme for corapomns of PDES:
Design and implementation

Sashikumaar GanesanVolker Johi2, Gunar Matthie$, Raviteja Meesala Shamim Abdu§ Ulrich Wilbrandg
1Department of Computational and Data Sciences, Indian Institute of Science, Bangalore - 560012, India
2Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
3Department of Mathematics and Computer Science, Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany
4Department of Mathematics, Institute of Numerical Mathematics, Technical University Dresden, 01062 Dresden, Germany

0 2016

D Abstract

0p Parallel finite element algorithms based on object-oriotmncepts are presented. Moreover, the design and imptatizenof a
L) .data structure proposed are utilized in realizing a pdrgdemetric multigrid method. The ParFEMapper and the Padfmuni-
«] ‘cator are the key components of the data structure in theopeapparallel scheme. These classes are constructed eeditppe
of finite elements (continuous or nonconforming or disaambius) used. The proposed solver is compared with the opgneso
=~ A 'direct solvers, MUMPS and PasTiX. Further, the performarfdée parallel multigrid solver is analyzed up to 1080 psws.
The solver shows a very good speedup up to 960 processorBapdiblem size has to be increased in order to maintain the go
speedup when the number of processors are increased fuktharresult, the parallel solver is able to handle largesspedblems
. ,on massively parallel supercomputers. The proposed péhfiaite element algorithms and multigrid solver are impésred in our

MS

) 'in-house package ParMooN.
e
Keywords: Finite elements, Geometric multigrid methods, Iterativetivbds, Parallel computations
—
>
O) 1. Introduction clusters one with Nvidia GPU cards (44 nodes) and the other
- with Intel Xeon-Phi cards (48 nodes). In order to utilize thk

0 Many physical phenomena and industrial processes are mogoetential of supercomputers and to achieve petascale asd ex
eled by a set of partial differential equations (PDEs), amd i cale computing in practical applications, the parallebailfpms
many cases these PDEs are coupled and nonlinear in natureeed to be redesigned and re-implemented to support heterog
O) 'Obtaining analytical solution of these PDEs is very chalen neous computing.
O 'ing and impossible in most of the models. Therefore, the nu-
(O ‘merical solution of PDEs is of great interest in scientifican
_F! industrial applications. Advances in numerical methodsgtie
= 'solution of PDEs facilitates to understand the physics ef th
'>2 problem better, and to optimize the production in industrie
" 'Consequently, the computational complexity and cost ae al
(D .increased, and it necessitates efficient numerical alyostand
implementations. In several large scale applicationsygweeof
supercomputer is inevitable. In recent years, supercosnput

are built with multicore processors, for e.g., the fastegtes- . . .
) I . solution of sparse systems, parallel computations requite
computer, as on June’l6, Sunway TaihuLight consists oféD,9 - . .
) . . only efficient parallel algorithms, but also highly scakalplu-
processors with 256 processing cores each, that is, 16@&a9, . . o .
. . .merical methods. For instance, a stabilized numericalraehe
CPU cores in total. Moreover, CPU clusters are combined with

Graphics Processing Unit (GPU) based accelerator clusters with a local cell/matrix dependent stabilization parameit!
. o be more efficient in parallel computations than a stabilized
gain performance and/or energy efficiency. For example, the

supercomputer SahasraT at SERC, Indian Institute of S«ajencmencaI scheme with a global_mesh/_m_atrlx depend_ent_s.'zanlﬂll
tion parameter. Also, the choice of finite elements in finiee e

Bangalore, which is the fastest supercomputer in India,ras ment discretizations will influence the parallel efficienéyor

June’l6, consists of 33,024 CPU cores and two accelerator I .
example, the communication between the processors will be

less when non-conforming or discontinuous finite elemergs a
*Corresponding author used instead of continuous finite elements. Even thougloBut-
Email address: sashi @ds. i i sc. ac. i n (Sashikumaar Ganesan) box solvers (e.g. CG, GMRES) work without any information

.04

In general, the set of PDEs are discretized in space by the
finite difference or finite volume or finite element method or
one of its variants. The finite dimensional discretizatien r
sults in a large sparse system of (mostly linear) algebigiae
tions. In general, solving the large sparse system accounts
than 90% of the total computing time, and thus the scalgbilit
of the parallel implementations mainly depends on the scala
bility of the algebraic solvers used in the numerical scheme
Apart from the other challenges associated with the pdralle

Preprint submitted to Elsevier September 19, 2016

http://arxiv.org/abs/1609.04809v1

about the underlying model problem and the numerical scheméhe hierarchy of distributed meshes. Further, a paralleéfil-
solvers that aware the model and numerical scheme need to benent communicator class that automatically manageseiifte
developed in order to achieve a good performance in magsivefinite elements (continuous, nonconforming and discootirs)
parallel supercomputers. is implemented. Based on the finite element communicator, a
In general, the solvers that are used to solve a sparse algparallel degree of freedom (DOF) class is implemented te han
braic system can be classified into two categories (i) Directlle the communication between the processors. Further, we
solvers and (ii) Iterative solvers. Some of the popular opemeduced the communication volume across processors eonsid
source (academic) parallel direct solvers that supporsiiges erably by implementing new data structures for mapping the
Passing Interface (MPI) are MUMPS, PaStiX, PSPASES, PARinterface nodes across processors. Moreover, the optiperef
DISO, SuperLU-DIST, WSMP. Note that the above list is notforming two or more smoothing iterations before communicat
complete, however, these are the commonly used solverss Steing with the neighboring processors is tested to optimize th
involved in a direct solver are the ordering of the linear-sys ratio of communication and computations. Finally, the iepl
tem to reduce the fill-in, the symbolic factorization, themar- mented parallel solver is compared with MUMPS and PasTiX
ical factorization and the solving step. Among all, the nume direct solvers.
ical factorization step is computationally expensive. irect
solvers, the memory requirement increases due to fill-irgrwh
the problem size increases. This dependency on the filltiidco

b_e obsgrved when higher (_)rder finite elements are used or the Principle steps involved in realizing FEM implementations
dimension of the problem increases. In a worst cases, wher,

