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A graph based framework for the de�nition of tools dealing withsparse and irregular distributed data-structures1Serge Chaumette, Jean-Michel Lépine and Franck Rubi{Serge.Chaumette, Jean-Michel.Lepine, Franck.Rubi}@labri.u-bordeaux.frTel.: (+33 5) 56 84 69 04 � Fax: (+33 5) 56 84 66 69LaBRI, Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, 351 Cours de laLibération, 33405 Talence, France.
KeywordsProgramming Environments, Data Parallelism, Tools, Visualization, Sparse Data Structures, Distributed DataStructures, Irregular Data Structures, GraphsAbstractIndustrial applications mainly use standard data structures such as matrices, but most of the time provide a speci�cproblem-oriented implementation, e.g. Compressed Sparse Column (CSC) � see for instance SPARSKIT[21]. Spe-ci�c implementations are especially oftenly used when dealing with large sparse and irregular data-structures, suchas matrices coming from the domain of �nite elements[23]. The gap between the implementation and the abstractdata structure it implements is even bigger when considering data parallel applications where data structures aredistributed over a network of processors. Hence there is a need for tools that make it possible for developers tovisualize both their data, their structure, and the operations that are applied to it, whatever their e�ective im-plementation and their distribution are. Such tools must provide high level views, i.e. abstract from the physicalimplementation to reach the developer's view. They must carry the semantics of the applications and providesynthesis or �ltering mechanisms that make it possible to focus on a speci�c aspect of the problem.In this paper, we present a framework which we have setup to support the development of such tools, andprototypes tools based on it which we have developed. The resulting environment is composed of two layers: the�rst layer is a model that we have de�ned and implemented as high level libraries that make it possible to e�ciently1This works is supported by the French GDR-PRC PRS. 1



abstract from the implementation; the second layer o�ers prototype tools built on top of these libraries. These toolsare integrated within a graphical environment called Visit[7] which is part of the HPFIT research e�ort2[7, 8, 9].HPFIT is a joint project involving three research laboratories: LIP in Lyon, France, LaBRI in Bordeaux, France,and GMD/SCAI in Bonn, Germany. The aim of this project is to provide an integrated HPF developmentenvironment that supports sparse and irregular data structures.1 Introduction and related workThe two main research directions within the data parallel framework are expressionmodes (or languages)and tools.Expression is widely studied. The aim of many initiatives is either to introduce sparse and irreg-ular data structures in data-parallel languages (see [4, 5]) or to develop dedicated libraries, to provideprogrammers with ready implementations of possibly sparse distributed data structures (see for instanceSPARSEKIT[21], P-SPARSLIB[22] or PETSc[20]).Tools exist, but they mainly deal with regular (HPF-like) data structures (see for instance EPPP[16],P2D2[13], Pharos[25], Paradyn[18]). We will not describe all of them in this paper because they are lessrelated to our goal which is to deal with irregular data structures (see [19] for a complete survey).Concerning irregularity there is still a lot to be done in terms of tools that would help users to tacklethe paradigm of data-parallel programming. Nevertheless, the research which has been done duringpast years in the area of message passing has proven quite successful in providing support to end-users(see for instance TOPSYS[2, 3, 6]). Both hardware and software vendors supply environments of theirown. Furthermore, public domain tools (such as ParaGraph[15]) are now being delivered either as fullysupported or simply as ported tools. These tools that were used when dealing with message passingapplications can still be used within the framework of data parallelism provided the execution supportis distributed (in which case the compiler translates data parallelism to message passing parallelism).2This work is partly supported by the CNRS-INRIA project ReMaP and by the French GDR-PRC PRS.2



