
DANTE – The combination between an Ant Colony Optimization algorithm and
a Depth Search method

Pedro Cardoso – Mário Jesus
EST – Universidade do Algarve

8005-139 Faro, Portugal
pcardoso-mjesus@ualg.pt

Alberto Marquez
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Abstract

The ε-DANTE method is an hybrid meta-heuristic. In
combines the evolutionary Ant Colony Optimization (ACO)
algorithms with a limited Depth Search. This Depth Search
is based in the pheromone trails used by the ACO, which
allows it to be oriented to the more promising areas of the
search space. Some results are presented for the multiple
objective k-Degree Spanning Trees problem, proving the
effectiveness of the method when compared with other al-
ready tested evolutionary methods.

1. Introduction

It is well known that, very often, the use of pure Evo-
lutionary Algorithms has a lack of performance, namely in
the optimization of large combinatorial problems instances.
Moreover, the majority of the evolutionary meta-heuristics
have some common characteristics. For example, they usu-
ally reach good approximations to the optimum solutions
(despite the difficulties to refine those approximations, i.e.,
getting to the real optimum). Often only the best solution(s)
are kept. The other solutions are discarded without further
exploration, which forgets the expensive computational ef-
fort necessary to build them. Examples of top perform-
ing meta-heuristics that employ this methodology are the
Simulated Annealing, the Tabu Search, or the Ant Colony
Optimization algorithms [11]. Therefore, this strategy does
not allow a proper local exploration of the eventually more
promising regions of the search space. In other words, the
neighborhoods of the obtained solutions do not go through
an exhaustive exploration.

Algorithmic hybridizations appeared as an effort to solve
some of the above mentioned problems. The improvement
of the methods by those combinations can give us the best

of several algorithmic strategies. In the implemented cases,
different possible hybridizations can be thought, like the use
of initial solutions via another method than the main one
(used many times for instance in the Genetic Algorithms to
obtain the initial population[9, 11]) or a local improvement
of the obtained solutions. Usually, hybrid methods are con-
sidered as the ones that use two or more methods in the
following sense: the primary methods are used to generate
more or less rough approximations to the problems solu-
tions, followed by other(s) method(s) that refine the earlier
solutions. Some examples of the application of the second
phase to the solution obtained by some meta-heuristic, are
the use of the 2-OPT or 3-OPT for the Travelling Salesman
Person [5], the SOP-3-exchange for the Sequential Order-
ing Problem [6], or the Iterated Local Search for the Bin
Packing Problem [10]. In [1] is presented the Beam–ACO,
which is a combination of a Beam Search heuristic with
an ACO algorithm. In this case, the solution construction
mechanism of standard ACO algorithms is replaced by the
solution construction mechanism in which each artificial ant
performs a probabilistic Beam Search. This is done by re-
placing the deterministic choice of a solution component at
each construction step by a probabilistic choice based on
transition probabilities.

In this paper, we propose a hybrid metaheuristic called
ε–Depth ANT Explorer (ε-DANTE), that uses an efficient
local search (adapted to a pheromone-oriented procedure).
More precisely, in each one of the ε-DANTE cycles, sets of
solutions are computed using a mandatory first phase that,
in some cases, is followed by an elective second phase that
depends on the quality of the former solution. More specif-
ically,

• In the first phase, similar to most ACO algorithm, a
solution is generated based in a constructive procedure
that successively adds selected components according
to a pseudo-random formula.
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• In the second phase, a limited depth search procedure
based on the best fitting solutions is made. In other
words, if the first phase outcome is within ε range to
the approximation set (the set of the best known per-
forming solutions) or improves this set, then a lim-
ited depth search procedure is applied. The same
pheromone trails, that were used in the first phase,
are also used here. This enhances the limitations of
the depth search methods by leading the procedure to
include the more promising components in the con-
structed solutions.

Therefore, this paper is structured as follows. The
ε-DANTE is described in the next section. In the third sec-
tion are presented some results and, in the last one, are
drawn some conclusions.

2. ε–DANTE – Depth ANT Explorer

The second phase local searches mentioned above (e.g.,
2-OPT, 3-OPT, . . . ) are used to refine the solutions, but do
not use the information acquired by the evolutionary meta-
heuristic, except for the base solution itself. Moreover, most
of the times the local search operator are applied to all solu-
tions even in the cases where they are not much promising.

To try to explore some of these weaknesses we devel-
oped the ε–Depth ANT Explorer (ε–DANTE) which is a
hybrid method. In fact, ε–DANTE is little more since, it is a
fusion between an Ant Colony Optimization method [4] and
an Depth Search method [8]. From this combination results
more than a meta-heuristic followed by the local search, as
we will see next.