S . .) Ste the assembling of the algebraic system and solving it. In
f|||-||n h||nder thelds%arsnzy m(r)]re (;r Iesshent|rely, the ltrlahg the cell based FEM approach, the system is assembled by loop-
Z?e\;zr?e%nfirc\cl):ry Ia?g(g gy;eﬁ:g ore, the iterative solvers are ing over cells sequentially. This approach requires a nmmge _
Unlike direct solvers, only a v.ery few open source iterativeScneme for the degrees of freedom (unknown solution coeffi-
solvers are available f;)r example, HIPS, pARMS and HypreC'emS) in each cell Iocally_and globally. The complexny in
The iterative method’s can further £)e clas’sified into (a)cstat C_reases when the par_aIIeI !mplementatlon Is considered- Co
. . . sider a Gauss siedel iterative solver for a sys#em= b, the
ary methods (Jacobi, Gauss—Seidel, SOR, etc) and (b)iorstat compute step can be summarized as
ary or Krylov subspace methods (CG, GMRES, BiCGSTAB, '
etc) seel[1] for more details. To improve the convergenae rat i-1 n
of the iterative solvers by reducing the condition numbethef D =y - Z a Xt - Z aj X, (1)
matrix, often the preconditioning technique is used. Paipul =1
preconditioner are ILU, SOR, algebraic multigrid (AMG) age , , , . o
metric multigrid (GMG), etc. Among all, the multigrid mettio wherek is the index of th-e |terqt|on step.. The sparsny in the
is very efficient, in particular for elliptic problems, andso(n) ~ System reduces the floating point operations on the rightt han
complexity, wheran is the number of equations in the algebraic Sid€ significantly, almost to a constant. In order to reghaeal-
system|[2/ B]. Even though the multigrid method can be uself!iSm, one needs to distribute this compute step acrospieul
as an iterative solver, often it is used as a preconditiooer f Processes. This involves redistribution of the unknowrisitie
the GMRES or other iterative methods. Construction of a ge2c€ the compute and communicate steps, without affedteng t
ometric multigrid solver or a preconditioner for a paraitel ~ convergence of the algorithm. The following sections asslre
erative solver is very challenging, as it requires commaniin (e design of data structures, in order to achieve parsifefor
between a hierarchy of distributed meshes. Also, the imgfem Such numerical algorithms.
tation of restriction and prolongation operators on a hiEmga
of distributed meshes increases the complexity. Thouglymans opject oriented Finite Element methods
parallel solvers (mostly direct solvers) are available ubljx
for large scale computing, most of these solvers do not sippo Object oriented approach for finite element methods have
heterogeneous computing. been favoured since the 1995|s[4]. The strength of the ap-
In this paper we present a design and implementation of aproach lies in the modularity achieved and the net decrease i
object-oriented parallel finite element scheme that supp@t- the lengths of code. The advantages of these techniques can
erogeneous computing in addition to different types of dinit be found in|[5] [6] [7]. In general, such a code can broadly be
elemnts. The main objective of this work is to develop a pardivided into four main parts.
allel solver that is capable of solving large scale problems
as to harness the massive computation capability of moderns ¢ Domain decomposition (meshing, mesh partition)
percomputers. To achieve this we reduce the communication
overhead at every step and strengthen the algorithmictskala
ity at the same time. By algorithmic scalability we mean that
the convergence rate of the solver does not degrade with the , aAssembling of system matrices
increase in the number of processor. The proposed implemen-
tation handles a hierarchy of finite element spaces defined on * Solving system of equations

2

2. FEM and iterative methods

j=i+1

 Construction of finite element structures (DOFs, Matrix
stencils)

The following section is focused on describing paralleladat
PO P1

structures that are required for implementations of thevabo

4. Parallel Data Structures B '’ PO | HaloCells

Independent
P1 Cells

4.1. Mesh Partitioning

The implementation begins from importing the geometry (or) /-
the domain of the problem. The domain can be discretized ei- Halo Cells

ther internally or by using external mesh generation paekag

such as Gmsﬂﬂ[S]. Distributing the mesh cells across procgss

helps in achieving coarse grain parallelism. Severalesjias

can be thought out to partition the mesh across the processes Figure 1: Cell Nomenclature in the subdomain of the progeBo

Suppose the mesh is distributed more or less uniformly acros

all processors (or with respect to the number of nodes), we ca

achieve a good load balancing in computation. Another-strat . . .
S N some of the associated cells must belong to neighboring pro-

egy could be to try and minimize the "interface” area thatitss - .

o . cessors. These additional associated cells are also aegéss
due to partitioning. It affects the amount of communicatioat

assemble a consistent distributed system. The associellsd c
takes place across the processes. One of the most popukar Pag ~t are in neighboring processors are calledo Cel1s of

ages used for handling this task is MET(S [9]. Each process, corresponding MPI processor. Thusi@lo Cell on a
is allocated a 'subdomain’ (a collection of cells in the mesh PI processor has a support for é DOF of the MPI processor
on which it performs the computation. Further refinement Otjr\:lowever the cell is an own cell on its neighboring MP| proces-,
the mesh can be_ performed p.arallely by each process over thes'or. For example, conforming and nonconforming FESpaces
own corresponding subdomains. will have different collection of Halo cells, since the DO&%
o the nonconforming FESpace are not defined on vertices. Fi-
4.2. ParFEMapper - Parallel Finite Element Mapper nally, the collection ofown Cells andHalo Cells to-

The degrees of freedoms (DOFs) of a three-dimensional (3Dyether form a subdomain mesh for the respective MPI proces-
finite element might be defined on the vertices, edges, facesPr. Hence, the total number of cells on each MPI processor is
and/or interior of the mesh cells based on the types of finit@iven by,
elements (continuous or nonconforming or discontinuossjiu