Nevertheless, there is a lack of relationship between the information they provide (which is in terms ofmessages) and the semantics of the application (which is in terms of data). This makes them hardly usableto explore the algorithmic behavior of the application, although they can still be useful for performancemeasurement. The reason for this lack of adequation is that the behavior of an algorithm is most of thetime better understood when considering the abstract structure it works with, rather than the physicalimplementation of this data structure. For instance if the algorithm handles a tree that is implementedusing a vector, it is most probably the case that this algorithm can be better understood in terms ofthe tree than in terms of the vector. One of the reasons why high level tools are missing is that theyrequire information that cannot always be accessed easily, such as distribution of data. A convenient wayto proceed is to rely on the user to supply these information. This is the approach which is for instanceimplemented in IVD[14]. This is always quite heavy for the programmer. Another manner is to havelibraries that �instrument� the basics of the language and which are linked to the application at the sametime as the language libraries themselves. This is the approach which is achieved in one of PTOOLSprojects called Distributed Array Query and Visualization (DAQV [17]). This is not straightforwardlyportable.Our approach is quite di�erent. Our aim is not to provide support for using sparse and irregulardata-structures inside applications: we want to provide tools dealing with such data structures at a highlevel of abstraction. Furthermore, we want to make it easy to develop such tools. Hence, we �rst designedlibraries to abstract from implementation and distribution of data structures. These libraries are portableand rely very little on the programmer. We then developed tools based on these libraries. In this paperwe present both the concepts of these libraries and the tools based on them.The rest of this paper is organized as follows. We �rst describe the overall architecture of the modelwe propose in section 2. Section 3 introduces the way we modelize data structures. We then describe thethree current levels of our model in sections 4, 5 and 6. Section 7 presents the general principles of thetools based on our model. It is illustrated with two software components which we have developed: DataDistribution Display and Trace Data Display. We eventually sketch future work directions.
3



2 General architecture of the modelOur model is composed of four levels. Each of these levels, i.e. implementation, abstraction, mappingand view is a graph (�gure 2):1. IGraph: the Implementation Graph (�gure 1(a)) describes the implementation of the data structure,in terms of data items and access functions, i.e. the way they are accessed within the application �e.g. three vectors for a Compressed Sparse Column Storage.2. AGraph: the Abstraction Graph (�gure 1(b)) describes the abstract data structure the applicationdeveloper has in mind � e.g. a matrix.3. MGraph: the Mapping Graph describes the relationship between the IGraph and the AGraph. Thisgraph is a bridge that carries the semantics between the implementation and the abstraction.4. VGraph: the View Graph (�gures 1(c) and 1(d)) describes how a tool will eventually see the datastructure � e.g. a column of a matrix. This level provides for synthesis and �ltering of information.It is not yet implemented (see section 8), but one can work with the AGraph, which is equivalentto having an identity between the AGraph and the VGraph.Although this will not be detailed here, the model provides the same e�ciency when working at themapping graph level or at the implementation graph level (see �gure 3).3 Modelization of a data structureWe de�ne a data structure in terms of entry points and access functions. This approach re�ects the waya data structure is implemented. It leads to a modelization in terms of a graph. For instance a vectorint v[10] can be represented by a graph, the root of which is v[0] and the nodes are v[i].De�nition 1 Data structureA data structure DS is a set of data items that are structured by means of access functions.DS = (D; d; F; e; E)where : 4
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(b) Abstraction as a matrix

(c) View as a matrix (d) View as a columnFigure 1: Architecture of the framework� D is the set of data items;� d is a positive integer representing the number of access functions;� F is a d-uple of access functions;� e is a positive integer representing the number of entry points;� E is the set of entry points in the data-structure.Irregular data structures can be described using this framework: the nodes of the data structure graphcan themselves be data structures, i.e. graphs.Access functions fi express how one accesses the basic data items. Note that for the same implemen-tation there might be di�erent sets of access functions, depending on how the programmer accesses the5
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Figure 3: E�ciency of the model levelsdata-structure.De�nition 2 Access functionAn access function is a function over the nodes of the data structures that being given a node producesanother node. f : N �! Nn 7�! f(n)Each access function makes it possible to move within a dimension of the data-structure.In other words, a data-structure is a graph, the nodes of which contain the data items, the vertices ofwhich represent access functions.De�nition 3 A data structure is a graphDS = (N; d; F; r; R)6