The kernel of the method, similarly to the Ant Colony
Optimization method, has a set of cycles. In each cycle a set
of solutions is built using the pheromone trails. Those so-
lutions are themselves used to update the pheromone trails
and to update the set of (best) approximations to the prob-
lem solution: a single set for the single objective problems
or the Pareto set for the multiple objective case [3] (see Sec-
tion 3). Alternatively, the updating of the pheromone trails
can be done in a more greedy method using only the best
solutions that where obtained during the entire process [2].

One of the main ideas of the ε-DANTE, is to make a local
exploration of the best solutions. In other words, a solution
is attractive whenever certain quality pattern is achieved.
This can be quantified has the solution being within an ε
range from the best known solutions. In this case, the Depth
Search based on the earlier built solution is applied. This
strategy tries to avoid the, probably useless, computational
effort associated with the exploration of neighborhoods of
the worst solutions. The Depth Search is limited both in
the depth itself and in the number of possible branches of
the search tree. Furthermore, the depth search is oriented

1. Initialize the pheromone trail.

2. While stopping criterion is not met do

(a) For all ants do

• Construct a new solution, S, using the
current pheromone trail.

• If the distance of S to the approxima-
tion set is inferior to ε or S improves
the approximation set then apply a lim-
ited depth search procedure, based on the
pheromone trails, from that solution.

(b) Update the pheromone trail

Figure 1. ε-DANTE Algorithm

by the pheromone trails and the local heuristics used in the
Ant Colony method (Section 2.1 describes in more detail
the Depth Search phase).

The main ε-DANTE algorithm is sketched in Figure 1.

2.1 Depth Search phase

As referred, the fitness of each generated solution, S, is
compared with the fitness of the elements in the approx-
imation set, P (P is the approximation set: in the single
objective case it will be a singular set and in the multiple
objective case it will have the non-dominated solutions [3]
– see section 3.1). Then the limited depth search goes to

Level D – If S improvesP , that is, S is not worst than any
element of P ; or

Level d – If S is worst than some element of P , but its rel-
ative distance to the elements of the approximation set
is smaller than ε.

Here d and D are algorithm parameters and should verify
d > D. Furthermore, the number of branches used in each
level of the Depth Search, M , is also an algorithm parame-
ter.

Figure 2 presents a high level description of the process
where Function ε-DANTE Solution requires some
parameters besides the solution in construction T , namely

• ε – The ε parameter will influence the number of times
that the process enters in the Depth Search mode.
Small values will guarantee that only the solutions
with objective value near the best known solutions will
go into the oriented Depth Search. Larger values will
do the opposite.

• The algorithm contains a tabu list for each level, tabul,
that is initialized as empty set. This tabu list avoids
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Function ε-DANTE Solution(T )
l← |T | /*defines the level by the number of added

components*/
if T is a solution then

Set Δ as the relative distance from T to P
if Δ < 0 then /*T improves P*/

Update the approximation set with T
Update Δk (k = 1, 2, . . . , m) with T †

return D
else

if Δ < ε then
Update Δk (k = 1, 2, . . . , m) with T †

return d
else return 0

else
slevel← 0
NBranches←M
for k = 1 to NBranches

if ∃e∈E−tabul
: T ∪ {e} is admissible then

Choose an edge, e, from E − tabul ‡
Tabul ← Tabul ∪ {e} †

T ← T ∪ {e}
/*Recursive call*/
L←ε-DANTE SOLUTIONS(T )
if L > 0 then

NBranches← NBranches + M
slevel← max{slevel, L}

T ← T − {e}
else

break /*for*/
Tabul ← ∅ † /*clean the tabu list*/
return max{slevel− 1, 0}

Figure 2. ε-DANTE’s solutions exploration al-
gorithm (where the steps marked with † are
optional and the ones with ‡ are problem spe-
cific).

that the same solutions are rebuilt in the Depth Search,
by restricting the addition of the same componets in
the same level. The use of the tabu list is implementa-
tion dependent and should be thought according to the
cleaning tabul step, since it also restricts the construc-
tion of new solutions containing those components.

• The computation of the distance from T to the approx-
imation set P returns a non-positive value if T im-
proves P ;

• The update procedure consists in inserting T in P and
removing the elements of P that are worst than T .

• The update of Δk is optional since, if all solutions con-
tribute to the variation of the pheromones, the result
is a noisy trail with consequent lost of performance.
Alternative strategies include a greedy update where
only the best solutions contribute to the variation of
the pheromone trails, or even a more restricted selec-
tion over the approximation set (see section 3.4).

A more detailed description of the method can be found
in [2].