P3 | Halo Cells

to construct the finite element space (FESpace). ParFEMappe Total N.Cells = NOwnCells

is a class containing the mapping information of DOFs on the + N_Halo_Cells,

subdomain interface, and it facilitates to communicatatsmhs o

on the interfaces of subdomains between processors. where the total number afwn Cellsis given by,
N_Own_Cells = N_Dependent_Cells

4.2.1. Cell nomenclature
METIS partitions the mesh and assigns a processor number

to each cell. Then this information can be broadcasted to a”FigureI] shows various types of cells in the subdomain of pro-

MPI processors. After that each MPI processor collectséie s cessor P1. Further, PO, P1, P2 and P3 in Filire Thnd 2 denote
of cells with its own processor number (rank), and marks allyite ot processor’s (ra,nksi

these cells a®wn Cells. Further, theown Cells are di-

vided intobependent and Independent Cells, where

the set of all own cells that are connected with the neiglmigori 4.2.2. DOF Nomenclature

MPI processors’ cells are calledpendent Cells. There- Based on the choice (continuous or nonconforming or dis-
maining own cells are callendependent Cells, which continuous) of finite elements, the DOFs are defined on ver-
do not depend on the neighboring processors directly. Matte t tices, edges, faces and interior of the cells. Some of these
two cells from different MPI processors might be connected b DOFs that are defined on tli@ibdomian Interface will

a vertex or edge or face in 3D. Suppose a vertex or an edge be shared by bothependent Cells andHalo Cells.

a face is shared by two or more cells from different MPI pro-Such DOFs are calletinterface DOF's, that is, the set of
cessors, we call itassubdomian Vertex, Subdomian all DOFs that are defined on ttieibdomian Interface.
Edge, Subdomian Face, respectively. The collection of Since eaclinterface DOF belongs to more than one MPI
these subdomain vertices, edges and faces is calledio— processor, one of the associated processors is given {hares
mian Interface. To calculate/update a DOF defined on sibility of computing the solution at this DOF. This commgi

the subdomain interface, the corresponding MPI processor dViPI processor is callettaster Processor of this DOF.

this DOF must contain all cells associated with this DOF, and~urther, this interface DOF is callethster DOF in the com-

3

+ N_Independent_Cells.

puting MPI processor, whereas it is termed aslave DOF
on all other associated MPI processors. In other words, the
Interface DOF is aMaster DOF on a MPI processor, if
the processor takes the responsibility of computing thetsol
elseitisaslave DOF.

Next, the collection of DOFs that are defined on thel o
Cells but not on theSubdomian Interface are called
Halo DOFs. TheHalo DOFs are further divided into two
categories -Halol DOFs and Halo2 DOFs. Suppose a
Halo DOF is having a support (connection) with any of
the Master DOFs, then it is marked asialol DOF, else
marked asialo2 DOF.

Furthermore, to enable hybrid (threads on each MPI pro-
cessor) the DOFs are marked with different labels. The col-
lection of DOFs that are defined on thependent Cells
but not on thesubdomian Interface are calledepen-
dent DOFs. TheDependent DOFs are also further di-
vided into two categoriesBependent1l DOFs andDepen-—
dent2 DOFs. Suppose @ependent DOF is having a sup-
port (connection) with any of thelaster DOFs then it is
marked a®ependent?2 DOF, else marked aBependent1
DOF. The remaining DOFs that are defined on thelepen-
dent Cells of the subdomain are calledndependent
DOF's. Hence, on each MPI processor, we have

Dependent1
DOFs

Independent
DOFs

PO | Halo Cells

Slave DOFs]

ndependent
P1 Cells

Halo Cells

Dependent2
DOFs

Master
DOFs

Figure 2: DOF Nomenclature f@; finite element on MPI processor P1.

cellis unique across all MPI processors. Let us first comsice
mapping of Master-Slave DOFs. Since the subdomain contains
all cells (including halo) associated with the interface O
each interface DOF knows the ranks of all MPI processors as-
sociated with it. Using this information, the interface DOF
N_DOFs = N_Independent_DOFs are first distributed (divided into Master and Slave) uniity
across all MPI processors to maintain the load balance. ,Next
we map theslave DOF's in the MPI processor with their cor-

+ N.-Interface DOFs+ N.Halo.DOFs, respondingiaster DOF's in the neighboring processor. Con-
sequently, alMaster DOFs will be mapped with theslave
DOFs. To map a slave DOF, the following information associ-
ated with the Slave DOF are collected:

+ N_Dependent_DOFs

where

N_Dependent_DOFs = N_Dependentl_DOFs

+ N_Dependent2_DOFs a) Global Cell Number - the global cell number of the
N_Interface DOFs = N_Master_DOFs slave DOF
+ N_Slave_DOFs b) c_DOF_Index - the local cell index of the slave DOF in
N_Halo.DOFs = N.Halol DOFs the respective global cell
+ N_Halo2_DOF's. C) P_DOF_Index - the FESpace DOF index of the slave

DOF in the MPI processor
Figure[2 shows various types of DOFs in the subdomain of the

MPI processor P1. The benefits of this nomenclature can b&hese information are collected for all slave DOFs, and gent
fully realized in the ease of implementation of differentreo the respective neighboring processors that consider thise
pute strategies that could be adopted in a multigrid tectiq face DOFs as Master DOFs. Note that more than one own cells
might be associated with a slave DOF, however it is enough
to choose any one of the associated cells, and the correspond
4.2.3. Mapping of DOFs across processors ing local cell index in the chosen cell. Once this informatio
The DOFs are indexed (numbered) independently on eads received, the master processor identifies its own celtHfer
MPI processor while constructing the FESpace on their subdaeceivedGlobal Cell Number. Then, it maps their FES-
main mesh. Thus, the indices of the dependent, interface armqmhce DOF index to the receivedDOF _Index from the neigh-
halo DOFs on a MPI processor will be different from the in- boring (slave) processor by matching their local cell indtk
dices assigned by the FESpaces of its neighboring MPI procethe received:_DOF _Index. Finally, the master MPI proces-
sors. Therefore, the mapping for the dependent, interfade a sor sends this mapping to all slave MPI processors. Figure 3
halo DOFs with their neighboring MPI processors needs to behows the mapping of the red colored DOF between two MPI
constructed. It is the main purpose of the ParFEMapper.clasprocessors using this procedure.
To construct a map, we use tli@ obal Cell Number Of We next consider the mapping DEpendent DOFs and
the cells. Since the coarse mesh is same on all MPI processadislo DOFs. According to our DOF nomenclature, tive—
before partitioning, th&1lobal Cell Number of a coarse pendent DOFs of a MPI processorargalo DOF's of their