where :� N is a set of nodes;� d is the number of successor functions;� F is a d-uple of successor functions;� r is the number of roots of the graph.� R is the set of roots of the graph.There are some data structures, where each data item can be accessed directly, like sets; we call themdirect access data structures.De�nition 4 Direct access data-structureA data structure DS = (D; d; F; e; E) is said direct access if and only if E = D, d = 0, F = ; ande = jDj.In such a case all of the data items of the data structure are roots of the graph used to describe it.In [7], we introduce further de�nitions based on previous work by M. Alabau[1], that provide matrix-like notations for multi-dimensional objects represented by graphs.4 Describing the implementation data structureIn this section we present an example, the aim of which is to illustrate how the de�nitions of section 3can be used to model an e�ective implementation.The implementation contains three vectors of di�erent sizes. An entry point is added to obtain aconnected graph. The nodes are the values of the three vectors plus the entry point. We give threesuccessor functions; each function allows to access the nodes of one of the three vectors.This graph may match a Compressed Sparse Column implementation of a sparse matrix. It mayalso be interpreted as a Compressed Sparse Row implementation, or as any other data structure. Theinterpretation of this implementation as a graph does not describe the semantics of what is e�ectivelyimplemented. The bene�t is that the description of this graph by the programmer is straightforward.7
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Figure 4: A graph modelization of the irregular structureFigure 5 shows a sample of the code the programmer must write in order to describe this implemen-tation.5 Describing the abstraction data-structureWe call abstraction the abstract data structure that the user wants to manipulate. Since an abstractionis itself a data-structure, it can be represented by an entry point and access functions, i.e. a graph. Theaim of the abstraction is to o�er an interpretation of the implementation. For instance the three vectorsof section 4 can be interpreted as a CSC storage of a matrix (see �gure 6).Hence, abstracting from an implementation consists in mapping the implementation graph to theabstraction graph.6 MappingThe mapping establishes a correspondence between the implementation graph and the abstraction graph.It is used to move from the abstraction to the implementation and vice-versa.It is a graph, the nodes of which are de�ned as a pair containing both a node of the implementationgraph and a node of the abstraction graph. Such a node can only exist provided there is a node of theimplementation corresponding to the given node of the abstraction (the abstraction which is dense usuallyhas more nodes than the implementation which is sparse). Assume we have a function that given a node8



of the abstraction returns either a node of the implementation or NULL (probably a hole in the sparsedata structure). Now on we will call this function abs_to_imp.We can then de�ne the nodes of the mapping graph as follows:De�nition 5 Nodes = f(abs to imp(anode); anode)=anode 2 agraphe nodesgRemark We can also de�ne a function imp_to_abs (implementation node to abstraction node). Itallows another symmetric de�nition of the mapping graph. The user can de�ne the two functions (to gaine�ciency). One of these functions may be di�cult to write: it can be left to the tools to construct itusing the other function, storing this information in a hash table.7 UsageThe framework presented above is being used to develop high level tools. In this section we present twoprototypes.7.1 General principleUsing our libraries, high level tools work only with graphs, which they can for instance scan, using eitherof the loops shown �gures 7 and 8.Furthermore, the library makes it possible to attach additional information to any node of any of thegraphs. This is used for instance by the traces visualization tool described below.7.2 E�ective usageThe goal of our tools is to o�er a set of software components to visualize and analyze the behavior ofdata-parallel programs in terms of the data they work with. The framework presented above is being usedto develop these tools. They are implemented either in terms of abstraction graphs, mapping graphs orview graphs.As of writing, some of these tools are available as prototypes. This section describes two of them:DDD (Data Distribution Display) and TDD (Trace Data Display). Parts of these tools are components9



of the HPFIT project. A complete description can be found in [12]. We only present screen dumps here.They come from a Cholesky factorization of a sparse symmetric positive de�nite matrix. The parallelmachine which has been used to run it to collect traces is an IBM SP2.We interfaced our tools with a data parallel system. The source program is written in a HPF2-likelanguage and compiled using ADAPTOR[10] extented with a library called DDDT (Distributed DerivedData type for Tree). This library allows the manipulation of hierarchical access irregular data structures[7].For an e�cient parallel execution, a speci�c irregular distribution[11] is used.7.3 Data Distribution DisplayFigure 9 shows the distribution of the data on the virtual processors (one color by processor).Using the mouse, the user may select a virtual processor (resp. data) and visualize the correspondingdata item (resp. processor). Data Distribution Display can be used before the execution if the distributionis regular or computable.7.4 Trace Data DisplayThe parallel application is instrumented to generate traces in terms of accesses to data items. At runtime,a trace collector records events on each processor. Filtering methods are used to limit the amount of traces.Trace Data Display is a post mortem tool based on runtime generated traces and on the mapping graphof our model.Figure 10 shows which data items are involved in remote read operations during the �rst part ofthe Cholesky factorization [11]. This can for instance help the user to estimate the quality of the datadistribution.8 Conclusion and future workIn this paper we have set up a formal approach to the modelization of sparse and irregular data structures.Using this framework, we have shown that it is possible to describe implementations, only introducingsemantics in the mapping from the implementation to the abstraction. Depending of what they are doing,10