3 Some computational tests

3.1 Test problems - Multiple Objective k-
Degree Minimum Spanning problem

To test the ε-DANTE method it was considered the Mul-
tiple Objective k-Degree Minimum Spanning problem. A
k-Degree Minimum Spanning Tree is a minimal weight
spanning tree such that the maximum degree of any node
is k. The tree is built over a network (V , E ,W), where
V is the nodes set, E is the edges set, W : E →
IRm is the weight vector-function defined as W(e) =
(w1(e), w2(e), . . . , wm(e)), and m is the number of objec-
tives.

Here, since we have a multiple objective problem, min-
imal weight is considered in the Pareto optimality context.
That is, given two solutions X and Y of the feasible set
S, it is said that X dominates Y , X ≺ Y , if for all
i ∈ {1, 2, . . . , m} we have wi(X) ≤ wi(Y ), and exists
j ∈ {1, 2, . . . , m} such that wj(X) < wj(Y ). A solution
X is Pareto (optimal) if it is not dominated by any other so-
lutions of S, that is, for all Y ∈ S − {X} it is verified that
Y 
≺ X. The set of all Pareto solutions is called Pareto set
or efficient set.

3.2 Metrics

To verify the performance our method we used two met-
rics: R1 and R3 [7]. The R1 metric measures the probabil-
ity that an approximation set P1 is better than another P2

over a family of utility functions U . If R1(P1,P2, U) > 1
2

then, according to this measure, P1 is better than P2 and it
will be not worse if R1(P1,P2, U, p) ≥ 1

2 . The R3 metric
measures the expected proportion of superiority of one set
over another. The larger R3(P1,P2, U) is, the worst is P1

when compared with P2. The opposite is valid if R3 is neg-
ative. If R3(P1,P2, U) ≈ 0 then P1 and P2 have similar
quality over U .
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3.3 k-Degree Spanning Trees problem
construction

In the proposed process, to build the k-degree spanning
tree, feasible edges are successively added until a solution
is complete. Before the addition of any edge, it must be
verified that such addition will not form a cycle neither the
nodes maximum degree condition is violated.

More precisely, the process starts by randomly se-
lecting a node from V , s, and setting TN = {s}
(TN is the set of the nodes already included it the
tree). Then n − 1 admissible edges from A =
{euv ∈ E : u ∈ TN ∧ δ(u) < k ∧ v ∈ V − TN} , are se-
quentially added, where δ is the degree of node u in the sub-
tree that is being constructed, and k the maximum degree al-
lowed. The selection of the edges is pseudo-randomly made
using formula

est =
{

argmaxf∈A
∏m

j=1 τj(f)αj wj(f)βj if q ≤ q0

e if q > q0,
(1)

where

• τj(e) is the pheromone value associated to the j weight
in edge e;

• wj(e) is the j-weight of edge e;

• αj is an algorithm parameter associated to the rele-
vance of weight j;

• βj is an algorithm parameter associated to the local
heuristic that favours edges with lower j-weight;

• e ∈ A is an edge pseudo-randomly chosen with prob-
ability

p(e) =

∏m
j=1 τj(e)αj wj(e)−βj∑

f∈A
∏m

j=1 τj(f)αj wj(f)−βj
. (2)

• q is a uniform random value in [0, 1]; and

• q0 ∈ [0, 1] is a parameter that influences which branch
of (1) is used more often: a smaller value of q0 pro-
duces a more exploratory search, since it implies the
use of the pseudo-random formula (2) with higher
probability. When q0 is near 1, the feasible edge
with larger probability of entering the tree is used with
greater frequency, which suggest an exploiting search.

If the solution satisfies the ε distance constraint then the
process enters Depth Search method described in Algorithm
2. The selection of the edges to enter the search tree in this
phase also follows the above formulas, that is, (1) and (2).

3.4 Pheromone update

To update the pheromones matrices it was used the
Angle-Pheromone Update strategy [2]. This strategy can
be considered greedy in the sense that it only uses elements
of the approximation set. The objective is to explore small
regions of the search space by using, in the pheromone up-
dating formula, only a subset of the solutions contained in
that set. This idea is motivated by the fact that, in most of
the cases, the number of elements in the approximation set
becomes very large. Empirical tests proved that if all the so-
lutions in the approximation set were used, the pheromone
based selection becomes very noisy, which delays the con-
vergence toward the Pareto set. For the single objective
case, a set of the k best solutions can be kept, using a subset
of that set to do pheromones update.