4

C_DOF _Index =1
NEFe
0
==

Figure 3: Mapping of a slave DOF between two MPI processors.

10°

Number of DOFs

+Halo2

1 2
Refinement Levels

neighboring processors. Therefore, itis enough to sentidhe Figure 4: Increase in the number of Halo, Halol and Halo2 DQ¥F§ MPI
pende.nt DQFS and consequently the mapping for thelo processors while increasing level of mesh refinement.

DOF's is received. To map theependent DOF's, we use the

same procedure as described in the Master-Slave DOF map-

ping. While the global cells IDs used to map the interface

DOF's across processes, the local IDs are also retained+o peoors. Similarly, it is enough to send the values mfpen-
form Matrix vector operations efficiently on the local syste dent2 DOFs to updateHalo2 DOFs.

matrices that are assembled.

4.2.4. Halol DOFsand Halo2 DOFs 4.2.6. DOF Reordering

Halo DOF's are divided intoHalol DOFs and Halo?2 In order to access different sets of marked DOFs inde-
DOF's based on its support with the interface DOF. During thependently, the indices of FESpace DOFs are renumbered
solution process, each MPI processor computes/updatgs orih the ParFEMapper. Thelaster DOFs are numbered
the master, dependent and independent DOFs. Therefore, tfiest followed by theIndependent, Dependentl, De-
updated values of only a few halo DOFs that are having supporiendent2, Slave, Halol andHalo2 DOFs with the
with the master DOFs are needed during the iteration. ThesRirichlet DOFs at the last. In addition, theaster, De-
Halo DOFs are marked asalol DOFs, and the remaining pendentl, Dependent2 andIndependent DOFs are
Halo DOFs marked asalo2 DOFs. During the iteration, colored in hybrid computations, and further numbered eolor
onlytheHalol DOFs are communicated, whereas thel o2 wise.
DOF's are communicated only before performing restriction and
prolongation operations in multigrid method. Further, thpe
datedHalo2 DOFs values are needed when the solution is4.2.7. |ocal to Global Mapping for Direct Solvers

part of the matrix assembling in nonlinear or coupled protgde Even though the DOFs are numbered locally on each MPI

h Conrmunuf:a’ig]g only the Va|L(JjES Bfalﬁl DOF's ra_the_r thanl processor and the matrices are assembled in a distributgd wa
the VE ues o a‘dalil DOE's re li;\:/eSt N cl;)mmur_ucatmn VZ'hthe parallel direct solvers such as MUMPS need the global row
ume by a considerable amount. We can observe in Flau.re thahg global column indices of the entries in the distributed m
even for six MPI processors, the numbemrafl o2 DOFs in-

. :) . , trix. To assign a global number for each DOF, each MPI pro-
creases with an increase in the uniform refinement of the mesgesSor calculates the numberfn DOFs as

Consequently, the difference between the numberzafo and
Halol DOFs also increase. The difference becomes more N_Own_DOFs = N_Independent_DOFs
significant with an increase in the number of processorseas th

. . + N_Dependent_DOF's
subdomain interface area increases.

+ N_Master_DOFs.

4.2.5. Dependentl DOFs and Dependent2 DOFs Each MPI processor broadcastsiitsown_DOFs and creates
TheDependent DOFs andMaster DOFsofaMPlpro- an arrayN_Proc_OwnDOFs on all processors. For example,
cessor arelalo DOFs andSlave DOFs, respectively, on N_Proc_OwnDOFs [k] has thei_own_DOFs of k' MPI pro-
their neighboring processors. Further, we denote the selt of cessor. Using this array, the global DOF numberingoeh
Dependent DOFs that are having support with th@lave DOF's in the MPI processor ‘p’ ' is assigned as
DOFs asDependentl DOFs, and the remainin@epen-
dent DOFs are marked a®ependent2 DOFs. By our
convention, theDependentl DOFs on a MPI processor
are actually theialol DOFs for the neighbouring processor
which is master of the slave DOFs connected to Dependentbr i = 1, ..., N_Proc_OwnDOF [p]. The halo and slave
DOFs. Hence, it is sufficient to send the updated values oDOFs of the MPI processor'p’ ' receive their unique global
Dependentl DOFs in order to update the values Blol DOF number from their neighboring processors.