tools build on top of this framework can either use the abstraction graph, or, to be more e�cient, use themapping graph that makes it possible to scan the data structure avoiding to look at holes.Another level of abstraction that we still have to implement is that of �ltering. Assume that withinour model, we are provided with an abstraction that represents a matrix as shown �gure 11(a). The usermay want to see either the matrix itself, or, for instance, a given row of this matrix (see �gure 11(b)),or even all items of each row as a unique item, i.e. he needs to �lter the abstraction. Therefore we areworking on the de�nition of a view graph with a mapping from the abstraction to it.The next steps within this project are:1. designing libraries that would provide standard abstractions using this model for standard imple-mentations, like those of SPARSKIT for instance;2. extending the high level tools based on this model, to add them to Visit[7] inside the HPFITenvironment;3. validating the tools with the end-users to propose views adapted to their needs;4. interfacing this framework to existing software environments such as DAQV[17] or EMILY[24].References[1] M. Alabau. Une expression des algorithmes massivement parallèles à structures de données irrégulières. Thèse,LaBRI � Université BORDEAUX I, September 1994.[2] T. Bemmerl. An integrated and portable tool environment for parallel computers. In Proceedings of the IEEEInternational Conference on Parallel Processing (St. Charles, USA), pages 50�53, 1988.[3] T. Bemmerl and A. Bode. An integrated environment for programming distributed memory multiproces-sors. In Bode A., editor, Proceedings of the Second European Distributed Memory Computing Conference(München), Volume 487 of Lecture Notes in Comput. Sci., pages 130�142. Springer-Verlag, 1991.[4] A. J. C. Bik and H. A. G. Wijsho�. Compilation techniques for sparse matrix computations. Technicalreport, University of Leiden. 11