Therefore, the pheromone vector update is made accord-
ing to formula

τ(e) = ρτ(e) + Δ(e), e ∈ E ,
where

• τ(e) is a pheromone vector associated to edge e;

• ρ ∈ [0, 1] is called the persistence factor (1 − ρ is the
evaporation factor). The smaller the values of ρ are,
the smaller quantity of information, used in one cycle,
is transmitted to following cycle;

• Δ(e) = (Δ1(e), Δ2(e), . . . , Δm(e)) is the reinforce-
ment pheromone vector associated to edge e and is
computed using the elements of the approximation set,
P , and formula

Δk(e) =
∑

T∈Pe

Q

wk(T )
,

where

– Q is a value with the same magnitude of the solu-
tions. For example, if the weights are balanced it
can be used the average of the minimum weights,

1
m

m∑
k=1

min
T∈P

wk(T );

– Pe are the elements of the approximation set that
contain edge e and lie in a subangle of the angle
defined by the origin and the extreme solutions
(of weights k and k + 1), that is,

Pe = {T ∈ P : e ∈ T ∧ γ1 ≤ φk(T ) ≤ γ2}
where

φk(T ) = arctan
(

wk+1(T )
wk(T )

)
,
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Parameter Values
D 1
d � 3|V|

4 �
M 2
ε 0
αi, βi {0, 0.03, 0.06, . . . , 3.0}
ρ 0.1
q0 {0.5, 0.6, 0.7, 0.8, 0.9}
k 3
Number of
ants per cycle

|V|

Number of
cycles

2

Maximum run
time

min{60|V| log |V|, 36000}
Seconds

Table 1. Used parameters.

{
γ1 = φmin

k + Ikφh
k

γ2 = φmin
k + (Ik + 1)φh

k

,

{
φmin

k = minT∈P φk(T )
φmax

k = maxT∈P φk(T ) ,

for k = 1, 2, . . . , m − 1, φh
k is the step interval,

and Ik is a value related to the region to be ex-
plored which is controlled by the main process.

3.5 Results

The algorithm ε-DANTE was implemented in C++
and tests were run on a PC with a 3Ghz Intel Pentium
IVTMprocessor, 512Mb of RAM and Windows XP OS. For
each problem the method was run 15 times with the param-
eters reported in Table 1.

The problems instances that were used to test the imple-
mentation were defined by [9] and the ε-DANTE solutions
are compared with the solutions obtained with the Genetic
Algorithms presented by the same authors. More specifi-
cally, it was used as reference set the one composed by the
non-dominated elements of the union of the 30 approxima-
tion sets presented in [9].

Table 2 presents a resume of the results for some of the
tested instances over the 15 runs. This table contains infor-
mation about the average values of the metrics R1 and R3,
the average cardinality of the approximation set built with
ε-DANTE (in parentheses the cardinal of the reference set),
and the average time of the last update of the approxima-
tion set. From the same table it is possible to observe that
in most of the cases, ε-DANTE improves the reference set
since R1 < 0.5 and R3 ≈ 0. The exceptions were the 10
nodes networks where in one case it has achieved the exact
Pareto set (obtained with the Brute Force method) and in

Problems μR1 μR3 μ|P| (μ|Pref |) μTime

10vac 0.57 0.00 183 (191†) 7.6
10v-m-c 0.5 0.00 129 (129†) 628
10vconc 0.54 0.00 128 (134†) 8

25vac 0.47 0.00 517 (439) 3754
25vc 0.39 0.00 2496.6 (1480) 4351.

25v-m-c 0.13 0.01 2168.7 (820) 4743
50vac 0.40 -0.05 6328.1 (1436) 11960

50vconc1 0.48 0.00 1748.6 (894) 11803

Table 2. Resume of the results for the k-
Degree Minimum Spanning Tree problem.

the other two cases it has obtained 128 and 183 of the 134
and 191 solutions, respectively.

The time evolution of the R1 and R3 metrics are de-
picted in Figures 3 and 4, respectively, for some of the tested
instances (25vac, 25vc and 50vac). It is possible to observe
that the convergence of the solutions toward the reference
set is made quite fast since R3 quickly takes values near to
zero. Nevertheless, the local refinement takes some extra
time, as reflected in the last update time of the approxima-
tion set (μTime), which as already referred is a characteris-
tic common to most of the Ant Colony based algorithms.

4 Conclusions

This paper was devoted to the study of the ε-DANTE
method. This method is based in the Ant Colony Optimiza-
tion paradigm and appears as an effort to provide a more ef-
fective way to further exploring the best fitness performing
solutions. More precisely, whenever a solution is inserted
into the approximation set, or satisfies an ε distance to the
approximation set criterion, it is performed a limited Depth
Search using the pheromone values to guide the search.

Results for a version of ε-DANTE applied to the Multi-
ple Objective k-Degree Minimum Spanning Trees are pre-
sented. It was verified that the method rapidly converges
toward the fronts achieved by other authors and ends up by
improving, in general, their results.

As in many Ant Colony algorithms, the ε-DANTE uses
a greedy strategy, where only the best performing solutions
are used to update the pheromone value.
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