-1
Global DOF [i] = N_Proc_OwnDOF [k] + i,
1

o]

o~
Il

4.3. ParFECommunicator - Parallel Finite Element Communi- parent of the cell and Cl is the local index of the child celihe
cator parent cell. The above procedure guarantees a urigueal
d&ell Number for all cells when the mesh refinement is uni-

The ParFECommunicator class consists of various parall
form on all MPI processors.

communication methods that are implemented on the bas

of the mapping defined in ParFEMapper. These routines ar .

used to communicate information across processors whiig us §'3' .ParaIIeI Mul_t|g_r|d Cycle) _ _

multigrid and direct solvers. Communication using thisssla Different multigrid <(:)3l/cILest are |mp[§met2te(\j/|n olur E-h(k)]use
. Let us consider the V-cycle. Each pro-

can be performed at various levels of meshes. These routin@éckage ParMoo ; X C
can also be used to communicatester DOFs andSlave cessor constructs an instance (object) of the multigrisgtesol
DOFs orfandHalol DOFs orfandHalo2 DOFs. Finally class after having generated a hierarchy of meshes. Afeer th

we conclude this section with a note that ParFEMapper an@SSembling of the system matrix, the multigrid solver stéot

ParFECommunicator depend on the used finite element spac&@€/T0rm a few iterations on the finest mesh to smooth out the
Continuous, non-conforming and discontinuous finite eleime 119N frequency error components. After every iterationh t

will have different instances (objects) of these classeshen pre-selegted iterative solver the .updated vglues are cormmu
same mesh. Further, these objects need to be generated oﬁﬂ}ed using the ParFECommunicator. This step is known as

once at the beginning of parallel computations, and it isilyig the pre-smoothing step. The residual o_f the fine system is the
scalable. restricted to the coarser level. The residual equationligedo

on the coarser mesh. The smoothing and restriction steps are
repeated until the coarsest level is reached. The residual-e
5. Parallel Multigrid Solver tion is solved exactly (or up to a predefined level of accuyacy
.)) o on the coarsest level to get the update/correction. Aftat th
In this section, we discuss the utilization of parallel dataihe update/correction is prolongated to the next finer lavel
structures discussed above in realizing a parallel midtigr aqged to the solution. Few more iterations using the prede-
solver. This is done in several steps. On a hierarchy of n¥eshgned smoothers like Gauss-Seidel are run on the finer mesh by
in geometric multigrid method, the objects of the ParFEMEAPP considering the new improved value as an initial guess. This
and ParFECommunicator classes need to be constructed on é‘ﬂép is known as post-smoothing. The prolongation and post-

mesh levels. smoothing operations are performed on each level till thestin
. . . mesh is reached. Note that only the updated values ofdhke-
5.1. Construction of Hierarchy of Meshesin Parallel ter DOFs andHalol DOFs are communicated at each it-

The subdomain mestogn Cells andHalo Cells)in erative step of the smoothing operation. Further,ithe o2
every MPI processor is uniformly refined till the finest leieel DOF's are communicated before every restriction and prolonga-
achieved. The refinementahlo Cells atevery meshlevel tionoperations. The same algorithm can be used to runlifer
generates new cells (children), of which, some of them willmultigrid cycles.
not have any connectivity to the Dependent cells of the MPI o)
processor. Therefore, the unwanted new children cellseare r5-4. Restriction and prolongation operators
moved from the new subdomain collection of cells. After that ~The restriction and prolongation operators determine the e
a new FESpace is constructed on this new subdomain, and thiégiency of the multigrid implementation. We use a general
is used to construct new objects of the ParFEMapper and Paitansfer operators proposed in/[11] for arbitrary finiteneget
FECommunicator classes. This process is repeated until tHaces. In the case of parallel implementation, one needs to

finest multigrid level. apply these operators with the help of the ParFECommmuni-
cators to handle interface and halo DOF’s. The implementa-
5.2. Global Cell Number in Hierarchy of Meshes tion utilizes the knowledge of own cells and master DOFstapar

.from the ParFECommmunicator discussed above. Further, an

th S::r:ceFtEh,a global lceII numlbgr IIS u”sed t% cok?strtucga r:glp " dditional restriction operation is required to assemidestys-
erar apperclass, a globai cell NUmberhas to beé asSIgNg, ,, ., rices at all levels when multigrid methods are adbpte

for the newly generated children cells in the refinement. Thg '\ o .- problems, such as Navier-Stokes. It needto

Global Cell Number across al Processors will be unique performed whenever the solution is updated iteratively.
only at the coarsest level. After partitioning the coarsessh,

the refinement of the mesh is local to every processor. We ag g Complexity
sume that the refinement is uniform on all MPI processors. U35_5_1. Computational complexity
ing this assumption and the global number of the parent cell
the global cell number of thid" child cell at " level is assigned

as

’ The steps involved in the iterative technique adopted is to
perform a fixed point iteration followed by a multigrid V or
W cycle. Within a multigrid cycle, iterative sweeps are per-
formed at each of the levels considered. Assume v’ number
where GCN[i] istheGlobal Cell Number of thei cell of multigrid cycles are performed within a fixed point itera-
at levell, NC is the number of newly generated children of thetion. Let 'PRS’ be the number of pre-smoothing steps per-
parent cell, PGC[i] is theGlobal Cell Number ofthe formed on each level, before performing a restrict openadind

GCNqy[i] = NC x PGCNy[i] + C1I,

let 'POS’ be the number of post-smoothing steps performed on
each level, after prolongate operation. Generally theseatg
chosen to be equal. Additionally one could perform multiple
local sweeps 'L, before performing a communication update
in the case of a parallel implementation. The complexity of a
smoothing step, as in the solution stEp (1)QN). Similarly,
the restriction and prolongation operations &). Hence,
the total complexity in a multigrid sweep per level would be
D V¥(2*PRS)*L* O(N)), whereN; is the total number of DOFs
in a given level. In the case of 3D problems, coarser levels wi
have~ Nr/8 DOFs, whereNg is the number of DOFs on a
finer mesh. This indicates that the total DOFs across alldeve
Algorithm 1 Parallel Multigrid Solver : (\-Cycle) is bounded by)(Ng) Hence the total complexity can be approx-
imated to be : v*(2*PRS)*LO(N). The parameters v, PRS, L
can be chosen appropriately to affect the rate of convesgenc