[5] A. J. C. Bik and H. A. G. Wijsho�. Advanced compiler optimizations for sparse computations. Journal ofParallel and Distributed Computing, (31):14�24, 1995.[6] A. Bode. Developments in distributed memory architectures. In Proceedings of Microsystem '90 (Bratislava,CSSR), 1990. Also in Technische Universität München, Institut für Informatik, Sonderforschungsbereich 342:Methoden und Werkzeuge für die Nutzung Paralleler Rechner Architekturen, TOPSYS, Tools for ParallelSystems, TUM-I9013, SFB-Bericht Nr. 342/9/90 A, January 1990, seiten 11�16.[7] T. Brandes, S. Chaumette, M.-C. Counilh, A. Darte, J.C. Mignot, F. Desprez, and J. Roman. HPFIT: A Setof Integrated Tools for the Parallelization of Applications Using High Performance Fortran: Part II: DataStructures Visualization and HPF Support for Irregular Data Structures with Hierarchical Scheme. ParallelComputing, 1996. Edited by J. Dongarra and B. Tourancheau.[8] T. Brandes, S. Chaumette, M.-C. Counilh, A. Darte, J.C. Mignot, F. Desprez, and J. Roman. HPFIT: A Setof Integrated Tools for the Parallelization of Applications Using High Performance Fortran: Part I: HPFITand the TransTOOL Environment. Parallel Computing, 1996. Edited by J. Dongarra and B. Tourancheau.[9] T. Brandes, S. Chaumette, and F. Desprez. TransTOOL: a tool for porting scienti�c applications on par-allel distributed memory machines. In 2nd European School of Computer Science, Parallel ProgrammingEnvironments For High Performance Computing, 1996.[10] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF Programs. In K.M. Deckerand R.M. Rehmann, editors, Programming Environments for Massively Parallel Distributed Systems, pages91�96. Birkhäuser Verlag, April 1994.[11] P. Charrier, Fack L., and J. Roman. Block data partition for parallel nested dissection. In Proceedings of the7th SIAM conference on parallel processing for scienti�c computing. Siam Editions, 1995.[12] S. Chaumette, F. Rubi, and Lepine J.M. Internal report, LaBRI, Université Bordeaux-I, 1997. To bepublished.[13] Doreen Cheng and Robert Hood. A portable debugger for parallel and distributed programs. In Proc. ofSupercomputing'94, 1994.[14] M.C. Hao, A.H. Karp, M. Mackey, V. Singh, and J. Chien. On-the-�y visualization and debugging of parallelprograms. 12
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1 /*****************************************************************************2 IMPLEMENTATION NODE INDEX DEFINITION3 ******************************************************************************/4 extern IDS iDS; /* The Irregular Data Structure */5 /* composed here of 3 Vectors of different sizes */6 /*---------------------------------------------------------------------------*/7 struct IDSIndex{8 int d0; /* an index for the Irregular Data Structure, a value */9 int d1; /* di (i=0, 1 or 2) give a position in the corresponding vector */10 int d2;11 };12 /*---------------------------------------------------------------------------*/13 /* function used to create a new IDSIndex */14 IDSIndex idsindex_new(int v0, int v1, int v2){15 ... allocate the idsindex and copy v0, v1, v2 to do, d1, d2 ...16 return iDSIndex;17 }18 /*****************************************************************************19 IMPLEMENTATION GRAPH DEFINITION (IGraph)20 ******************************************************************************/21 /* function used to give the index root */22 static IDSIndex getRoot(IGraph iGraph){23 return idsindex_new(-1,-1,-1));24 }25 /*---------------------------------------------------------------------------*/26 /* this function returns the next node if exists in dimension dim */27 static IDSIndex next( int dim, IDSIndex iDSIndex){28 /* we allow only move in one vector at a time */29 /* => only one di must be different of -1 */30 /* at the end of a vector, we return NULL value */31 switch (dim) {32 case 0:33 if ((iDSIndex->d1 != -1) || (iDSIndex->d2 != -1)) return NULL;34 if (iDSIndex->d0 < iDS->V0_size-1)35 return idsindex_new(iDSIndex->d0+1,iDSIndex->d1, iDSIndex->d2));36 break;37 case 1: ... the same as case 0 but for dimension 1 or 2 ...38 case 2:39 }40 return NULL;41 }42 /*---------------------------------------------------------------------------*/43 /* this function returns for an iDSindex the corresponding value */44 static void * getNodeValue( IDSIndex iDSindex){45 /* only one di (i = 0,1 or 2) has a value different from -1 */46 if (iDSIndex->d0 != -1) return (void *) &(iDS->V0[iDSIndex->d0]);47 if (iDSIndex->d1 != -1) return (void *) &(iDS->V1[iDSIndex->d1]);48 if (iDSIndex->d2 != -1) return (void *) &(iDS->V2[iDSIndex->d2]);49 return NULL;50 }51 /*---------------------------------------------------------------------------*/Figure 5: IGraph description14
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Figure 6: Abstraction as a dense matrix graph

1 void2 agraph_MatrixOperation(AGraph agraph,3 void (*matrixOperation)(int i, int j, void *value)){45 ANodeIndex i0, ij;67 for (i0=agraph_getRoot(aGraph); i0!=NULL; i0=anodeindex_next(0, i0))8 for (ij=anodeindex_clone(i0); ij!=NULL; ij=anodeindex_next(1, ij))9 matrixOperation(anodeindex_depth(0, ij),10 anodeindex_depth(1, ij),11 anode_getValue(ij));12 }Figure 7: Scanning the data structure through the abstraction graph
15



1 void2 mgraph_MatrixOperation(MGraph mgraph,3 void (*matrixOperation)(int i, int j, void *value)){45 MNodeIndex i;67 for (i=mgraph_getRoot(mGraph); i!=NULL; i=mnodeindex_next(0, i)){8 ANodeIndex a=mnodeindex_getANodeIndex(i);9 matrixOperation(anodeindex_depth(0, a),10 anodeindex_depth(1, a),11 anode_getValue(a));12 }13 }Figure 8: Scanning the data structure through the mapping graph

Figure 9: Data Distribution

Figure 10: Trace Data16
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(a) Abstraction as a matrix �
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