1. Repeat till coarsest level is reached

(&) Pre-Smoothing : Reduce high frequency errors by
performing few iterations of Jacobi or Gauss—Seidel®-5.2. Communication Vs Computation
method. At every iterative step of Jacobi or Gauss— For the sake of analysis of the implementation, consider a
Seidel communicate the defect amster and cubic domain. The partition is assumed to be uniform, i.ehea
Halol DOFs across processors using ParFECom-process obtains a sub-cube of same volume. Consider a cube of
municator. side length A as our physical domain. The toal number of nodes
N (number of nodesy A3. Assume the domain is partitioned
across K processes. This gives a (sub)cube of voluki}
o _ _ ~and aside length of (K*/3) ~ (N/K)*2 for the subcube. Since
(c) Restriction : restrict the residual values from finer the interface determines the communication, we consicer th
level to coarser level. faces of the cube which constitute the interface. Surfaee af

2. Solve the residual equation exactly at the coarsestéivel (sub)eubex c*(N/K)2. This approximation holds for every

ther by using a direct solver or by using an iterative soIverSUb'CUbe (having varying number of faces as mterfaces;r)E\{
cube now shares a boundary (edges or faces or corner virtices

with at most 26 neighbouring sub-cubes. Since the intemacti
3. Repeat till finest level is reached. of the sub-cube with these neighbours is bounded by a cdnstan
)) _andthe information is only required locally we can assura¢ th
(a) Prolongation : prolongate the solution of the residuakne communication complexity is directly proportional teet
equation from the coarser level to the finer level and.g|culated area of the interfase(N/K)2/3,
add it to the previous approximate solution. Considering the ratio of computation to communication, we
(b) Post-Smoothing : Reduce high frequency errors by have: Computatior c*(N/K) and Communicatior: (N/K)?/3.
performing few iterations of Jacobi or Gauss—SeidelThe ratio that we obtain is O((N/K)Y3). Consider an em-
method with the new improved initial guess. At ev- barassingly parallel program, with communicat@(i), the ra-
ery iterative step of Jacobi or Gauss—Seidel comtio is ~ O(N/K). This implies that the algorithm becomes 1/0O
municate the defect onaster andHalol DOFs bound at a quicker rate than an embarrassingly parallel pro-
across processors using ParFECommunicator. gram. However, the problem can be hard to scale linearly, i.e
with a c1 fold increase in size of the problem (through a highe
level of refinement), we can scale the problem with c1 times
more processes. Also, the other way to achieve this is if we ca
increase compute by a factor of c2. Then again we can scale it
with c2 times more processes.

(b) Communicate theHalo2 DOFs after the pre-
smoothing step.

until convergence to solution is achieved.

(c) Communicate thelalo2 DOFs after the post-
smoothing step.

6. Numerical Results

6.1. ParMooN

The above discussed parallel data structures and thegdarall
multigrid solver are implemented in our in-house package Pa
MooN [10]. It is built on MooNMD (Mathematics and object
oriented Numerics in MagDeburdiﬂlZ]. These packages are
built using Object Oriented C++. In addition, interfacesttoe
following parallel direct solvers are also implemented.

N
=3
S

MUMPS is a parallel direct solver based in MPI implemen-
tations EBEM] The object-oriented approach of ParMoahl! h
enabled the implementation of MUMPS in ParMooN without
much overhead in computation and memory. MUMPS is im-
plemented in such a way that both the distributed and shared
memory model from ParMooN can call. The system matrix
and load vector is provided as an input to MUMPS in a dis-
tributed mannet,e., each MPI processor maps its entries in the
distributed system matrix to the global system matrix by the
method discussed in section 412.7.

PastiX is a parallel direct solver, similar to MUMPS, based Figure 5: Solve time with a P1 element on Gridl
on MPI implementation. It was developed at inria labs [15].

While ParMooN exclusively uses a CSR data structure for stor

ing matrices, PastiX requires the input to be provided in £CS 20
format. Considering the symmetry available in the FEM sys-
tems, the interface to the solver can be realized with Idtler-
head. As discussed above, the global id of the DOFs help in
providing the matrix input in a distributed format.

The computations are performed on the SahasraT XC40 ma-
chine at SERC, Indian Institute of Science, Bangalore. Td&e S
hasraT XC40|_L_1|6] is an Intel Haswell2GHz based CPU clus-
ter with 1376 nodes accounting to,®24 cores in total, and a
memory of 128 GB per node. For the comparison of solvers,
the experiments are performed on the Tyrone cluster at SERC Figure 6: Solve time with a P2 element on Grid2
[@]. This cluster is a heterogeneous cluster composed @f tw
types of nodes, 9 nodes with 32-cores each and 8-nodes with
64-cores each. The 32-core node has a 2.4GHz AMD Opteron .))
6136 processor and 64GB RAM. The 64-core node has 2_ZGH§¢|deI method is u;ed as smoother at all the levels of multi-
AMD Opteron 6274 processor and 128GB RAM. grid. Three smoc_>thmg iterations are performed on each pre-

Next, to quantify the parallel performance of the developeoam_j post-smoqthmg steps. On the coarsest grid the Gauss—
parallel scheme, the following parameters are calculated: Seidel method is used to solve the system exacily.

Speedup : The ratio of the total time taken by the reference set _ . .

of processors to the total time taken by a given set of pracess 6.3. Comparison of ParMooN Multigrid and Direct Solvers

Ideal speedup : The ratio of the number of processorsin The memory overhead in direct solvers are comparatively
a given set to the number of processors in the reference set. higher than the overhead in iterative solvers for a problém o
Parallel efficiency : The ratio of the speedup to its Same size. It is one of the major advantage of using iterative

—=PasTi x

——Minps

-
o
=]

—Miltigrid

o
S

e S S ——

Sol ve tine(in seconds)
=
o
8

o

8
No. of processes

——PasTi x

150 A ——Minps

——;—_-_;_qf/”////, —Miltigrid

100,

50 1 —

Sol ve ti ne(in seconds)

4 8
No. of processes

ideal speedup. solvers over direct solvers, especially in large scale lerob.
However, the iterative methods will be inefficient for solgi
6.2. Model Problem system of equations with multiple right hand sides (RHS}e Th

_ . _ N direct solvers on the other hand factorize the system maitilix
We consider the heat equation with the Dirichlet boundarypnce, and the solution for multiple RHS can be obtained by for

condition ward elimination and backward substitution. Direct scwdso
ou . prove to be efficient for time-dependent problems when tke sy
50 Au=f in(0,T]xQ, tem matrix does not change in time as the system matrix needs

to be factorized only once at the beginning.

Two types of geometric grids are considered here. Grid 1
as the model problem. Here, the used end tifme: 5 and consists of 262,144 cells afy finite element is chosen on this
domainQ := (0, 1)%. Further, the Dirichlet boundary value and 91d- Grid 2 consists of 32,768 cells aiy finite element is
the source ternf are chosen in such a way that the solution ~ cnosen on Grid 2. Both grids contain 274625 DOFs. It can be

seen from Figurels|5 amd 6, the multigrid solver performs bet-
u(t, x,y, 2) = e % sin(rx) cosfry) cosrz) ter among the considered direct solvers. Also observedis th
the compute time involved is lower when higher order element
satisfies the heat equation. The domain is triangulated int@P2 element) are considered, with the same system size. This
tetrahedral cells. Further, the standard Galerkin finieneint is because of a better rate of convergence (fewer number of it
method and the Crank-Nicolson scheme are used for the kpatiarations) with higher order finite elements. However, it Aas
and temporal discretization, respectively. The used titep s adverse effect on the direct solvers as higher order elemelat
is 0.01 and it results in 500 time steps in total. The Gaussatively decrease the sparsity of the system. This couldtriesu

8

u0,xy,2=0 in Q,

increased fill-in during the factorization step and thereigyer

compute time with direct methods. 10° 4
- :?‘,%%
6.4. Performance of ParMooN £ 107 .\'§f\4 t\'
We finally perform an array of computations for the model 2 :l:'“a“zzlt!on I\.’\“\:
problem with different number of MPI processors on the Sahas = +SZT§;219 "9 —
raT machine. In this study, a hierarchy of six multigrid lsve o/ [+ Total Execution e &
with piecewise linear finite elemen®;, and up to 1080 MPI 10 %030 60 120 240 480 960

processors are used. The finest level consists of BlH368 Number of Processors

cells and 135005 697 DOFs, whereas the coarsest level con-

sists of 24576 cells and 4913 DOFs. Figurels| 7] 8 afél 9 Show rigyre 7: Time taken for initialization, assembling andving the model prob-
the time taken, speedup and parallel efficiency for inietion, lem with 135005 697 DOFs.

assembling the system matrix, solving the system and thé tot
execution time by different number of MPI processors. Tlie in
tialization step consists of allocation of memory, constian 102
of ParFEMapper and ParFECommunicator. The time taken fc

assembling the mass, stiffness matrices and load vectbeis t /'Z

assembling time in FidJ7. The time spent by the multigrid /’
solver including the communication time during restrintend | //
prolongation steps is termed as a solving time. The totatexe % =Initialization
tion time is the total time taken for solving the entire pel % *Assembling
The total execution time is reduced from.18 hours with 24 / :?g:‘;:”gxecutim
processors t0.85 hours with 1080 processors. The algorithm | A

030 60

e ey

Speed Up
=

Il Il
120 240 480 960
Number of Processors

N,

scales up very well to 960 processors.

The initialization step has two expensive steps, the master
slave DOF verification step and the mapping step. These stepsrigure 8: Speedup obtained in model problem with, T8 697 DOFs.
depend on the inter-process communication, and the sending
and receiving message size for mapping between neighbor-
ing processors will be huge when fewer processors are used.

With a huge increase in the number of processors, the sendirsgaling when solving vector problems like Navier—Stokesimo
and receiving message size between neighboring processors els. TabldIl shows that for 1080 processors more time is spent
creases, and a much faster communication is observed gfurthon communicating rather than solving, and thus the solver is
a large sized memory allocation is performed while usinggiew not expected to scale any further. It is due to the fact that th
processors, and thus increasing the initialization cosbwH entire mesh on the coarsest level has on§18 DOFs, and as
ever, the parallel efficiency of the initialization decressvhen a result only 4 to 5 own DOFs on each MPI processor while
the number of MPI processors is kept on increasing as the venysing 1080 processors. The multigrid method spends most of
smaller size message becomes communication intensive. Nels time on the coarser levels and the algorithm becomes com-
ertheless, the parallel efficiency of the initializatioasts more munication intensive and computationally less intensveve
than one even for 1080 processors. Note that the initigdmat move towards coarser levels. Hence, the algorithm is erpect
step is a one step process, and still is very efficient. Heihce, to suffer while using higher number of processors if the sear

is not a major concern for further scaling of the proposed-alg levels do not possess sufficiently many DOFs.

rithm.

Next, the assembling step is parallel efficient as expected,
since assembling does not require any communication. More
over, the super linear curve of assembling can be attribiated
the cache effect. The challenging step with respect to thk sc
ing of the algorithm is the solver. Multigrid is very efficien

w

=|nitialization

*Assembling e
oL|*+Solving
4 Total Execution

Parallel Efficiency

compared to MUMPS as seen earlier in Figule 6 but fails tc S — N
scale as similarly as initialization and assembling. Evéth w 1 —_— ¥
S .) o
communication, the time taken by the solver is much less tha —
the assembling time. It gives an indication that the conside o
24 30 60 120 240 480 960

problem is not computationally intensive, as assembling ha
O(n) complexity. Nevertheless, the scaling of solving time is
good up to 960 processors. Scalar problems are not so com-
putationally expensive compared to Navier—Stokes probli@m Figure 9: Parallel Efficiency for the model problem with 1865 697 DOFs.
higher dimensions. The algorithm is expected to show better

9

Number of Processors

Total

MPI Initialization | Assembling| Solving | Communication| S&C A,S&C | Total Execu-
Ranks (A) (S) © tion

24 140.48 757.41 186.25 | 5.82 192.08 | 949.49 | 1089.97
30 107.62 576.76 158.38 | 4.95 163.32 | 740.08 | 847.70
60 43.37 350.02 78.05 2.33 80.38 | 430.40 | 473.77
120 23.13 178.86 46.30 3 2.33 227.50 | 250.63
240 5.59 90.17 22.12 2.14 2424 | 114.41 | 120.00
480 2.91 45.51 11.15 1.13 12.28 | 57.79 60.70
960 2.14 21.91 6.72 3.51 10.23 | 32.14 34.27
1080 | 2.34 20.52 5.53 4.38 9.88 30.40 32.74

Table 1: Execution time in seconds for the model problem.

7. Summary [9] G. Karypis, V. Kumar, Metis — unstructured graph pastiing and sparse
matrix ordering system, version 2.0, Tech. rep. (1995).

Objected-oriented parallel finite element algorithms with [10] Parmoon. S
URLhttp://nnsc. serc.iisc.in/parnoon/

data structure to handle geometrig multigrid me.thOd haenbe [11] F. Schieweck, A general transfer operator for arbjtrdinite ele-
proposed. The proposed parallel implementation supp@gkts h ment spaces, Preprint 25/00, Otto-von-Guericke-Unitérsilagdeburg,
brid MPI-OpenMP computations. The design and implemen- Fakultat fir Mathematik (2000).

. :] V. John, G. Matthies, MooNMD - a program package basedhapped
tation of two Classes’. ParFEMapper "’.‘”d _ParFEC_ommumcaté]rz finite element methods, Comput. Visual. Sci. 6 (2-3) (20B8-1L70.
that handle the mapping and communication routines actbss 813] P. R. Amestoy, |. S. Duff, J-Y. LExcellent, J. Kostel fully

MPI processors are discussed in detail. The proposed paral- asynchronous multifrontal solver using distributed dyiarschedul-
lel finite element solver was compared with the parallelatire ing, SIAM J. Matrix Anal. Appl. 23 (1) (2001) 15-41 (election

) doi : 10. 1137/ S0895479899358194,
solvers MUMPS and PasTiX. The performance of the solvef 4] P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, S. IBraHybrid

1
was analyzed and a good speedup was observed for a reasonablé scheduling for the parallel solution of linear systems afeir Compui.
problem size. More performance analysis for computatignal 32 (2) (2006) 136-156doi : 10. 1016/ . par co. 2005. 07. 004!
intensive models such as Navier-Stokes problems will be paft5] Pastx. _ . _
f our future work URLhttp://pastix.gforge.inria.fr/files/ READMVE-txt. htm
0 : [16] 'Sahasrat.
URLhttp://ww. serc.iisc.in/facilities/cray-xc40- naned- a:
[17] Tyrone.
Acknowledgment URLhttp://ww. serc.iisc.in/facilities/tyrone

The authors would like to thank Supercomputer Education
and Research Centre, Indian Institute of Science (lISa)gBa
lore for proving access to the supercomputer SahasraT.

References

[1] Y. Saad, lterative Methods for Sparse Linear Systemsie®pfor Indus-
trial and Applied Mathematics, 2003.

[2] E.Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, U. M. YaAgsurvey
of parallelization techniques for multigrid solvers, Ri@lgrocessing for
scientific computing 20 (2006) 179-201.

[3] V. John, P. Knobloch, G. Matthies, L. Tobiska, Non-nestaulti-level
solvers for finite element discretizations of mixed probdei@omputing
68 (2002) 313-341.

[4] B. W. Forde, R. O. Foschi, S. F. Stiemer, Object-orierfiade element
analysis, Computers & Structures 34 (3) (1990) 355 — 374.

[5] J. Mackerle, Object-oriented programming {REM} and bem: a bib-
liography (19902003), Advances in Engineering Softwar€52004)
325 — 336.

[6] D. Servranckx, A. Mufti, Data structures for finite elentenodelling,
Engineering Computations 3 (1) (1986) 27-35.

[7] P. Dadvand, R. Rossi, E. Ofate, An object-oriented remvnent
for developing finite element codes for multi-disciplinaapplications,
Archives of Computational Methods in Engineering 17 (3)1(@0253—
297.

[8] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite elementhngeserator
with built-in pre-and post-processing facilities, Intational Journal for
Numerical Methods in Engineering 79 (11) (2009) 1309-1331.

10

http://nmsc.serc.iisc.in/parmoon/
http://nmsc.serc.iisc.in/parmoon/
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.1016/j.parco.2005.07.004
http://pastix.gforge.inria.fr/files/README-txt.html
http://pastix.gforge.inria.fr/files/README-txt.html
http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat/
http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat/
http://www.serc.iisc.in/facilities/tyrone
http://www.serc.iisc.in/facilities/tyrone

	1 Introduction
	2 FEM and iterative methods
	3 Object oriented Finite Element methods
	4 Parallel Data Structures
	4.1 Mesh Partitioning
	4.2 ParFEMapper - Parallel Finite Element Mapper
	4.2.1 Cell nomenclature
	4.2.2 DOF Nomenclature
	4.2.3 Mapping of DOFs across processors
	4.2.4 Halo1 DOFs and Halo2 DOFs
	4.2.5 Dependent1 DOFs and Dependent2 DOFs
	4.2.6 DOF Reordering
	4.2.7 Local to Global Mapping for Direct Solvers

	4.3 ParFECommunicator - Parallel Finite Element Communicator

	5 Parallel Multigrid Solver
	5.1 Construction of Hierarchy of Meshes in Parallel
	5.2 Global Cell Number in Hierarchy of Meshes
	5.3 Parallel Multigrid Cycle
	5.4 Restriction and prolongation operators
	5.5 Complexity
	5.5.1 Computational complexity
	5.5.2 Communication Vs Computation

	6 Numerical Results
	6.1 ParMooN
	6.2 Model Problem
	6.3 Comparison of ParMooN Multigrid and Direct Solvers
	6.4 Performance of ParMooN

	7 Summary

